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ABSTRACT

A Peirce grading (Jo, Ji, J2) of a Jordan*-triple A consists of
subspaces Jy, J; and J» of 4, with direct sum A4, which satisfy the
conditions that

{70 J» 4} ={J» Jo 4} = {0},

and, for j, k, and /equal to 0, 1, or 2, if j—k+/isequal to 0, 1 or 2
then

{J; Jie i} C Jjksts
and, if not then

{Jj I i} = {0}.

*Correspondence: C. Martin Edwards, The Queen’s College, Oxford, UK;

E-mail: artin.edwards@queens.ox.ac.uk. ’
tDeceased.

2819

DOI: 10.1081/AGB-120021895 0092-7872 (Print); 1532-4125 (Online)
Copyright © 2003 by Marcel Dekker, Inc. www.dekker.com




2820 Edwards and Riittimann

An involutive grading (B,., B_) of 4 consists of a pair of subtriples
of 4, with direct sum 4, satisfying the conditions

{B+ B- B,}C B_, {B- By B_} C By,
{B+ By B_}C B, {B- B_ B,} C B,.

Every Peirce grading (Jo, Ji, J2) of A gives rise to an involutive
grading (Jo®Ja, Ji) of 4. It is shown that, conversely, when 4 is a
JBW*-triple factor and (B, B_) is an involutive grading of 4,
either B, is also a JBW*-triple factor or, for each weak*-closed ideal
Jy of By, with complementary weak*-closed ideal J,, writing J; for
B_, (Jo, J1, J3) is a Peirce grading of A.

Key Words:  Jordan*-triple; JBW*-triple; Peirce grading; Involutive
grading.

1. INTRODUCTION

A study of involutive and Peirce gradings of Jordan pairs, Jordan
triple systems and Jordan algebras was carried out by Neher (1981)
who showed, amongst other things, that, provided that the Jordan struc-
ture in question was simple, semi-simple, and satisfied both the ascending
and descending chain conditions on principal inner ideals, the two con-
cepts were essentially equivalent. One of the purposes of this note is to
extend Neher’s results to a large class of Jordan*-triples.

A complex Banach space 4 the open unit ball in which is a bounded
symmetric domain has a natural triple product with respect to which it is
a Jordan'-triple, known as a JB*-triple. The class of JB*-triples includes
that of JB*-algebras, which itself includes the class of C*-algebras. When
the complex Banach space A is also the dual of a Banach space then A4 is
said to be a JBW*-triple. The class of JBW*-triples includes the class of
JBW*-algebras, which itself includes the class of W*-algebras, or von
Neumann algebras. A JBW*-triple 4 is said to be a JBW*-triple factor
if it possesses no non-trivial weak*-closed ideals. A JBW*-triple factor
need not be simple, nor need it satisfy either the ascending or descending
chain conditions on principal inner ideals.

l
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The subtriples B, and B_ occurring in an involutive grading (B,,., B_) of a
JB*-triple 4 are automatically norm-closed, and, if 4 is a JBW*-triple, the
subtriples B.. and B_ are automatically weak*-closed. Moreover, the set of
bicontractive projections on a JB*-triple 4 can be characterised in the set
of all linear projections on 4 purely in algebraic terms. Furthermore,
bicontractive projections on a JBW*-triple are automatically weak®*-
continuous. Although this paper is mainly concerned with JBW*-triples,
many of the results proved hold in part in much greater generality. For
example, the results quoted or proved for Jordan*-triples hold for Jordan
triple systems over arbitrary rings containing 1/2. Readers more inter-
ested in this approach are referred to Anquela and Cortes (to appear).

It is clear that every Peirce grading (Jo, Ji, J2) of a Jordan*-triple 4
provides an involutive grading (Jo®J2, Jy) of A. The main result of the
paper shows that, provided that 4 is a JBW*-triple factor, for every invo-
lutive grading (B., B_) of 4, either B, is itself a JBW*-triple factor or,
for each non-trivial weak*-closed ideal Jy in the JBW*-triple B,, with
complementary weak*-closed ideal J», when Jy is written instead of B_,
(Jo, J1, Jo) is a Peirce grading of A and Jp and J, are themselves JBW*-
triple factors. Of course, by symmetry, the same result applies when
B, is replaced by B_.

This provides another example of a phenomenon, which often
appears in the theory of Jordan structures, in which a particular result
that holds for a Jordan*-triple A only under strong and sometimes quite
technical algebraic conditions, continues to hold in greater generality
when these conditions are replaced by the geometrical requirement that
A is a JB*-triple or a JBW*-triple of some kind. Such results depend upon
the very intimate relationships that exist between the algebraic, geometric
and holomorphic structures of JB*-triples and JBW*-triples.

The paper is organized as follows. In Sec. 2 basic definitions are given
and notation is established. In Sec. 3 and in Sec. 4 a study of involutive
and Peirce gradings of JB*-triples and JBW*-triples is undertaken, and
the automatic topological and geometric consequences, referred to above,
are described. The algebraic parts of most of the proofs are similar to
those employed by Neher, and the topological parts of the proofs follow
standard techniques which depend upon the work of Dineen, Kaup and

In-this-paperthe-properties—of -involutiveand Peirce gradings of
JB*-triples and JBW*-triples are investigated. One of the features of
JB*-triples is that many of their algebraic properties automatically have
topological and geometric consequences. For example, it is known that
every structural projection on a JBW*-triple is automatically contractive
and weak*-continuous (Edwards et al., 1996). Further examples of such
phenomena occur in the study of involutive gradings of JB*-triples.

Upmeier, Friedmann and Russo, Staché and others. In Sec. 5 the main
result connecting Peirce and involutive gradings for JBW*-triples is
proved. The proof of this is less obvious, and requires the use of more
recent techniques, developed by the authors in Edwards and Riittimann
(2003, to appear). In the final section the results are applied to the special
case of in which 4 is a W*-algebra, for which the results do not appear to
have been known previously.
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2. PRELIMINARIES

A complex vector space A equipped with a triple product (a, b, ¢) —
{abc} from AxAxA to A which is symmetric and linear in the first and
third variables, conjugate linear in the second variable and, for elements
a, b, ¢ and d in A, satisfies the identity

[D(a, b), D(c,d)] = D({a b c},d) — D(c,{d a b}), @.1)

where [ ., .] denotes the commutator, and D is the mapping from 4 x 4 to
the algebra of linear operators on A defined by

D(a,b)c={a b c},

is said to be a Jordan*-triple. A Jordan*-triple 4 for which the vanishing
of {aaa} implies that a itself vanishes is said to be anisotropic. For each
element a in 4, the conjugate linear mapping Q(a) from A to itself is
defined, for each element & in 4, by

O(a)b = {a b a}.

