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Abstract. It is well known that, for £ = 0, all solutions of the equations
z'(t) +pt)z(t —e) =0, t€l,+o0),
2"(t) +p(t)2(t) + e (t— &) =0, te[l,+o0),

are bounded on [1,+00) and even tend to zero, as p(t)t = + oo. Here
— 4o

p(t) >¢>0,

we obtain the following results: 1) for each positive & there exist un-

bounded solutions of the first equation; 2) for each positive & there exist

unbounded solutions of the second equation in the case when o > 0,

B2>0,a+ B <1 and p(t) is bounded; 3) all solutions of the equation
() +p()z(t —7(t)) =0, t € [1,+0c0),

with positive nondecreasing and bounded on [1, +00) coefficient p(t) are

bounded if and only if [;"*°7(t) dt < co.

1. PRELIMINARIES

An ordinary second-order equation _
z"(t) + pt)z(t) =0, t€][0,+00), (1.1)

with a positive coefficient p(%), is one of the classical objects in a qualitative
theory of linear differential equations. In spite of the quite simple shape .
of this equation it appears to provide a variety of different oscillatory and
asymptotic properties to its solutions. Asymptotic properties of the solutions
have been studied in classical monographs by R. Bellman [1], G. Sansone [2]
and P. Hartman [3]. A number of new results on asymptotic properties
of solutions to ordinary differential equations have been obtained in the
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recent monograph by I.T. Kiguradze and T.A. Chanturia [4]. It should be
mentioned that this monograph states the current situation in the subject
and at the same time encourages further investigation. One of the most
important trends is generalization of results for equations with a deviation
argument. The equation of second order with delayed argument,

z"(t) + p(t)z(t - 7(¢)) =0, te]0,+o0), (1.2)
z(§) = p(§) for £<0,

has its own history. Oscillation and asymptotic properties of this equation
were considered in the well-known monographs by A.D. Myshkis [5]; S.B.

Norkin [6]; G.S. Ladde; V. Lakshmikantham and B.G. Zhang [7]; LGyori

and G. Ladas [8]; and L.N. Erbe, Q. Kong and B.G. Zhang [9].

Our approach to investigation of asymptotic behavior is based on analysis
of oscillation properties of solutions. Note the paper by N.V. Azbelev [10]
in which the space of solutions of the equation

"(t)+ Y pi(t)z(t —(t) =0, pi(t) 20, te[0,+00), (1.3)
i=1
z(€)=0for £ <0 : (1.4)

is shown to be two-dimensional and a Wronskian W (t) of a certain funda-
mental system is considered. Nonvanishing of W (¢) on the semiaxis [0, +00)
is equivalent to validity of Sturm’s separation theorem (between two ad-
joint zeros of every solution there is one and only one zero of each other
solution). Nonvanishing of the Wronskian was obtained in [10] due to the
“smallness” of delays (see the H-condition, following below). In the paper
by S.M. Labovskii [11] it is proved that W (t) # 0 for ¢t € [0,+oc0) if the
following conditions hold: m = 1, and h;(t) = t — 71(¢) does not decrease.
In the paper by A. Domoshnitsky [12] of 1993 nonvanishing of the Wron-
skian was obtained through several other conditions, basic of them being the
“smallness” of the difference of delays 7; — 7;, where 4,5 = 1,...,m. In the
present paper tests of the Wronskian increase are obtained and a correlation
between growth of the Wronskian and existence of unbounded solutions is
established.

In our approach estimates of the distance between adjoint zeros of oscillat-
ing solutions are essential. This distance for solutions of delay equations was
estimated in works by N.V. Azbelev [10], Yu. Domshlak [34], S.V.Eliason
[41], A.D. Myshkis [5] and S.B. Norkin [6]. Assertions on solution compar-
ison with some test functions (comparison theorems) were obtained in the
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~ following works: [5, 6, 10]. Note also a recent paper by L. Berezansky and
- E. Braverman [13] in which several oscillation results known for ordinary

second order equations were extended to delay equations.

