RIGIDLY COLLINEAR PAIRS OF STRUCTURAL PROJECTIONS
ON A JBW*-TRIPLE
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ABSTRACT. Pre-symmetric complex Banach spaces have been proposed as mod-
els for state spaces of physical systems. A neutral GL-projection on a pre-
symmetric space represents an operation on the corresponding system, and has
as its range a further pre-symmetric space which represents the state space of
the resulting system. Every L-projection is a neutral GL-projection, and such
a projection represents a classical operation. Two neutral GL-projections R
and S on the pre-symmetric space A, represent decoherent operations when
their ranges are rigidly collinear. It is shown that if R and S each satisfy a con-
dition, a possible physical interpretation of which is that the information lost
in their measurement is partially recoverable, then R and S have as supremum
R+ 5 and the operations corresponding to R, S and R+ S are simultaneously
performable. Furthermore, it is shown that the smallest L-projection majoriz-
ing R, S and R+ S coincide, and the greatest L-projection majorized by R+ S
is identified.

1. INTRODUCTION

A complex Banach space A, is said to be pre-symmetric if the open unit ball in
its Banach dual space A is a bounded symmetric domain. Pre-symmetric spaces
have been proposed as models for the state spaces of physical systems [31], {32],
[33], [34], operations on the physical system corresponding to the pre-symmetric
space .4, being represented by contractive projections R on A.. The range RA.
of a contractive projection R is a pre-symmetric space which can be regarded as
representing the state space of the filtered system [40], [46].

A contractive projection R on the pre-symmetric space A, is said to be neutral if
each element = in A, for which |Rz|| and ||z|] coincide lies in the range RA. of R,
and is said to be a GL-projection if the set

(RA.)® ={z € A.: llz £yl = [lzll + lyll.Vy € RA.}

of elements L-orthogonal to all those in the range RA. of R is contained in the
kernel ker(R) of R. The results of [14], [16], [18], [26] show that, for each element
R of the set S.(A.) of neutral GL-projections on A., there exists an element R+
of S.(A4.) with range equal to (RA4.)°. In physical terms Rt may be thought of
as representing the operation complementary to that represented by R whilst the
range R; A. of the projection R; on A, defined by

R, =id4, —-R-R*
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isomorphism from the complete lattice S(A) of structural projections on A4 onto
the complete lattice Z(A) of weak*-closed inner ideals in A. More recently, in [16],
it was shown that the mapping R — R* is an order isomorphism from the set
S«(Ay) of neutral GL-projections on A, onto the complete lattice S(A4), thereby
linking the purely physical and geometric properties of the pre-symmetric space A.
with the purely algebraic properties of A.

For each element J of Z(A), the kernel Ker(J) of J is defined to be the set of
elements a in A for which the triple product {J a J} is equal to zero, and the
annihilator J* of J is defined to be the set of elements a in A for which {J a A4}
is equal to zero. For each element J in Z(A), the annihilator J* also lies in Z(A4),
and A enjoys the generalized Peirce decomposition

A=Jo® 1 @ Js, (1.1)
where, ‘
Jo=JY, JL=J  J =Ker(J)NKer(J?'). (1.2)
The structural projections onto J and J* are denoted by P(J) and Py(J), re- o

spectively, and the projection idg — Py(J) — Po(J) onto J; is denoted by P;(J).
Furthermore,

{AJo 1} ={0}, {AJ2 Jo}=1{0}. (1.3)
and, for 7, k, and [ equal to 0, 1, or 2, the Peirce arithmetical relations,
{J; Ik I} C Jjpi—k» (1.4)
when 7+ [ — k is equal to 0, 1, or 2, and
Adi Ik I} =A{0}, (1.5)

otherwise, hold, except in the cases when (7,%,l) is equal to (0.1,1), (1,1,0),
(1,0,1), (2,1,1), (1,1,2), (1,2,1), or (1,1,1). For j equal to 0, 1, or 2, writing
P;(J). for the pre-adjoint of P;(J) and J,; for its range, it is clear that 4. also
enjoys a Peirce decomposition

Ay = Juo ® o1 @ Juo,

and that P5(J). is a neutral GL-projection such that Py(J); coincides with Py(J)..
In general, however, J; is not a JBW*-triple, and P,(J) and, hence. P;(J). is
not contractive. A remarkable result, proved in [22], shows that the Peirce-one
projections P; (J) and P;(J), are contractive if and only if the Peirce arithmetical
relations (1.4) and (1.5) hold in all cases. In this case J is said to be a Peirce inner
ideal. It follows that the mapping R — R*A is a bijection from the set SP(A,)
of Peirce neutral GL-projections on A, onto the set ZP(A) of Peirce weak*-closed
inner ideals in A.