A subspace B of a Jordan*-triple 4 such that {B B B} is contained in B is
said to be a subtriple of A. A subtriple J of 4 for which {J4J} is con-
tained in J is said to be an inner ideal of A. An inner ideal I'in 4 for which
both {AIA} and {4 A1} are contained in I is said to be an ideal in A.
An element u in a Jordan*-triple 4 is said to be a tripotent if {uuu} is
equal to u. The set of tripotents in A4 is denoted by %(4). For each tri-
potent u in A4, the linear operators Po(u), Pi(1) and P,(u), defined by

Po(u) = idy — 2D(u,u) + Q()’,
Py(u) = 2(D(u,u) — Q()*), ' (2.2)
Py(u) = Q(w)%,

are mutually orthogonal projection operators on A4 with sum id 4. For j

equal to 0, 1 or 2, the range of P{u) is the eigenspace 4, () of D(u,u)
corresponding to the eigenvalue % - and
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and, for j, k and / equal to 0, 1 or 2,

{Aj(u) Ar(u) Ai(w)} C Ajrr-k (1) . (2.5)
when j+/—k is equal to 0, 1 or 2, and
{4)(u) Ai(u) 41(w)} = {0} _ (2.6)

otherwise. For details of the properties of Jordan*-triples the reader is
referred to Meyberg (1972), Upmeier (1985) and Loos (1975).

A Jordan*-triple 4 which is also a Banach space such that D is con-
tinuous from A x A4 to the Banach algebra B(4) of bounded linear opera-
tors on 4, and, for each element @ in 4, D(a, a) is hermitian in the sense of
Bonsall and Duncan (1971, Definition 5.1), with non-negative spectrum,
and satisfies

ID(a,a)ll = lal?,

is said to be a JB*-triple. The final condition can be replaced by the
apparently less restrictive condition that, for all elements a in A4,

I{a a a}|| = [lall*.

A complex Banach space possesses a triple product with respect to which
it forms a JB*-triple if and only if its open unit ball is a bounded sym-
metric domain (Kaup, 1983). Observe that every subtriple of a JB*-triple
is an anisotropic Jordan*-triple. Every norm-closed subtriple of a JB*-tri-
ple A4 is a JB*-triple, and a norm-closed subspace J of A4 is an ideal if and
only if {JJ A} is contained in J (Bunce and Chu, 1992). A JB*-triple 4
which is the dual of a Banach space A, is said to be a JBW* -triple. In this
case the predualA, of A is unique and, for each element « in A4, the opera-
tors D(a, b) and Q(a) are weak*-continuous (Barton and Timoney, 1986;
Barton et al., 1987; Horn, 1987). It follows that a weak*-closed subtriple
Bof a JIBW*-triple 4 is a JBW*-triple. The second dual 4** of a JB*-triple
A is a JBW*-triple (Dineen, 1986a; Dineen, 1986b). For other important
properties of JBW*-triples the reader is referred to Friedman and Russo
(1985), Kaup (1984) and Stachdé (1982). Examples of JB*-triples are JB*-

A= Ao(u) (4] Al(u) D Az(u) (23)

is the Peirce decomposition of A relative to u. Moreover, Ao(u) and A4,(w)
are inner ideals in 4, 4,(u) is a subtriple of 4, and 4{u) is said to be the
Peirce j-space corresponding to the tripotent #. Furthermore,

{4 42(u) Ao(uw)} = {4 Ao() 42(u)} = {0}, (24)

algebras and examples of JBW*-triples are JBW*-algebras, the properties
of which may be found in Edwards (1980); Hanche-Olsen and Stormer
(1984) and Wright (1977).

Let u be a tripotent in the JBW*-triple A. With respect to the multi-
plication (a, b)— a.b defined by

a.b={aub},
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and involution a— a! defined by
a' = {uau},

the Peirce two-space A,(u) forms a JBW*-algebra with unit ». Further-
more, for elements a, b and ¢ in 4,(u),

{abc} =a(bl.c)+c.(bta) ~ bt (ac). 2.7

3. INVOLUTIVE GRADINGS

Recall that a pair (B,, B_) of subtriples of a Jordan*-triple A is said
to be an involutive grading of A4 if

A=B,®B., G.1)
{B+ B_ B+} c B—1 {B— B+ B—} - B+) (32)
{B+ B+ B.}CB., {B_B_B.}CB.. (3.3)

Obse_rve that, by symmetry, if (B,, B_) is an involutive grading then so
alsq is (B, B,) which, in this case, is said to be the opposite grading.
A linear mapping ¢ from A to itself, which is a triple automorphism of
A and satisfies the condition that ¢ coincides with the identity id 4, is said
to be an involutive automorphism of A. Observe that, if ¢ is an involutive
automorphism of 4 then so also is —¢.

The first result, the proof of which is a routine calculation, describes
Fhe connection between involutive gradings and involutive automorph-
isms.

Lemma 3.1. Let 4 be a Jordan*-triple, let ¢ be an involutive automorph-
ism of A, and let

Bl={acd:¢a=a} B}={acd:pa=—a). (3.4)

Then, (Bz’_,Bf ) is an involutive grading and the mapping ¢ H(B;I’_,Bf) is a
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is the linear projection onto the subtriple B;/ﬁ and T_, is the linear projec-
tion onto the subtriple BY. Clearly, the projections T and T_, are ortho-
gonal. The next result describes their other properties.

Lemma 3.2. Let A be a Jordan*-iriple, let ¢ be an involutive automorph-
ism of A, and let Ty, be the projection defined in (3.5). Then, for all elements
a, bandcin A,

(@) Tp{Tyab Tyc}={TpaTyb Tyc}.
(ll) Tn{Tna Tl!b C} = {T‘f'a T"b T“C}.

Proof. Let (B;’C,Bf ) be the involutive grading corresponding to ¢. Then,
since Bi and B? are subtriples satisfying (3.2),

{Typa Tyb Tpc} C {BL BL BLY C BY = Ty4,
{Tpa T_4b Tyc} C {BY B* BL} C B = T_4A.
Hence, using the orthogonality of T, and T_,,

T,/.{T(,a b T(/;C} = Tp{Tpa (T¢b -+ T_(/yb) Tyc}
= T¢{T¢,a Tyb T,/,C} -+ T(/,{T,,,a T_4b T4,C}
= {Tya Tyb T,/,C} + Ty T_,/,{T,/,a T_4b T,/,C}
= {Tya Tyb Tyc},

and (i) holds. A similar proof, using (3.3), applies to (ii). O

For the case of a JB*-triple rather more can be said about involutive
automorphisms.