The delay equation is generally known to inherit oscillation properties
of the corresponding ordinary equation. For example, it was proved by
J.J.A.M. Brands [14] that for each bounded delay 7(t) equation (1.2) is os-
cillatory if and only if the corresponding ordinary differential equation (1.1)
is oscillatory. Thus, the following question arises: are the asymptotic proper-
ties of an ordinary differential equation inherited by its delay equation? The
answer is negative. A.D. Myshkis [5] proved that there exists an unbounded
solution of the equation

() +pz(t—e) =0, t€0,+00),

for each couple of positive constants p and . The problem of solutions un-
boundedness in case of nonconstant coefficients was formulated in [5] as one
to be solved. The first results in this subject were obtained by A. Domosh-
nitsky in [15]: if there exists a positive constant & such that 7;(t) > ¢, then
there exists an unbounded solution to equation (1.3), (1.4). In the recent
paper by Yu. Dolgii and S.G. Nikolaev [16] the following system of delay
equations on the whole axis ¢ was considered: y”(t) + P(t)y(t —w) = 0,
t € (—o0,+00), where y : R — R™, w > 0 and P(¢) is an w-periodic sym-
metric matrix function.Using the monodromy operator (see the monograph
by J. Hale and S. Lunel [17]), to be a fundamental in the theory of periodic
systems, the authors obtained instability of this system in the following case:
det P, # 0, where B, = 1 [° P(¢) dt.

In the monograph by S.B. Norkin [6] the following boundary value problem
on the semiaxis is considered:

2" () +Ao(t) +p(E)z(t—7(E) =0, t € [0,400), 2(0)cos a+z'(0)sina =0,

z(t —7(t)) = z(0)p(t — 7(¢)) for t—7(t) <0, sup |z(t)] < oo,
t€[0,4-00)
where ¢(t) is a continuous, bounded function on the initial set (—oo, 0) such
that ¢©(0) =1, A is a real parameter, and « is a real number.

If |p(¢)| is a summable function on the semiaxis, then every positive pa-
rameter A is an eigenvalue of this problem [6]. We can interpret this result
as the one concerning solutions boundedness of delay equations.

Results on the boundedness of a delay equations solution in which the
“smallness” of the coefficient p(t) is combined with the “smallness” of the
delay 7(t) were obtained by D.V. Izumova [18]. The asymptotic formula
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oy of solutions of a second-order equation with a summable delay 7(t) was where f: [0, +00) — (—oé,-{—oo) and : (—00,0) = (—00, +00) are measur-
A obtained by M. Pinto [19)]. )
" Note also that investigation of the equation z”(t) + p(t)z(t — 7(t)) = 0,
“:““ with nonpositive coefficient p(t), was started by G.A. Kamenskii [20, 21].
Ij“‘i i Assertions on existence of bounded solutions, their uniqueness and oscillation
‘H%;‘ were obtained in the monograph by G.S. Ladde, V. Lakshmikantham and
Sl B. Zhang [7, pages 130-139]. Several possible types of solutions’ behavior
| of this equation in case p(t) and 7(¢) are bounded functions on the semiaxis
and [;° |p(t)| dt = oo, can be only as following [20, 21]:

a) |z(t)] — oo for t — oo0; b) z(t) oscillates; c) z(t) — 0, z/(t) — 0 for
t — o0.

able functions essentially bounded, and p; and 7 : [0,+00) — [0,+00) are
locally summable functions. )

It is known [10] that a general solution of equation (1.5), (1.6) has the
following representation:

z(t) = /0 C(t,8)f(s) ds + z1(t)z(0) + za(t)2'(0). (1.7

Here C (t,s) is the Cauchy function of equation (1.3), (1.4). Note that for
every fixed s € [0, +-00) the function C(-, s) is a solution of the “s-truncated”

equation
Existence and uniqueness of solutions of each of these types were discussed 4
by R.G. Koplatadze [22], A.L. Skubachevskii [23] and M.G. Shmul’yan [39]. _
S.M. Labovskii [24] proved that nonvanishing of the Wronskian W (¢) on the (Loz)(t) = 2"(8) + Zp i(t)z(t = 7i(t)) = t € [s,+o0), (18)

semiaxis was necessary and sufficient for existence of a positive decreasing so-
lution to equation (1.3), (1.4) with nonpositive coefficients p; (i = 1,...,m)
and obtained several coefficient tests of W (¢) # 0 for ¢ € [0, +o0). Solutions
tending to zero were considered in the paper by T.A. Burton and J.R. Had-
dock [40].