Two weak*-closed inner ideals J and K in the JBW*-triple 4 are said to be com-
patible when, for j and & equal to 0, 1, or 2, the Peirce projections P;(J) and

P(K) commute [17]. It follows that J and K are compatible elements of Z(A) if (A A\/, o
and only if P>(J). and P»(K). are compatible elements of S.(4.). A weak*-closed - ) < '
inner ideal I in A is spid to be an ideal-if T;i§ equal to zero, oF; eguivalently, if v
I is compatible with all weak*-inner ideals in A, or, equivalently, if Po(I), is an - _/

L-projection on A, [17]. The sets ZZ(A) of weak*-closed ideals in A and ZS5(4) of /;\J 07 S4;

corresponding central elements of S(A), or M-projections, form order isomorphic | N

Boolean sub-complete lattices of Z(A4) and S(A), respectively, and both are order l‘\ﬂ" K Ao
3 ’ N
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a JBW*-triple. The second dual A** of a JB*-triple A4 is a JBW*-triple. For details
of these results the reader is referred to [3], [4], [10], [11], [35], [38], [39], [40}, [47]
and [48]. Examples of JB*-triples are JB*-algebras, and examples of JBW*-triples
are JBW*-algebras, for the properties of which the reader is referred to [12], [36],
[49] and [50].

An element u in a JBW*-triple A is said to be a tripotent if {u u u} is equal to
u. The set of tripotents in A is denoted by U/(A). For each tripotent u in A, the
weak*-continuous linear operators Py(u), P (u) and Py (u), defined by

Po(u) =ida — 2D(u,u) + Q(u)?, Pi(u) = 2(D(u,u) ~ Q(u)?),
) (w) = Q(u)?, (2.1)

are mutually orthogonal projectlon operators on A with sum id4. For j equal
to 0, 1 or 2, the range of P;(u) is the weak*-closed eigenspace™ A (u) of D{u,u)
corresponding to the eigenvalue % j and

is the Peirce decomnposition of A relative to u. Moreover, Ag(u) and As(uw) are .

inner ideals in. A, A;(u) is a subtriple of A and Aj(u) is said to be the Peirce
J-space correspondigg to the tripotent u. Furthermore, . :

. , {A 4s(u) Ao(u)} = {4 Ao(u) A2 (w)} = {0} ' (2.3)
and, for j, k and [ equal toO lor2 -
{4;(uw) Ax(u) Ai(u)} C Ajpr-k(u) (2.4) -
when j + 1 — k is equal to 0, 1 or 2, and
{A4;(u) A () A(w)} = {0} (2.5)

otherwise.
A pair a and b of elements in.a JBW*-triple A is said to be orthogonal when D(a,b)
is equal to zero. For a subset ‘L of A, the subset L+ of A consisting of all elements )
which are orthogonal to all elements of L is a weak*-closed inner ideal in A which S ﬂ qU~C
is known as the annihilator of L in A. For subsets L, M of 4, LT AL q @
L C LY, L C M implies that M+ C L+, and L+ and L4 coincide. /’2’/
For each non-empty subset J of the JBW*-triple A, the kernel Ker(J) of J is the
weak*-closed subspace of elements a in A for which {J a J} is equal to {0}. It
follows that the annihilator J+ of J is contained in Ker(J) and that J N Ker(J) is
contained-in {0}. A subtriple J of A is said to be complemenied [21] if A coincides
with J & Ker(J). It can easily be seen that every complemented subtriple is a
weak™-closed inner ideal. A linear projection P on the JBW*-triple 4 is said to be
a structural projection [42] if, for each element a in A,

PQ(a)P = Q(Pa).
The main results of [18], [20] and [21] show that the range PA of a structural
projection P is a complemented subtriple, that the kernel kerP of the map P
coincides with Ker(PA), that every structural projection is contractive and weak*-
" continuous, and, most significantly, that every weak*-closed inner ideal is comple-
mented. _
Let Z(A) denote the complete lattice of weak*-closed inner ideals in the JBW*-

triple A and let S(A) denote the set of structural projections on 4. The results
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where f(J) coincides with k(J)* N J.