Lemma 3.3. Let A be a JB*-triple. A mapping ¢ from A to itself is an
involutive automorphism if and only if ¢ is a linear isometry from A such
that ¢ and id 4 coincide.

Proof—By-Kaup-(1983; Propesition-5:5);-¢-is-a-linear-triple-automorph

bijection from the set-of involutive-automorphisms-of-A-onto-the-set of invo-
lutive gradings of A such that (B;¢,B:¢) coincides with (Bf,Bf).

. It is clea}r that, for an involutive automorphism ¢ of the Jordan*-
trlple.A, with corresponding involutive grading (Bﬁ’_,B‘f), the linear
mapping T, defined by

Ty =L(ids + ¢), : (3.5)

ism of A4 if and only if ¢ is a linear isometry from A4 onto itself and the
proof is complete. O

Recall that a linear projection 7" on a JB*-triple 4 is said to be bicon-
tractive if both of the projections T and id 4 — T are contractive. The next
result relates involutive gradings on JB*-triples to bicontractive projec-
tions on A.
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Lemma3.4. Let Abea JB*-triple, and, for each involutive automorphism
dond, let (BL’;,B?) be the corresponding involutive grading of A, and let Ty
and T_y, be the corresponding projections onto the subtriples B;/[ and B?,
respectively. Then the mapping ¢+ Ty, is a bijection Jrom the set of invo-

lutive automorphisms on A onto the set of bicontractive projections on A.
Proof. By Lemma 3.3, ¢ is an isometry. It follows that
1Tyl = lI3(ids + ¢)| < 1.

Similarly 7_, is contractive, and it follows that T is bicontractive. Con-
versely, from Friedman and Russo (1987, Theorem 4), if Tis a bicontrac-

tive projection on A, there exists a linear isometry ¢ of order two
such that

T=1L31d, + ¢).

Using Lemma 3.3 it follows that ¢ is an involutive automorphism on 4
such that T and T, coincide. It is clear from above that the mapping
¢+ Ty is a bijection. O

This result allows a completely algebraic characterisation of bicon-
tractive projections on JB*-triples to be given.

Corollary 3.5. Let A bea JB*-triple, and let T be a linear projection on A.
Then T is bicontractive if and only if, for all elements a, b and ¢ in A4,

T{Ta b Tc} = {Ta Tb T¢}, (3.6)
T{Ta Tb ¢} = {Ta Tb Tc}, (3.7)
(ids — T){(ids — T)a b (idy — T)c}

= {(ids ~ T)a (ids ~ T)b (id, - T)c}, (3.8)
(ids = T){(idys — T)a (ids — T)b ¢}

= {(idq ~ T)a (ids — T)b (id - T)c}. (3.9)
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Conversely, suppose that the linear projection T satis'ﬁes (3.6)-(3.9),
and let B, and B_ be the ranges of the projectioqs T and id 4 — T, respec-
tively. From (3.6) and (3.8), B, and B_ are subtriples of 4 such that (3.1)
holds. Let a, and c,,. be elements of B, and let b_ be an element of B_.
Then, using (3.6),

T{ay b ¢y} = T{Ta, (idg — T)b_ Tc,}
= {Ta..l. T(id/{ - T)b... TC+} =0.

Therefore, the element {a, b_c.} is contained in the kernel of T which
coincides with B_, and it follows that

(B, B_B,} CB_.

Similarly, the other inclusions in (3.2) and (3.3) h‘old, and.(B+,‘ B)is an
involutive grading of 4. By Lemma 3.1, there exists a unique involutive
automorphism ¢ of 4 and corresponding projections T, and T_,
such that

TA=B, =B =Tyd, (idsj—T)4d=B_=B'=T_44.

It follows that T and T coincide, and, by Lemma 3.4, that T is bicon-
tractive. O

The following results show that involutive gradings: have automatic
topological properties for both JB*-triples and JBW*-triples.

Corollary 3.6. Let A be a JB*-triple, and let (B, B_)' be an involutive
grading of A. Then, the subtriples B, and B_ are JB*-triples.

Proof. Since B, and B_ are the kernels of contractive projections, this
follows from Lemma 3.4 and Corollary 3.5. |

Corollary 3.7. Let A be a JBW*-triple. Then, the following results hold.

()—For-each—involutive—automorphism—d—of-A;—with-corresponding———

Proof. Let T be a bicontractive projection on A. Then, by Lemma 34,

there exists an involutive automorphism ¢ such that 7" and T4 coincide.
Then,

d4—T=idg~ Ty = T_4,
and, by Lemma 3.2, (3.6)~(3.9) hold.

involutive grading (Bﬁ,B‘f), ¢ is weak*-continuous and the sub-
triples Bﬂ: and B are JBW *-triples. .
(i) Every bicontractive projection on A is weak*-continuous.

Proof. Since A has a unique predual, every linear isometry frorr} A onto
itself is automatically weak*-continuous, and the result follows immedi-
ately from Lemma 3.3 and Lemma 3.4. O
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In order to find examples of involutive gradings of Jordan*-triples it
is sufficient to look at the Peirce decomposition

A= Ao(u) ® 41 (u) & 4>(u)
of A corresponding to a tripotent u in 4. Writing
By = Ao(u) ® 42(u), B_ = Ai(u),

?t is an easy consequence of the Peirce relations (2.4)~(2.6) that (B, B_)
is an involutive grading of 4, with corresponding involutive automorph-
ism ¢ given by

6= 2Po(u) + 2P2(u) —idy,

where Py(u), P1(u) and P,(u) are the Peirce projections corresponding to
u. In the next section generalisations of this example will be considered.

4. PEIRCE GRADINGS

Let 4 be a Jordan*-triple. Using the terminology of Neher (1981), an 4

ordered triple (Jo, J1, J») of subspaces of a Jordan*-triple A4 is said to be a
Peirce grading of A if

A=l @), @, (4.1)

{Jo J2 A} = {5 Jo 4} = {0}, (4.2)
and, for j, k and / equal to 0, 1 or 2,

) T i} € Jjket (4.3)
ifj—k+1lisequal to 0, 1 or 2, and

{7 Ji i} = {0} (44)

otherwise. Observe that, if (Jy, Jy, J5) is a Peirce grading then so also is
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Lemma 4.1. Let A be a Jordan*-triple, let (Jy, J\, J2) be a Peirce grading
of A, and let Py, P\, and P, be the linear projections onto the subspaces Jy,
Jy and Jo, respectively. Then, (Jo® Jo, Jy) is an involutive grading of A, the
corresponding involutive automorphism ¢ being given by

¢p=2Py+2P, —idgs=1id4 — 2Py = Py — P + P>,
and the corresponding projections Ty, and T_, being given by
Tp=Py+ Py, T_y=idg—Ty=P.