Note that the approach for studying asymptotic propertles of equatlons

z(€) =0 foré<s. (1.9)

The function f is determined by the equality

F) = F&) = > pi®e(t — (1) (1 - ot — (), 0)),

with linear transformations of arguments - =1
\ 1 fort>s, ) . .
! where o(t,s) = Functions z1 and z2 are solutions of equation
= =0 %P e, 0,70, (1.3), (1.4), satisfying the conditions z;(0) = 1, z{(0) = 0, z2(0) = 0, and
J=—J 7 .

Equation (1.5), (1.6) is said to be unstable if for each positive ¢ there exist

where a;j,q and A are constants, was proposed by E. Yu. Romanenko and
A.N. Sharkovskii [25], and G.A. Derfel and S.A. Molchanov [26]. In [26]
- equations with a combination of delayed and advanced arguments are con-
sidered. Systematic study of advanced equations (7(¢) < 0) can be found
in the recent paper by Z. Dosla and I. Kiguradze [27] in which results on
boundedness, stability and asymptotic representations of solutions are ob-
tained.
Let us consider the following equation,

”(t)-l—sz ot — () = f(2), té[o,+oo), (1.5)

z(§) = p(§) for £ <0, (1.6)

two solutions z and Z so that
|z(0) — Z(0)| < e and |2'(0) —Z'(0)| <&,

but their difference z(t) — Z(¢) is unbounded on [0,400). It is clear from
representation (1.7) that existence of an unbounded solution of equation
(1.3), (1.4) is equivalent to instability of equation (1.5), (1.6).

In this paper several criteria for existence of unbounded solutions to equa-
tion (1.3), (1.4) are obtained. The following examples show some of them.
If € = 0, then all solutions of the equations

z"(t) + etz(t —e) = 0, (1.10)
2 () + 2a(t) + 3 2p(t — %) =0, (1.11)
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2" (t) + toz(t — t%) =0, a+2>28, (1.12)

2 (t) + 2(t) + —=a(t (1.13)

£
_ — ) = 0
W ( \/E)
z(§) =0for £ <0,
are bounded on (1, 400), and for equations (1.10)—(1.12) they even tend to

zero when t — +o0o (see the monograph by V.N. Shevelo [28, p. 24]). If
€ > 0, then there exist unbounded solutions to equations (1.10) and (1.12).

If in addition € is small enough, then there exist unbounded solutions to

equations (1.11) and (1.13). _
We will obtain the following criteria of boundedness of all solutions of the
equation

2"(t) + p(t)z(t - 7(t)) =0, t € [0,+00), z(§) =0for £ <0. (1.14)

Theorem 1.1. All solutions of equation (1.14) with positive, nondecreasing
and bounded coefficient p(t) and nondecreasing h(t) =t — 7(t) are bounded
if and only if .

/ " r(t) dt < oo,  a)
0

The following result shows that solutions of delay equation (1.14) only in
case of summable delay 7 are getting closer and closer to solutions of the
corresponding ordinary equation (1.1).

Theorem 1.2. Assume that p(t) = ¢2 > 0, and h(t) = t — 7(t) does not
decrease. Then any solution x(t) of equation (1.14) satisfies the formulas

z(t) = (a+o(1)) sinct + (8 + o(1)) cos ct, _

z'(t) = c(a+0(1)) cosct — ¢(B -+ o(1)) sin ct, for t — oo where o and § are
constants, if and only if 7(t) is a summable function on [0, +00).

Note that asymptotic properties of solutions of the same delay equation
(1.2) can be very distinct. The problem of similar asymptotic behavior of
all solutions to the same equation has not been solved even with ordinary
equations. For example, H. Milloux [29] discovered that if p(t) — oo for
t — o0, then there exists a solution of equation (1.1) tending to zero when
t — oo. There are also several examples of other solutions without tending to
zero. The problem of finding conditions under which all solutions tend tozero
remains one highlighted in the qualitative theory of differential equations (see
recent papers by A. Elbert [30], and L. Hatvani and L. Stacho [31]). If the
coefficient p(t) — 0 for ¢ — o0, then there exists an unbounded solution of
the ordinary equation (1.1) (see the monograph by I.T. Kiguradze and T.A.
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Chanturia [4]). The equation z”(t) + —Q—x(t) =0, t € [2,400), gives an

example, when the second solution z(¢) = t =L does not tend to zero.