3. RIGIDLY COLLINEAR PAIRS OF WEAK*-CLOSED INNER IDEALS

In this section some properties of a rigidly collinear pair J and K of weak*-closed
inner ideals in a JBW™-triple A are investigated. The main results relate to the
conditions under which such pairs are compatible and to the existence of a supre-
mum of J and K in the complete lattice Z(A) of weak*-closed inner ideals in A.
It turns out that, in complete generality, it is possible to reveal some facts about
their central structure.

Theorem 3.1. Let A be a JBW*-triple, and let J and K form a rigidly collinear
pair of weak*-closed inner ideals in A, having Peirce spaces Jy, J1, and Jo, and
Ky, K1, and K1, respectively. Then, the following results hold.

(i) The weak*-closed inner ideals J and K are faithful.
(i) The central hulls c(J), ¢(K), e(J1) and ¢(K;) coincide.
(i) The central hull ¢(J V K) of the smallest weak*-closed inner ideal J V K
containing J and K coincides with ¢(J) and c(K i /
g eI () el
/

Proof. (i) Since K3 is contained in Jp, it follows that
(J1)*+ C K5 = K.
Hence, by [27], Theorem 3.14, and since J> is contained in K3,
k(J) = (J1)t nJy C Kon Ky = {0}.

It follows that J and, similarly, K is faithful.

(i) Since J is compatible with each weak *-closed ideal, the set of which forms a
complete Boolean lattice, it can be seen that

J JN(e(J)Ne(K) @& c(J)Ne(K)E @ c(J)t Ne(K) @ c(J)t ne(K)L)
= JneK)eJneK)reJneN)tneK)e Jne(J)ne(K)*t. (3.1)

Since J is contained in ¢(J), it follows that ¢(J)" is contained in Jy, and, hence,
JNe(J)* is equal to zero. Furthermore, ¢(K)* is contained in Ky, and, therefore,

JNe(K)t CJNKy C K NKy={0}.

From (3.1), J and JN¢(K) coincide, from which it can be seen that J is contained
in ¢(K'). From the definition of central kernel, it follows that ¢(J) is contained in
¢(K). By exchanging J and K in the argument above, ¢(K) is also contained in
¢(J), as required. By [27], Corollary 3.12, and since K is contained in Ji,

(1) € e(J) = e(K) C (),
and ¢(J1) coincides with ¢(J) and ¢(K). The same clearly applies to ¢(K;).
(iii) Since J and K are contained in J V K, it follows that

e(J)Ce(JVK), ¢X)Ce(JVK),

and, hence,

o(J)V e(K) C ¢(J V K).
7




Therefore, by (3.3) and (3.4), for j equal to 0, 1, and 2,

P (K)P;(J) = P;(J)Pi(K). (3.5)
Exchanging J and K it follows that
Py (J)P;(K) = P;(K) P (J). (3.6)

Since J, is contained in K7,
Py (K)Px(J) = Py(J). (3.7)

Since K is Peirce, by (1.4), K is a subtriple of A, and it follows from from [18],
Lemma 3.12 that J,» is contained in K,; which implies that

Py (K)sPy(J)s = Pa(J)s-
Taking adjoints,
P (N)P1(K) = Po(J), (3.8)
and then, from (3.7) and (3.8),
P (E)P(J) = P(J) = R(J) P (K). (3.9)
Hence, from (3.9),
B(J)R(K) = P(J)R(K)P2(K) = 0= R(K)P(K)P(J) = P2(K)P(J)-

(3.10)
Since .
ida = Po(J) + Pi(J) + Po(J) = Bo(K) + P1(K) + P (K),
it follows from (3.5).(3.6) and (3.10) that, for j and k equal to 0, 1 and 2,
| Pj(I)Py(K) = Po(EK)F;(J), |
and the proof is complete. O

It is now possible to investigate the structure of the supremum JV K of the rigidly
collinear pair J and K of Peirce weak*-closed inner ideals in the JBW™*-triple A.
Observe that, by Theorem 3.4, J and K are compatible, their intersection table
being given by

n Ja J1 Jo
e o & o)
K Jo JNK; | JoNnK;
Ky {0} JiNKel JoNKp
and, by [17], §3,
2
A= @ Ji N Ky. (3.11)
3.k=0

Theorem 3.5. Let A be a JBW*-triple, and let J and K form a rigidly collinear
pair of Peirce weak™-closed inner ideals in A having corresponding Peirce spaces
Jo, J1, and Ja, and Ky, K, and K», and Peirce projections Po(J), P (J), and
Py (J), and Py(K), P (K), and P>(K). Then, the following results hold.

(i) The subspace J + K of A is a weak™-closed inner ideal in A.