Recall that, for a subspace J of a Jordan*-triple A, the set of elements
a in A for which {JaJ} is equal to {0} is said to be the kernel of J and is
denoted by Ker(J). The subspace J of 4 is said to be complemented if

A =J+Ker(J).

It follows from Edwards and Riittimann (1996a, Lemma 4.1), that a com-
plemented subtriple of A4 is an inner ideal in 4.
The next result describes some further properties of Peirce gradings.

Lemma 4.2. Let A be an anisotropic Jordan*-triple and let (Jo, J1, J5) be a
Peirce grading of A. Then, the following results hold.

(i) The subspaces Jy and J, are inner ideals in A and the subspaces J,
and Jo @ J, are subtriples of A.
(ii) The subtriples Jo and J, of the Jordan*-triple Jo @ J, are ideals in

Jo® Jo.
(iii) The inner ideals Jo and Jo are complemented in A and are such

that
Ker(Jo) =J1 @ Jo, Ker(Jz) =JidJy,
and

J1= KCT(J()) N Ker(.]z).

(J2, J1, Jo). It 15 clear that when u is a tripotent in 4 and
A= Ao(u) ® 41 (1) ® A2(u)

is the corresponding Peirce decomposition of A4, then (Ao(u),A41(w),45(w))
is a Peirce grading of 4.

The following result, the proof of which is a routine verification,
relates Peirce gradings to involutive gradings.

Proof. The proofs of (i) and (ii) are immediate from (4.2)—(4.4). Observe
that, by (4.4),

{Jo (i ®12) Jo} = {Jo Jy o} + {Jo J2 Jo} = {0},
and it follows that J; @ J is contained in Ker(Jy). Therefore, by (4.1),
A=J @1 &, CJy®Ker(Jp) C 4,
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and it can be seen that J, @ J, coincides with Ker(Jp). Similarly, J; & J
coincides with Ker(J). Furthermore, the inner ideals J; and J, are com-
plemented in 4. From above, J, is contained in Ker(Jo) NKer(J,). Let a
be an element of Ker(Jo) NKer(J,). Then, there exist elements by in Jy,
¢ in J5, and b; and ¢, in J; such that

a=by+b=c+0,
from which it follows that
0=bo+ (b1 —c1) ~ e,
and, by (4.1),
bop=c¢; =0, by =e¢.
Theré:fore, a lies in Jy, and the proof of (jii) is complete. O

Recall that the annihilatorK™ of a subspace K of the Jordan*-triple 4
consists of elements @ in 4 for which {Ka 4} is equal to {0}. The anni-
hilator K- is a subspace of the kernel Ker(X) of K and, if 4 is anisotropic,
K* is an inner ideal in 4 consisting of those elements a in 4 for which
{aK 4} is equal to {0}. In this case elements of K are said to be ortho-
gonal to those in K. For any complemented inner ideal X in the anisotro-
pic Jordan*-triple A, the Peirce spaces Ky, Ky and K, are defined by

Ko=K*, Ki=ZKer(K)NKer(K*), K;=K, 4.5)

In the case in which X is self-compatible, or, equivalently, when the
inner ideal Kt is also complemented, A enjoys the generalised Peirce
decomposition

A=Ky® K © K>,

relative to K. For details, see Edwards and Riittimann (1996b, Lemma
3.2), and Edwards et al. (1999, Lemma 3.1). In general (Ky, K;, K>) does
not constitute a Peirce grading of 4.
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(J2)2 be the Peirce spaces corresponding to the complemented inner ideals Jo
and J,, respectively. Then:

(Jo)o = ® (Jin(Jo)y); (Jo)y © /15
(f2)g=Vo® (in(J2)g); (2) € 1.

Proof. Let a be an element of (Jo)o. Then, by (4.1), there exist elements
ap in Jy, ay in Jy, and a; in J» such that

a=ay+a + da.
Then, by (4.2)-(4.4),

0= {ap ap a0} + {a1 ap ao} + {a2 ao @} € Jo ®J1 ® {0},
and, therefore,

{ao ap ap} = {a1 ap ag} = 0.

By anisotropy, aq is equal to zero. By (4.2), a5 is contained in (Jo)o, and
it follows that a, is contained in (Jy)p. Therefore,

(Jo)o € J2® (410 (Jo)o)s
and the opposite inclusion is trivially true. Similarly,
(J2)o = Jo @ (J1 2 (J2)o)-
From (4.2) it can be seen that
(12)y =2 € (Jo)*" = (o),
and, hence, that
Ker((Jo)g) € Ker(J2). (4.6)
Furthermore, by (4.5), (4.6) and Lemma 4.2(iii), -

(Jo);=Ker((Jo),) N Ker((Jo),) = Ker(Jo) N Ker((Jo)y)

For a Peirce grading (J, Ji, J»), Lemma 4.2 shows that both Jy and
J> are complemented inner ideals in 4. The next result describes the rela-
tionship between their Peirce spaces and the subtriples occurring in the
Peirce grading.

Lemma 4.3. Let A be an anisotropic Jordan*-triple, let (Jo, Jy, J) be a
Peirce grading of A, and let (Jo)o, (Jo),, and (o) and (J5)o, (J2)1, and

C (J1® L) NKer(Jz) = (J1 @ J2) N (J1 & Jp)
=J|)

as required. Symmetrically, (J2); is also contained in J;. O

Recall that, from Edwards and Riittimann (1996b, Thgorem 3.5)., a
self-compatible inner ideal K in an anisotropic Jordan*-triple 4 having
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Peirce spaces Ko, K| and K, satisfies the Peirce relations, for j, k and /
equal to 0, 1 or 2,

{‘KJ Kk K[} c 1{/'—/6+11
ifj—k+17is equal to 0, 1 or 2, and
{K; K Ki} = {0},

otherwise, except for (j, k, /) equal to 0,1,1), 1,1, 0), (1,0, 1), (1, 2, 1,
1,1,2,25LD,0,1,0, 21, 0), and (0, 1, 2). If X has the property
that the Peirce relations hold for all these exceptional cases then X is said
to be a Peirce inner ideal in A. It is clear that if K is a Peirce inner ideal
then (Ko, Ki, K3) is a Peirce grading of A. The next result describes con-
ditions under which the converse assertion can be made,

Lemma 44. Let A be an anisotropic Jordan*-triple, let (Jo, J,, J5) be a
Peirce grading of 4, and let (J5)o, (o)1, and (J2)2 be the Peirce spaces cor-
responding to the complemented inner ideal J». Then, (J2)1 coincides with J,
if and only if (J2)o coincides with J, and, if this is the case, then J, is a
Peirce inner ideal in A with Peirce spaces given by

(2)o = Jo, (J2), =, (f2)g = Jo.