In almost all statements of this paper something is said about existence of
a certain unbounded solution. Can we say anything about unboundedness
of all solutions? No, according to the following example: the function
z = sint is one of the solutions of the equation

2"(t) +x(t—7(t)) =0, te€][0,-+00),

0, O <t< 7r, .
~ 2 7(t + ) = 7(t). Other solutions are

unbounded. by Theorem 1.1. Note that in this example the distance be-
tween adjoint zeros (7) is equal to the period of the coefficients (). This
has some logical ground. In a paper by A. Domoshnitsky [32] conditions
of unboundedness of all solutions to delay equations with w-periodic coeffi-
cients, such that t—7(¢) > 0, are obtained. For example, if distances between
every two zeros are not equal to 2w, then all solutions are unbounded [32].
Note the classical Lyapunov’s result for the ordinary differential equation
z(t) + p(t)z(t) = 0, t € [0,+00) with w-periodic coefficient p(t). If a pe-
riod w is less than the distance between adjoint zeros, then all solutions are
bounded on the semiaxis (see the classical mounograph by N.E. Zhukovskii
[33]). The inequality ;" p(t)dt < 2 implies that all solutions are bounded.
A similar inequality (1 instead of 4) provides unboundedness of all solutions
in case there is a delay equation (7(¢) = 7(¢ + w) # 0) [32]. Using estimates
of distance between zeros [5, 6, 10, 34] one can obtain tests of unbounded-
ness of all solutions even in cases when w is greater than a distance between
adjoint zeros [32]. Note that our approach also includes research of behav-
ior of oscillating solutions’ amplitudes. The amplitude behavior of solutions
of ordinary differential equations was investigated by C.T. Taam [35] and
L. Lasota [36]. Results on solutions unboundedness of partial differential
equations with delayed argument are formulated in [38].

Let us introduce the operator K, : Ciu) 7 Cpu,y) by the following equal-
ity:

where 7(t) =

(Kyu)(£) = / Goult, S)Z pi(s)a(s —75(s))ds,  (L16)

where z(£§) = 0 for £ < v and G,,(¢, s) is the Green’s function of the bound-
ary value problem

') =f(t), tev,ul, x()=0, z(u)=0. (1.17)
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Denote the minimal positive characteristic number of the operator K,, by
Avu- Let us denote hi(t) = t — 73(t) and h(f) = minj<i<m hi(t). All the
results submitted in this paper are obtained under the condition
known as the H-condition [10] Each of the followmg conditions a), b) and
c) allows mequahty (1.18) [10, 11, 12]:
a) (t—h(t)) fh(t) Y1 pi(s)ds < 4 for t € (0,+00),

b) (t—h(t)? ess SUPeih(t) ] 2im Pils) < 8 for t € (0, +00),

¢) m =1 and h; is a nondecreasing function.

Note: The H-condition ensures that Sturm’s separation theorem is valid,
|W (t)| does not decrease, and there is no more than one zero of a nontrivial
solution z to equation (1 3), (1.4) on [h(t),t] for every t € (0, +o0).

2. MAIN RESULTS
Let us formulate results on the unboundedness of solutions of equation
(1.3), (1.4).
Theorem 2.1. Let.it be that

M = ess sup » pi(t)< +o0,
te(o, +oo) Z !

and there exists i € {1,...,m} so that

[o¢]
| mm@evE VAT~ ey as =
Then there ezists an unbounded solution of equation (1.3), (1.4).
For equation
2"(t) + P (B)2(t) + p2(t)z(t — 72() =0, ¢ € [0,+00),
z(€) =0 for £ < 0, ’

the following result is obtained: .
Theorem 2.2. Let p; and py be bounded on [0, +00), Tz(t)t'—r 0 and
—+00

(2.1)

/0 ” pa(t)ma(t) dt = +oo. (2.2)

Then there ezists an unbounded solution of equation (2.1).
Example 2.3. The equation

2"(t) + p(t)=(t)

1
+—z(t—

I =0, te][l,+o00), (2.3)

5
)
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has an unbounded solution if a + 3<1,a >0, 8> > 0.

Unboundedness of the solutlon of equation (1.13) follows from the above
assertion in case o = 2, B=5 Landp=1.