9




and that the inner ideal J + K is complemented. By [18], Lemma 3.2, the inner
ideal J + K is weak*-closed.

(i1) Observe that the weak*-closed inner ideal (J+K)g is equal to JoNKjp. Moreover,
{JoNKy L @Ke® JINK1 D1 NEKy®JoNK; JoN Ko}
{0} {0} {Jo 1 o} N{Ko K1 Ko} & {Jo J1 Jo} N {Ko Ko Ko}
&{Jo Jo Jo} N {Ko K1 Ko}

N

= {0}.
Hence,
A = JpNK@hdK: @ iNKi 1 NKy®JpNK;
C (J+ K)o ® Ker((J+ K)o)
c A
It follows that
Ker((J+ K)o) =L@ Ko INK 01 NKy® Jp N Ky, (3.13)
and, using the compatibility of J and K, and (3.12)-(3.13),
(J+K)1 = Ker(J+ K)nKer((J+ K)o)

= JNKisJiNnKydJoNK,,

as required.

Observe that Py(J) + P»(K) is a projection on A with range J + K and kernel
equal to Ker(J + K). Therefore, by [18], Theorem 3.4, Po(J) + Po2(K) is the
structural projection Py (J + K) onto the weak*-closed inner ideal J+ K. Similarly,
Py(J)Po(K) is a projection on A with range Jy N Ky and kernel equal to the kernel
Ker(JoN Kjy) of the weak*-closed inner ideal Jy N Ky, and it follows that Py (J + K)
is equal to Po(J)Py(K). Finally,

PUJ+K) = ids— Po(J+K) - Py(J + K)
= PR ()P (K)+ P (J)R(K)+ Py (J)A(K),

as required.

(iil) Since J and K are compatible, their corresponding Peirce projections form a
commuting family, and it follows from (ii) that these also commute with the Peirce
projections corresponding to J + K. This completes the proof the theorem. O

This theorem has the following corollary, which is an immediate consequence of
[13], Corollary 4.5.

Corollary 3.6. Under the conditions of Theorem 3.4,
{,K,J+ K, JH KE T KA g n g, KA n K )

forms a family of pairwise compatible weak™*-closed inner ideals in A.

It is worth observing that it also follows from [13], Corollary 3.5, that all the weak*-
closed inner ideals in the set above are Peirce, with the possible exception of J + K.
A discussion of whether or not J + K is also Peirce will be postponed until the
next section. Suffice to comment that, at this stage, there is no obvious reason to
believe that J + K is Peirce.
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It follows that P, (K) is a projection from J; onto K with kernel equal to Kery, (K>).
Therefore, from [18], Theorem 3.4, Po(K) is the structural projection from J; onto
K. Similarly, P;(J)Py(K) is the structural projection onto the weak*-closed in-
ner ideal J; N Ky in J;. It follows that P;(J)P; (K) is the Peirce-one projection
from J; onto the Peirce-one space (K3)j, 1. Since both J and K are Peirce, by
[22], Theorem 4.8, the projections P;(J) and P;(K) are contractive. The same
clearly applies to their product, and the same theorem shows that K> is a Peirce
weak*-closed inner ideal in J;.

The same results clearly apply when the roles of J and K are reversed. O

Two lemmas are required before it is possible to prove the main result concerning
the central kernel of the supremum J + K of the pair of J and K of rigidly collinear
Peirce weak*-closed inner ideals. The first is of a fairly general nature.

Lemma 3.8. Let A be a JBW™*-triple and let M and N be weak™-closed subtriples
in A such that A coincides with M & N and .

{M MN}CN, {NNM}CM, {MNM}={0}, {NMN}={0}
Then, the following results hold.

(i) The weak*-closed subtriples M and N of A are Peirce inner ideals in A.
(ii) The weak*-closed inner ideals Mt and N+ in A coincide with the central
kernels k(M) and k(N) of N and M, respectively.
(iii) The Peirce decompositions of A corresponding to M and N are given by

A=M,®M; & My=M & f(N) ® k(N),

A=NodNi@Ng=Nea f(M)®k(M),
where f(M) and f(N) are the faithful parts of M and N, respectively.
(iv) The weak*-closed inner ideals M and N in A form a compatible pair.
Proof. First observe that
{MAM}={M M&N M}={M M M}+{M N M} =M,
with the same result applying to N. Hence. A and N are inner ideals in A. Since
{N M N}={M N M} ={0},
it follows that -
M C Ker(N), N C Ker(M).
Hence, using [18], Theorem 5.4, ™+
A=M@eNCMaeKe(M) =4, ’