Proof. Observe that, by Lemma 4.3,

A= (D)o ® (2); ® (J2); = Jo ® (J1 N (J2)y) ® (), @
ChaJdJ,=A4.

It follows that
(1N (2)g) + (o) = 1,

ag% ‘I;y Lemma 4.3, that J; and (J5); coincide if and only if (J5)p coincides
with Jy.

If the equivalent results hold then the Peirce spaces corresponding to
the complemented inner ideal .J, are given by
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grading (Ko, K, K») then, since it is not in general true that K-+ and K
coincide, the inner ideal K, need not give rise to the opposite grading.

Peirce gradings of JBW*-triples have some automatic topological
properties.

Lemma 4.5. Let A be a JBW*-triple, and let (Jo, J1, J2) be a Peirce grad-
ing of A. Then Jy and Jo are weak*-closed inner ideals in A and Jy is a
weak*-closed subtriple of A.

Proof. By Lemma 4.2, Jy and J, are complemented inner ideals in 4,
and, by Edwards and Riittimann (1996, Lemma 3.2), Jy and J, are
weak*-closed. Because of the separate weak*-continuity of the triple pro-
duct, both Ker(Jy) and Ker(J,) are weak*-closed. It follows from Lemma
4.2(iii) that J, is also weak*-closed. . O

5. INVOLUTIVE AND PEIRCE GRADINGS

Recall that, for a JBW*-triple A, having a Peirce grading (Jo, J1, J2),
Jo and J, are weak*-closed inner ideals in A4, Jy and Jo®J, are weak*-
closed subtriples of 4, and Jy and J, are complementary weak*-closed
ideals in Jo@® J,. Furthermore, (Jy®J,,J;) forms an involutive grading
of A. The main result of the paper shows that, under certain circum-
stances, involutive gradings give rise to Peirce gradings. The next result
is a major step towards that end.

Theorem 5.1. Let A be a JBW*-triple, let (B, B.) be an involutive grad-
ing of A, let Jy be a wealk*-closed ideal in the JBW*-triple B, and let

Ji=B., Jy=(Jo)" NB.
Then, the following are equivalent:

() (Jo. J1, Jo) is a Peirce grading of A.
(i) Jo and J, are inner ideals in A.
(i) _- {JoJ1.Jo} ={Jo J1.Jo} ={0}.

(2)o = Jo, (2 =1, (f2)y = o,

and, since (Ja, J1, Jo) is a Peirce grading of A4, J is a Peirce inner ideal
in 4
. [

. Observe tpat, even under the favourable circumstances of the pre-
vious lemma, if X is a Peirce inner ideal in 4 with corresponding Peirce

Proof. Observe that, by Edwards et al. (1999, Proposition 4.1 and
Lemma 5.1}, J, is also a weak*-closed ideal in B, and,

Bi=Jh®Jy, Jo=(1) NBy.

It follows that the results hold for (Jy, J1, Jo) if and only if they hold for
(J2, J1, Jo). That (i) implies (ii) follows immediately from Lemma 4.2(iii).
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If (ii) holds, then, since J, is an inner ideal in 4 and (B,,B_) is an
involutive grading,

{Jo Ji Jo} C {Jo A Jo} N{By B_ By} CJoNB_ C B, N B_ = {0}.

Similarly,
{J2 Ji o} = {0},

and (iii) holds.
If (iii) holds then it is clear that

A= Jo @ JI ® JZ:
and, by the orthogonality of Jy and J,
{Jo Jo A} = {J, Jy 4} = {0}.

It remains to show that the Peirce relations (4.3)~(4.4) hold. Observe that,
by the properties of involutive gradings, the orthogonality of Jy and J,, or
by hypothesis, twenty-three of the twenty-seven relations hold immedi-
ately. It remains to show that

oi W} Ch, {RAN}Ch, {(iloN1}Ch, {ihi}CTHh,

and, by symmetry, it is sufficient to prove the first and third. Let ao be an
element of Jy, and let b; and ¢; be elements of J;. Since J, is a weak*-
closed subtriple of 4, by spectral theory (Kaup, 1983), there exists an
element dj in J; such that

ay = {dy dy dy}.
Therefore, using (2.1) and (3.3),
{a0 by c1} ={{do do do} b1 ¢1}
={do do {c1 b1 do}} — {do {do c1 b1} do} + {{e1 by do} do do}

€{Jo Jo {B- B_ B:}} +{Jo {B+ B- B_} Jo}
+{{B- B_ B.}Jy.Jo}
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Let a, and b, be elements of J, and let cp, dy and eq be elements of J.
Then, using (2.1),
{do {a1 co bi} eo} = {{co a1 do} by eo} + {do by {co a1 eo}}
—{co a1 {do by eo}}
€ {{Jo Ji Jo} Ji Jo} -I—{J() Ji {Jo Ji Jo}}
+ {Jo J1 {Jo /1 Jo}}
= {0}’
by hypothesis. Using (5.2), it follows that
{/i Jo Ji} € Ker(Jy) N B, (5.3)

Since J, is a weak*-closed ideal in B, it follows from Edwards et al.
(1999, Proposition 4.1), that the kernel of Jy in B, coincides with its
annihilator in B, and, hence, from (5.3),

{J1 Jo J1} € /o,
as required. O

In order to prove the main result of the paper some further prelimin-
ary results are required. The first result concerns the relationship between
involutive gradings and the Peirce spaces of tripotents.

Lemma 5.2. Let A be a Jordan*-triple, let ¢ be an involutive automorph-
ism of A, with corresponding involutive grading (B'/’, B?), and let u be a
tripotent in Bi with Peirce projections Po(u), Py(u), and Py(u). Then,
for jequal to 0, 1 and 2,

Py(u)¢p = ¢P(u).

Proof. For each element a in 4,

C{JoJo By} +{Jo By Jo} +{By Jo Jo}
C o, (5.1)

since Jo is an ideal in B,.
In order to prove the final inclusion, observe that, by (3.2),

{1 Jon} C{B- By B_} C B,. (5.2)

6D, w)a = ${u u af = {¢u bu pa} = {u u da} = D(u, ) e,
and
dQ(uw)a = p{u a u} = {pu pa ¢pu} = {u pa u} = Qu)¢a.