Denote 7(t) = minj<i<m 7(%)-
Theorem 2.4. Let there be an index i so that

/0 ~ pi(E)r(t) dt = oo. (2.4)

Assume that at least one of the following two conditions a) or b) is fulfilled:
a) there exists € >0 so that 7(t) > ¢ fort > v > 0; :
b) €85 SUPsefy, too) Diey Pi(t) < 00.
Then there exists an unbounded solution of equation (1.3),(1.4).
Existence of unbounded solutions of equation (1.10) results from Theorem
2.4 if condition a) is provided. '
Example 2.5. The equation

2" (t) + t*|sintlz{t —€) =0, t € (0,+o0)

has an unbounded solution if o > —1.

3. GROWTH OF THE WRONSKIAN AND EXISTENCE OF UNBOUNDED
‘ SOLUTIONS

Denote the Wronskian of the fundamental system of equatibn (1.3), (1.4)
 71(t)  z2(t)
| z1(t) z5(0)
To simplify it let us assume that W(0) > 0.
Theorem 3.1. If

W(t) =

lim W(t) = 400 (3.1)
t—4oo

and there exists positive € so that T;(t) > € for i = 1,...,m and almost all
t > v, then there exist unbounded solutions of equation (1.3), (1.4).

Introduce the function #: [0, +00) — [0, +00) so that the minimal positive
characteristic number A, g,) of the operator K, g, satisfies the inequality
vy < 1 for each v € [0, +c0). Denote

R(t) =ess sup Z pi(8).

s€[t,0(8)] =1
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Theorem 3.2. Let it be that

esslim W) = 00. (3.2)
t——+00 R(t)

Then there exists an unbounded solution of equation (1.3), (1.4).
Corollary 3.3. If

esssup Z pi(t) < 0o and hm W(t) = o0,
t€[0,4+00) ;4

then there exist unbounded solutions of equation (1.3), (1.4).
Remark 3.4. In many cases it is possible to replace (3.2) with the following
_condition:

esslim W) =

t=too (/3 it 1pi(s)
‘This replacement is interesting only in case the conditions of Theorem 3.1
and Corollary 3.3 are not provided; i.e., there exists an index 7 so that

(3.3)

ess sup p;(t) = o0
t€[0,+o00)

and an index j so that

f t 0.
&5 Inf 7(t) =

A more typical example is the following: functions p(¢) = > iv; p;(t) and
h;(t) = t — 7;(t) are nondecreasing on [v, +c0). In this case the function 6
can be assigned, for example, by the following formula:

NG +3(1),

where p(t) = in:lpi(t), §(t) = maxicicmTi(t), §(t) Doimy pi(t) > 1 (see

=
Lemma 3.6 below). It is clear that the replacement is possible if

o(t) =t + (3.4)

osshm o1 Pi(t +7/(24/p(t)) + 3(1)) — K < oo (3.5)

t—4o0 . p(t) ’ ’
where p(t) = > ;% pi(t). For example, this condition is provided for polyno-
mial coefficients p;, i =1,...,m.

Proof of Theorem 3.2. Let z; and z2 be a fundamental system of equation
(1.3), (1.4). Let us assume that z; is bounded. Let us suppose without loss
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of generality that max,e(o oo [€1(£)] < 1 and

z1(0) z2(0)
z1(0) z5(0)

Let us start with the option of an oscillating solution zy; i.e., there exists a
sequence {t;} such that z2(t;) = 0for j =1,2,3,...,0<t; <ty < -+ <
tj < tjp1 < ---. At these points W (t;) = xl(t )x2(t ). We assume that
x2(tj) > 0. It is clear that z3(t;) > W(t;). The solution z, satisfies the
following equality

W(0) =

’=A>0'

t) + Z pilt)z2(hs(t))o (ha(t), ;) = — Z pi(t)z2(hi(t))[1 — o (hi(t), 1))

on the segment [tj,ti+1]. The H—condltlon [10] implies that h;(t) > t;—1 for
t=1,...,m and almost all ¢t > ¢;. Now it is evident that

o(t) = = > p()ma(ha(t)[1 — o (hat), t5)] > 0
=1

for almost all ¢ € [t;,t;11]. Let us estimate z from below on the segment
[tj, t; + —~—1]. Set
2/ R(t5)

— sin[ R(tj)(t - tj)]. (36)