S g e
R o, g Wity T M a1 ) =
N = Ker(M). ~ —

“ ) 1t
L RN g P T

Similarly, M coincides with Ker(N¥). The linear projection R on A defined, for an N
element a of A, by
M e

b "\--/./v-“[L

and it follows that

Ra = b,
where

a=b+eg,
13




Observe that the intersection diagram corresponding to M and N is given by

n My | M My
N, {0} [f(V) | k(N)
N fM) | {0} | {0}
No k(M) | {0} {0]

and
2

A= P ;N Ny).

j.k=0
By [17], §3, M and N form a compatible pair, and the proof of (iv) is complete.

Finally, observe that, by [18], Corollary 3.5, there exists a unique structural projec-
tion Py(k(N))P2(N) onto the weak*-closed inner ideal f(N). It follows from [18],
Theorem 3.4, that

Pi(M) = ida— Ry(M)— Py (M) =ids — Po(k(N))P2(N) — (ids — P2(N))
= Py(k(N))Ba(N).
Therefore, being a product of contractive projections, the projection P; (M) is con-

tractive. Hence, by [22], Theorem 4.8, M is a Peirce inner ideal in A. The same
clearly applies to IV, thereby completing the proof of (i). O

Lemma 3.9. Let A be a JBW™-triple, let J and K form a rigidly collinear pair of
Peirce weak™-closed inner-ideals in A, having corresponding Peirce spaces Jy, Ji,
and Jo, and Ky, Ky, and K», and let

B=J& (L ﬂKo).
Then, B is a weak™-closed subtriple of A in which Jo and J; N Ky are compatible
Peirce weak™-closed inner ideals, the corresponding Peirce decompositions being
given by
B = (L)2@()2)B1 @ (J)2)B0
= Jr@® fe(/i N Kp) & kp(J1 N Kp),
(iNKo)p2@ (J1NKo)py € (J1 NKo)g.o
= (/1 NKo) @ fp(J2) & kp(J2).
Proof. Notice that, using (1.4)-(1.5),
{BBB} = {lhaeaJnNKyh@JiNKyJ&J NKy}
{JQ Js Jz} + {JQ Jo Jy ﬂI{Q} + {Jz JiNKy Jf_)}
+HJ iNKy JINKe}+{/1NKy Jo J1 N Ko}
+{/iNKy 1 NKy J1 NKg}
C heinKe@{0}a e JiNKp
= B.

Hence, B is a weak™-closed subtriple of 4, and, clearly, J, and J; N Ky are weak®*-
closed subtriples of B such that

{Jz Jo Jp nKo} C J1 N Ky, {J] NKy J1NKp J_z} C Js,

B

I

{Jz Ji N Ky J_)_} = {.]1 NKy Jo J ﬂf\fo} = {0}
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Therefore, by Lemma 3.7, Lemma 3.8, and [27], Theorem 3.14,
((J + K1) 0 J =k, (J) N kapgr,nko(J)-

The same result with J and K reversed clearly holds and, using (3.20), the proof

of the theorem is complete.
O

4. EXAMPLES AND REMARKS

One possible conjecture about the supremum J + K of the rigidly collinear pair J
and K of Peirce weak*-closed inner ideals in a JBW*-triple A is that it is also Peirce.
In order to refute this conjecture it suffices to consider the following example.

Recall that the non-associative algebra O of complex octonions can be represented
as the complex vector space of matrices of the form

=[5 3]

where o and f lie in C, and x and y lie in C3. Addition is pointwise, whilst
multiplication is given by

w = a X a' x'
y B y 8
_ aa' +xy' ax' + A'x+y Ay
- a'y + By —xAX BB +x'y ’

Let i, j and k be unit basis vectors in C? in the three co-ordinate directions. Then
the following elements of @ form a basis:

a1 0], ~_Joo0]. s_fOooO0) _[0 -],
1500 0 AT o 1| 2Fi 0|7 2T 0 0 |

00 _ (o —j 00 - [0 -k
cg:[j OJ; c3=[0 OJ}; cj:[k 0}9 642{0 0 J

This basis is known as the Cayley grid for @. The natural involution u — u° is

given by
[ ]o [
y B

(211 4+ z2] + z3k) = (Z11 + Zaj + ZT3k).