Since ¢ commutes with both D(u, ) and Q(u), from the definition of the
Peirce projections (2.2), the result follows. O
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The second result concerning pairs of orthogonal tripotents can be
found in Meyberg (1972), Loos (1975), and McCrimmon (1979), but,
since its proof relates to the proof of the main theorem, for completeness,
it is reproduced here.

Lemma 5.3. Let A be a JBW*-triple, and let u and v be orthogonal tri-
potents in A, having associated Peirce spaces Ao(u), A\(u) and A(u), and
Ao(v), 41(v) and A(v), respectively. Then the following results hold.

() The element u+v in A is a tripotent such that

Ao(u+v) = Ao(u) N 4o(v),
Ai(u+v) = (Ao(u) N 41(v)) ® (41 (u) N Ag(v)),
Az(u—l— U) = Az(u) ® (A[(u) nAl(v)) ® Az(v).

(ii) In the weak*-closed inner ideal Ax(u-+v) of A, the Peirce spaces
corresponding to the tripotent u are given by

(da(u+0))o(w) = 42(v), (A2(u+0)),(u) = 41 () N 41 (v),
(A2(u+ ), (w) = Aa(u).

(i) The following are equivalent:
(@) Ax(u+v)=Ax(u)+ Ax(v);
(®) A1) N Ai(v)={0};
() Ax(w) is an ideal in Ax(u+v).

Proof. Since u and v are orthogonal, it is clear that u+v is a tripotent
such that

D(u+v,u+v) = D(u,u) + D(v,v). (5.4)

By McCrimmon (1979a, Corollary 1.8), the tripotents  and v are compa-
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" Let A be a JBW*-triple. A linear projection S on 4 is said to be an M-
projection if, for each element @ in 4,

llall = max{|Sal|, ll« — Sall}.

A closed subspace which is the range of an M-projection is said to be
an M-summand of A, and A is said to be equal to the M-sum

A=SA@y (ids — S)4

of the M-summands S4 and (id; — S)4. The results of Horn (1987) show
that the set M-summands in 4 coincides with the set of its weak*-closed
ideals. Furthermore, for each weak*-closed ideal I in A the complemen-
tary M-summand is the annihilator I*- of J.

Let J be a weak*-closed inner ideal in a weak*-closed subtriple B of a
JBW*-triple A. Then the central kernel kg(J) of J in B is the largest weak*-
closed ideal of B that is contained in J. For the properties of central
kernels the reader is referred to Edwards and Riittimann (2003, to
appear). A purely algebraic proof of a result closely related to the follow-
ing one can be produced by applying the results of McCrimmon (1979b).

Lemma 5.4. Under the conditions of Lemma 5.3, the central kernel

K gu + oy(A2(w)) of the weal*-closed inner ideal A(u) in the weak*-closed
inner ideal A-(u-+v) of A is the set of elements a in Ax(u) for which

{au (4i(u) N Ai(v))} = {0}.
Proof. Let I be the set of elements a in A,(u) for which

{au (4i(w) NAi(v))} = {0}. (5-5)

By Lemma 5.3(ii), 7 is the set of elements @ in A»(») for which

tible and their Peirce projections commute. Furthermore,for; -j-equal-to- 0——————-————-——{(1 u-(Az () ()} =0} (5-:6)

1 or 2, the Peirce spaces 4 {u+v) are the eigenspaces of D(u+v, u+v)
corresponding to the eigenvalues 4 L. The first statement now follows
immediately from (5.4). When the lmear operator D(u, u) is restricted
to the JBW*-tnple Ax(u+v) it is clear that its eigenspaces relative to
the eigenvalues 0, + and 1 are given by A,(v), 41(u)NA41(v), and A,(w),
respectively, and the proof of (ii) is complete. The proof of (iii) is immedi-
ate from (ii) and Edwards et al. (1999, Proposition 4.1). |

which, by Edwards and Riittimann (2002, Corollary 3.8), contains the
central kernel &4, 4 »(42w)) of the weak*-closed inner ideal A(u) in
the JBW*-triple A,(u+v). In order to complete the proof it remains to
show that I is an ideal in the JBW*-triple A»(u+v). Since the set of
weak*-closed ideals in a JBW*-triple and the set of weak*-closed ideals
in a JBW*-algebra both coincide with the set of M-summands, using
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(2.7), it suffices to show that [ is an ideal in the JBW*
, fice -algebra A .
Therefore, it is required to show that ’ ko)

{Tut+vA(u+v)}CI

(Szinzc;e u and v are orthogonal, v is contained in A4y(x), and, hence, using

{I v Ax(u+)} S {Aa(u) 4o(x) 4} = {O}.
Therefore, it remains to show that

{TuAy(u+v)} C I (5.7)
However, by Lemma 5.3(i), (5.5), and the orthogonality of u and v,

T u Ax(u+0)} = {I u (42() © (41 () N A1 () @ 42(v))}

={Tu dx(u)} +{I u (41(w) N 41 (0))} + {1 u A (v)}
={I u 42(w)} + {0} + {0}. (5.8)

From (5.7) and (5.8), it remains to show that
{Tudy(w}CI (5.9)

To this end, let a lie i iei ie i
using (2.1),’(2.3[)1,11(3.12),1’1111;;;f;.zg(li)ifngiiet(g.gi i (alt+ o0n(@). Then,
{{au b} uc}
={{cuatuby—{a{ucu} b} +{au{cub}}
€ {7 u (A2(u+v)), ()} u b}
+{a {(A2(u + )y (u) (Aa(u+ 1)) (u) (d2(u+v)),(u)} c}
+Hau {(da(u+ ), () (A2(u+0))(u) (A2(u+v)),(w)}}
C {0} + {0} + {a u (A2(u+v)),(w)} = {0},

and it follows that {au b} lies in 1. Therefore, (5.9) holds, and the proof is
complete. |
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the main question to be answered is when (Jy, J1, J2) is a Peirce grading of
A. Observe that, if Jo or J, is equal to {0} then this is always the case, and
if J, is equal to {0} then, since 4 is a JBW*-triple factor, Jy or Ja is also
equal to {0}. It is now possible to give the proof of the main result.

Theorem 5.5. Let A be a JBW*-triple factor and let (B, B_) be an invo-
lutive grading of A with both B.. and B_ non-zero. Then, either, the weak*-
closed subtriple B.. of A is a JBW*-triple fuctor, or there exists a non-zero
proper weak*-closed ideal Jy in B, such thai, if

Ji=B_, Ja=(Jo)' N By

then (Jo, Jy, Ja) is a Peirce grading of A, and Jo and J, are wealc*-closed
JBW*-triple factors.