It is clear that v(t;) = 0, v/(¢;) = W(¢;) and

»(t) = 0" () + sz(t )a(h (£),£;) <0

for almost all ¢ € [¢;,t; + The last inequality, according to a

24/ R(tj) I
generalization of the de la Vallee-Poussin theorem, obtained by N.V. Azbelev
in [10], provided that the Cauchy function C(¢,s) is positive in the triangle

. . _ﬂ.
5,t € (t,t; + 2\/@), s < t.
Using representation (1.7) and inequality ¥(t) < 0 < o(t) for almost all
t €[t t; + ”T(vcj)]’ we obtain that v(t) < za(t) for t € [¢;,¢; + 2\/#(_::])] If
J — oo, then t; — oo (see [10]). It is clear that

esslim ) < lim max |za(s)].

t—-00 \/m t—00 5€[0,4]
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Now let us consider another option; i.e., nonoscillating solutions. Let £y be
the last zero of x3(t) on [0, +00). We assume without loss of generality that
zh(to) > 0. Let £y be the last zero of the solution z1(¢) on [0, 4+00). We
assume without loss of generality that z/(¢g) > 0. The H-condition provides
that the Wronskian W (¢) does not decrease:

W(t) = z1(t)z5(t) — 21 (t)z2(t) =2 W(0) > 0.
Since za(t)z}(t) > 0 for sufficiently large ¢, then W(t) < z1(¢)x5(t) and
W(0) < W(t) < z4(t). This implies that x5 is not bounded on (0,+00).
Theorem 3.2 is completely proved. O
The fact that W (¢) is nondecreasing implies the following:
Corollary 3.5. If
m
esslim Z pi(t) =0,
1

t—4co 4

then there exists an unbounded solution of equation (1.3),(1.4).

Proof of Theorem 3.1. Let z; and x5 be a fundamental system of (1.3),
(1.4), such that

<1 and W(0) > 0.
e [o1(8)] <1 end W(0)

We will prove that z2 is an unbounded solution. In the nonoscillating op-
tion the unboundedness of zo is obvious from the proof of Theorem 3.2.
Let us consider a sequence {t;} in the oscillating option so that z5(t;) =0,
J=1,23,--,t1 <tg--- < tj < tjy1 < .... At these points W(t;) =
z1(t;)x5(t;). Upon the assumption that maxsep yoo) [£1(2)] < 1 it is ob-
tained that W(t;) < z4(t;). Let us consider the proof of Theorem 3.2 for
v(t) = W(t;)(t — t;).
It is evident that v(t;) = 0, v(¢; + 8) = W(tj)e and

+ sz(t (t) t.?) <0

for almost all ¢ € [t;,t; + €].
Since v(t) < za(t) for ¢t € [t;,t; + €] (see the proof of Theorem 3.2),
z2(t; +¢€) > W(t;)e, and we conclude that z, is unbounded.

Lemma 3.6. Let p and h be nondecreasing functions and

24/p(v)

where p(v) =31 pi(v). Then Ay, < 1.

p=v+ +5() for ve[0,+00),

\
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Proof. Let us set

v@=meEFJIva—mw]+¢7:E@bw £250) +
V2 s pi(w)(t — v) t<glv)+v

for each fixed v. It is ev1dent that
t)—}—sz(t (1) (hi(t), ;) >0

for almost all ¢ € [v,u]. It implies the inequality v(t) < (K,,Mv)(t) for
¢ € [v,p]. According to the known result [37, p. 81] that results in )\, < 1

4. ESTIMATES OF THE WRONSKIAN

In order to use the results of Part 3 we have to obtain estimates of the
Wronskian.

Theorem 4.1. The Wronskian W (t) of the fundamental system satisfies
the following differential inequality:

w'(t) > sz-(tw(t, hi(6))W (Ri(2), ¢t € [0,+00), (41)
=1

where W(s) =0 for s <0, C(-,8) =0 for s < 0.
Proof. Let us introduce the following function of two variables:

_ | za(s) ma(s)
Qt,s) = z1(t)  z2(t)
For a fixed s the function g¢,(¢) = Q(¢,s) (as a function of the argument t
only) is a solution of equation (1.3), (1.4), and moreover gs(s) =0, gl(s) =

W(s).
It is clear that

i | w®) 32(t) 21 (t) 25 (t)
w(e) 40 ) S O (®) ST pi(t)ea(ha()