Tot <l
—

MO

where

Let A denote the JBW™-triple factor AM; »(0) of 1 x 2 matrices over @. The qua-
dratic operator in A is defined, for elements [u; u2] and [v; vo] in 4 by

Q([ur u2))([v1 v2)) {fur w2] [v1 v2] [ur usl}

[u1 (vyu1) + w2 (v3us) ua(vsua) + uz (viug)]-

It follows that for elements [u; us], [v1 v2] and [w; ws] in A, the triple product is
defined by
2{[ur u2] [v1 v2] (w1 wol} = [wi(viwr) +wi(vTwr) + ua(v3wi)
+ws(v3u1) up (viwe) + wy (vyu2)

+us (vswa) + wa(vyus2)].
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Boolean lattice that is the orthomodular lattice centre ZP(A) of P(A). Moreover,
with respect to the Jordan triple product defined, for elements a, b and ¢ in 4, by

{abc} = %(ab*c+ cb*a),

A is a JBW*-triple. For details, the reader is referred to [44], [45] and [47].
For each element e in P(A4), the central support c(e) of e is defined by

cle) = N\{z € 2P(4) :e < 2}.

A pair (e, f) of elements of P(A) is said to be centrally equivalent if c(e) and c(f)
coincide. The common central support is denoted by c(e, f). When endowed with
the product ordering, the set CP(A) of centrally equivalent pairs of elements of
P(A) forms a complete lattice in which the lattice supremum coincides with the
supremum in the product lattice, but, in general, the lattice infimum does not. The
results of [19] show that the mapping (e, f) — eAf is an order isomorphism from
CP(A) onto Z(A).
For an element (e, f) in CP(A), let

(e, )" = (c(f)e". c(e) ). (4.1)
Then, the mapping (e, f) — (e, f)’ is order reversing, and if J is the weak*-closed
inner ideal eAf in A, then the annihilator J* coincides with c(f')e’ Ac(e’)f'. It

follows that the generalized Peirce decomposition of A corresponding to the weak*-
closed inner ideal J is given by

J=Jo® J; & Jo,
where
']2 = eAf7 JU = C(e!)elA.C(e,)f[,

and

J1 = ec(f)Ac(e, f)f' + cle, fle' Ac(e') f.
Furthermore, every weak*-closed inner ideal J in A is Peirce.
The results of [23] show that for two elements (e, f) and (g, h) of CP(A) the corre-
sponding weak*-closed inner ideals

J=edf, K =gAh,
are compatible if and only if
eg=ge, fh=hf.
and are orthogonal if and only if (e, f) < (g.h)’, or, equivalently, if and only if, in
P(A),
e+g<1l f+h<1l

Although the complete lattice CP(A4) is not, in general, orthomodular, it is possible
to give a definition of its centre. An element (g, k) in CP(A4) is said to be central
if, for each element (e, f) in CP(A4),

(e, f) = ((g: W) Aes )V ((g: 1) A £))-
The results of [23] show that (g, &) is central if and only if g and h are equal and lie
in ZP(4). Denoting by ZCP(A) the set of elements of CP(A4) of the form (w,w),

where w lies in ZP(A4), the restriction of the mapping (e, f) — eAf to ZCP(A) is
19




m

As in the proof of Theorem 3.10, using (4.9)-(4.10),
kx,(J) = (hnKy)tnJ
= wic(f'h) eAw (c(f'R) +c(f'h')e(e) f
® wa(c(e'g’) + c(e'g')e(f))eAwsc(e'g’) f, (4.11)

kJ'z@J]nKo(']) = (2N KO)_L nJ
= wec(e) edwic(e) f ® wae(f') edwse(f) f.  (4.12)
From (4.11)-(4.12) it can be seen that

ki, (J) Nkpennko(J)
= wic(f'R) e(e') eAwrc(f'h')'c(e') | @ wacle'g’)'c(f') eAwac(e'g') c(f') .
Therefore, by Theorem 3.10,
kJ+K) = kk,(J)Nknennk(J) ® kk, (J) Nksennk, ()
= wic(f'h) c(e) eAwc(f'h')cle) (f +h)
® wac(e'g')'c(f')' (e + g) Awac(e'g') c(f) 1,

a conclusion that could, of course, also have been reached using (4.2) and [27],
Theorem 4.1. Notice that, in the special case in which

wif+wrh=w;, ew =gw =ws,
then
wie(f'R) =wicle') =wy,

and the ideal w; Aw; is contained in k(J -+ K). It is therefore possible to give simple
finite-dimensional examples in which k(J + K) is non-zero.

Observe that, using [24], similar calculations to those used above apply when the
W=-algebra 4 is replaced by any rectangular JBW*-triple.
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