Proof. Suppose that B, is not a JBW*-triple factor, and let Jy be a non-
zero proper weak*-closed ideal in B,. Defining J, and J; as in the state-
ment of the theorem, by Theorem 5.1, in order to prove that (Jo, /i, J2) is
a Peirce grading, it is sufficient to show that Jy and J; are inner ideals in
A. If not, let u be a non-zero tripotent in Jp, and let v be a non-zero tri-
potent in Jo. Then  and v form an orthogonal pair. Using the results of
Sec. 3, let ¢ be the involutive automorphism corresponding to the invo-
lutive grading (B, B_) and let T}, be the corresponding weak*-continu-
ous bicontractive projection onto Jo& J. It follows from McCrimmon
(1979a, Corollary 1.8), (3.5), and Lemma 5.2 that Ty, Ty, Po(u),
Pi(u), Py(u), Po(v), P\(v), and Pp(v) form a commutative family of
weak*-continuous projections.
Since u is contained in Jy and v is contained in J,, it follows that

(Jo)* € {u}t = do(w), (Jo)*" C{o}" = 4o(v),
and, hence, that

S = (Jo)" N By C Ao(w), Jo=(J2)" N By C Ao(v)- (5.10)

Recall that a JBW*-triple A is said to be a JBW*-triple factor if the
only weak*-closed ideals in A are {0} and 4. Let (B,, B_) be an involu-

tiv? _grading of 4 and suppose that J, is a weak*-closed ideal in B, Then.
writing ’

Ji=B., JL=(h)'NB,

Therefore, using (5.10), the compatibility of # and v, and Lemma 5.3,

AiW)NA(v)NBL CBy=Jo®J2 C Ao(u) + Ao(v)
= A2(v) ® (Ao(u) N A1(v)) © (Ao(u) N 4o (v))
@ (4 (1) N Ag(v)) & A2(u). (5.11)
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Let a be an element of 41(x) N 4,(v) N B,.. Then, from (5.11), for j and k
equal to 0, 1 and 2, there exist elements ap. in A{u) N Ay(v) such that

a = ag + ao; + ago + aip + az.
It follows that,
a= P\(w}P1(1)Tya= Ty P(w)P(v)a=0.
Theref‘ore, A1()N A1(v) N B, is equal to {0}, and, again using the com-
mutation properties of T, and the corresponding Peirce projections,
and Lemma 5.3,
Ar(u) N A1 (v) = (A2(u+v)), (u) C B_.
Therefore, using (2.1) and (3.3),
{(A2() N B_) u (A1(u) N 41(v))}
S {B- By B} N {(da(u+v))y(u) (Aa(u+0))5(w) (Aa(u+ 1)), ()}
C B N (Az2(u+0)) (1) = Ai1(uyn 4;(v) N By = {0}.
It therefore follows from Lemma 5.4 that
A2() N B € Koy da(w), (5.12)

which is a weak*-closed ideal in the weak*-closed inner ideal A,(u + v) of
A. By Horn and Neher (1988, Lemma 3.2), or Edwards and Riittimann
(2001, Corollary 3.6), there exists a weak*-closed ideal K in 4 such that

kaa(uso)(A2(w)) = K N Ax(u+v).

Since 4 is a factor, K is equal either to A or to {0}. If the former holds
then

Az(u+0) = KN Ar(u+ ) = kg, u10) (A2 () C Aa(u) € Az (u+0),
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It follows that, for each non-zero tripotent u in Jo, A»(u) is contained in
Jo, which, by Edwards et al. (1996, Lemma 2.1(ii)), shows that Jj is an
inner ideal in 4. By symmetry, J, is also an inner ideal in 4, and, by
Theorem 5.1, the proof that (Jy, Ji, Jo) is a Peirce grading is complete.
Suppose that I is a weak*-closed ideal in Jp. Since Jy is a weak*-closed
inner ideal in A, it follows from Edwards and Riittimann (2001, Corol-
lary 3.6), that there exists a weak*-closed ideal in in 4 such that /nJ,
coincides with 1. However, since A4 is a factor, I is equal to {0} or 4,
which implies that I is equal to {0} or Jy. Hence, Jy, and similarly J,
are JBW*-triple factors, as required. 0O

The authors are grateful to the referee for suggesting that, in the
result above, Jg and J, might themselves be JBW*-triple factors. By sym-
metry, the result above also holds with the r6les of B, and B_ inter-
changed.

Before proceeding to study applications of the results, it should be
remarked that special cases of both involutive and Peirce gradings occur.
For example, for each weak*-closed ideal 7 in the JBW*-triple 4, by
choosing B, equal to  and B_ equal to the annihilator /* of /, (B, B_)
forms an involutive grading, the corresponding involutive automorphism
¢ being given by

¢ =2Py(I) —idy,

where P,(]) is the structural M-projection on 4 with range I. For a Peirce
grading (Jo, J1, J2) of 4, two obvious special cases arise. The first occurs
when J; is equal to {0} in which case, writing B.. for J; and B_ for J,
(B,, B_) is the involutive grading described above. The second occurs
when J,, or, symmetrically, Jo, is equal to {0}. In this case, writing B..
for Jy and B_ for Jy, (By, B_) is an involutive grading of 4, the corres-
ponding involutive automorphism ¢ of 4 being given by

¢ = 2P>(Jp) —idy,

where P,(Jp) is the structural projection onto the weak*-closed inner ideal
Jo in 4, which will not, in general, be an M-projection.

and it follows from Lemma. 5.3 that 45(v)-is-equal-to-{0}In-this-case-v-is
equal to zero, giving a contradiction. It follows that K gy + 0)(A2(W) is
equal to zero, and, hence that A;(#)NB_ is equal to {0}. Again using
the commutativity of T}, and the Peirce projections of u it can be seen that
Ajy(u) is contained in B,. Then, since Jy is a weak*-closed ideal in B,
using Bunce and Chu (1992, Lemma 3.1), for every element a in Axw),

a={uua}e{JyJo By} CJp.

6. W*-ALGEBRAS

An example of a JBW*-triple is a W*-algebra 4 endowed with the tri-
ple product. defined, for elements a, b, and c of 4, by

{a b c} =L (ab*c+ cb*a).
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For the properties of W*-algebras, the reader is referred to Pedersen
(1979) and Alfsen and Shultz (2001). Recall that the set 2(4) of self-
adjoint idempotents, or projections, in the W*-algebra A forms a com-
plete orthomodular lattice, which is order isomorphic to the set %(4)
of self-adjoint elements s of 4 such s? is equal to the unit 1 in A4, or sym-
metries, the order isomorphism being given by e— 2e—1. The family
ZP(A) of projections in the centre of 4 forms a complete Boolean lattice
which is order isomorphic to the complete Boolean lattice of weak*-
closed ideals in 4, the order isomorphism being given by z— zA4. Observe
that this complete Boolean lattice coincides with Z.#(4) the family of
weak*-closed triple ideals in 4. For each element ¢ in 2(4) the central
support c(e) of e is the smallest element of Z’2(4) majorizing e. Before
proceeding to apply the results of Sec. 5 to this example the following
lemma is required.

Lemma 6.1. Let A be a W*-algebra and let ey, e,, .. ., e, be projections in

A, with central supports c(ey), c(ey), ..., cley), respectively, such that
elAezA o e,,_lAe,, = {0}

Thén,

c(er)e(ez) - - - cley) = 0.

Proof. Let the weak*-closed subspace I; of 4 be defined by
L={acd:ederAd.  Ae,_1da={0}}.

Clearly, for each element a in I; and each element b in 4, the elements ab
and ba lie in I}, which is, therefore, a weak*-closed ideal in 4 containing e,,.
It therefore contains the smallest weak*-closed ideal ¢(e,)4 in 4 contain-
ing e,, and, consequently,

clen)erderd - Aen1 4 = {0}.

In particular,

1
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Then, as before, ¢, lies in 1, and, hence, I contains the weak*-closed ideal
¢(e))4, thereby completing the proof. O

Observe that, in this example, the results of the previous section
reduce to the following lemma.

Lemma 6.2. Let A be a W*-factor and let (B, B_) be an involutive grad-
ing of A. Then, one of the following occurs.

(i) By and B_ are both JBW*-triple factors.

(i) If By or B_ is not a JBW*-triple factor then there exist non-zero
JBW*-triple fuctors Jo and Jo which are wealk*-closed inner ideals
in A and complementary weak*-closed ideals in the JBW*-triple
B, or B_, respectively, such that, writing J\ for B_ or B, respec-
tively, (Jo, J1, J2) is a Peirce grading of A.

Since, in this paper, interest is centered upon the situations in which
involutive gradings give rise to non-trivial Peirce gradings, the cases to be
considered are those which fall under (ii) of Lemma 6.2. The result below
shows that very much more can be said in this special case. For each pro-
jection e in the W*-algebra A4, the complementary projection 1 — e will be
written ¢

Theorem 6.3. Let A be a W*-factor, let (B, B_) be an involutive grading
of A such that B, is not a JBW*-triple factor, and let ¢ be the correspond-
ing involutive automorphism of A. Then, the following results hold.

(i) There exist unique symmetries s and t in A such, that for all ele-
ments a in A,

¢(a) = sat.

(ii) There exists a Peirce grading (Jo, J1, J2) of A, unique up to the
interchange of Jo and Jo, given by

Jo=edf, hi=edf'+dAf, L=EAf,

clen)erderA-——-Ae==+0}
Proceeding inductively, it can be seen that
c(ex)cles) - - - c(en—1)e1 4 = {0}.
Let I be the weak*-closed ideal given by
I={aed:c(e)cles): - cle,)ad = {0}}.

where the projections e and f in A are defined by
e=1(1+9), [=3(01+1),

such that

B, =Jy® Js, B_ =J;.
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(iii) The JBW*-triple B_ is not a JB W-triple factor, and there exists
a Peirce grading (Ho, H,, H,) of A, unique up to the interchange
of Hy and H,, given by

Hy = eAf’, Hy =edf + e’Af’, H, = e’Af,
such that
B, = Hj, B_=Hy® H,,

the corresponding involutive automorphism being that opposite

to ¢.

Proof. Observe that if B_ is zero then 4 possesses non-trivial weak*-
closed M-summands and is not a W*-factor. Hence B_ is non-zero. By
Lemma 6.2(ii) and Lemma 4.5, there exist weak*-closed inner ideals J,
and J, in A4 such that

Bi=Jyo )y, B_=1.

Therefore, by Edwards and Riittimann (1989, Theorem 3.16), there exist
unique projections e, £, g and  in 4, none of which is equal to 0 or 1, such
that

Jo = eAf, Jy = gAl’l.

Since J; is contained in (Jo)*, by Edwards and Riittimann (1998, Lemma
4.3),

e<g, f<H, (6.1)

and, by Edwards and Riittimann (1998, Lemma 3.2), the weak*-closed
inner ideals Jy and J; are compatible. Observe that, by Lemma 4.3 and
Edwards and Riittimann (1996b, Lemma 5.1,

eAh C eAf’ Cc (Jo)l cJ, (62)
eAf'H Cedf C (Jo); C J1, (6.3)
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However, again using Lemma 4.3,

(eAh) (hA) (AL C Al C (J2), € ), (6.6)
and it follows from (6.5) and (6.6) that

gAhAeAf'l = (gAh)(hAe)(edf'H) = {0}.
Applying Lemma 6.1,

c(g)e(h)e(e)e(fH) = 0.

However, since A4 is a factor and g, s and ¢ are non-zero, it can be seen
that

c(g) = c(h) =c(e) =1,

which implies that ¢(f"#') is equal to zero, and, hence, that '/’ is egua} to
zero. Combining this result with (6.1) it follows that & and f7 coincide.
Similarly g and ¢’ coincide, and, therefore,

JO =c¢A y J2 = e’Af’.

~ Furthermore, again using Lemma 4.3 and Edwards and Riittimann
(1996b, Lemma 5.1),

A =eAf + A +edf +Af
=Jo+ o+ (Jo) S+ 1+ T C A4,

and
Jy = eAf’ + € Af,
as required. Hence,
By = eAf + Af, B_ =eAf' + Af,

and, using Lemma 3.3, the projection T onto B, is defined, for all ele-

ments-a-in-4; by

and, since (Jy, J, J5) is a Peirce grading,

{L W i} C . (6.4)
It follows from (6.2), (6.3) and (6.4) that

(gAh)(hAe)(edf'H) = (84h)(hAe)(eAf'H') + (eAf "H')(hAe)(gAh)
C{hJJi}Coh. (6.5)

Tya=eaf +af’.
Therefore, using (3.5), for all elements a in 4,

¢(a) =2Tpa — a = 2eaf +2eaf' —a
= (2¢ — D)a(2f — 1) = sat,
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where s and ¢ are the symmetries given by

s=2e—1, t=2f—1.

This completes the proof of (i) and (ii). Defining Hy, H; and H, as in

the statement of the theorem, it is clear that (Hy, H,, Hy) is a Peirce grad-
ing satisfying the conditions required to complete the proof of (ili). [
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