=_Zpﬂmlx2<»—mo 1 (ha(®)]

- —Zpi(t)Q(hi(t),t) =Y pi®Q(t, h(t)).
i=1 i=1

In order to continue the proof let us obtain the following:
Lemma 4.2. If XA;: > 1 (0 < 5 <t < 00), then Q(¢,s) > W(s)C(t, s).
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Proof. Solution g5 of equation (1.3), (1:4) satisfies the equality

(£:4s)(€) = = > pi(€)as(hi(€))[1 — o (hi(€), 8)] for € € [s,1].
i=1

Denote the zero of g; nearest to s from below by v. Tt is apparent that

0(€) ==Y pi©)as(ri(©))[1 — o (hs(€),9)] 20, €€ [s,1].

i=1

Under the condition Ag; > 1 pos1t1v1ty of the Cauchy function C(£,n) for
&n € (s,t), € > n, is provided. Inequality ¢ > 0 implies that Q(£,s) >

. W(s)C({, s) for s < ¢ <t. Lemma 4.2 is completely proved. O

Continue the proof of Theorem 4.1.
From Lemma 4.2 it follows that

m

Yo mB)Q hi(t) = Z (OW (hi(£))C (2, ha(t))-
i=1 ‘

The equality W(t) = >0 pi(t)Q(t, hi(t)) completes the proof of Theo-
rem 4.1. O

Theorem 4.1 makes it possible to obtain estimates of the Wronskian W (t).
Let us use the follovvmg estimate,

W (t) > W(0)( 1+/ sz (s, hi(s)) ds), | (4.2)

where C(t, hs(t)) = 0 if hi(t) < 0, in order to obtain the following result.
Theorem 4.3. If there exists a function v(-,-): [v,+00) — [0,400) so that

1) v(-,s) for each fized s has an absolutely continuous derivative on each
segment [s, bl; :

2) v(-, hi(+)): [v, +o0) = [0, +00) is measurable fori=1,...,m;

3)

{ >0 te(hils)sl, hi(s)€v,s),
(t,hi(s))y =0 t=h(s), _
=0 tey,+0), his)é¢ly,s),

Yo ={ 5 N

and

P(t) =o' >+ij v(h;i(t), hi(s)) <0

UNBOUNDEDNESS OF SOLUTIONS AND INSTABILITY 573

fori=1,...,m and almost all t € [h;(s),s]. Then
W(t) > W(v)( 1+/ sz(s v(s, hy (s))ds) t € [v,+00).

Proof. In order to prove Theorem 4.3 let us show that v(s, hi(s)) <
C(s,hi(s)) for i = 1,...,m and almost all s € [v;+00). De la Vallée-
Poussin’s theorem [10] implies that C(¢,&) > 0 for ¢, € [hi(s),s], t > &.
The function C(:, hs(s)) for almost all fixed h;(s) € [v,+00) is a solution of
the equation

(ﬁhi(s)x)(t) =0, te€lhis),s],
and the function v(-, h;(s)) satisfies the equation
('Chz(s)m) (t) = ¢(t)7 te [hz(s)’ 8],

where 9 < 0. The positivity of the Cauchy function C(t,€) implies the
inequality v(s, hi(s)) < C(s, hi(s)), s € [v, +00).

5. PROOFS

In order to prove Theorem 2.1, let us replace v(¢, s) = (t—s)‘(s+2\/§ /M-
t) in the conditions of Theorem 4.3. Theorem 2.2 is a corollary of Theorem
2.1.

Proof of Theorem 2.4. Let us replace v(t,s) =t — s in the conditions of
Theorem 4.3. Condition (2.4) implies that lim; o W(t) = +00. Theorem
3.1 implies the sufficiency of condition a), and Theorem 3.2 implies the
sufficiency of condition b) for existence of an unbounded solution.

Corollary 5.1. If there exists an index i € {1,...,m} so that

fos) pz() . 7_" ~
Ty = (VR @)n) =

then lims— oo W(t) = +o0. If also
fo _nls) sin( \/—TZ(S
esslim V Rls=mi(s)
t——+00 R(t)

then there exists an unbounded solution of equation (1.3),(1.4).
In order to prove Corollary 5.1, let us set

v(t,s) = sin[v/R(s)(t — s)].

=OO,

Ju ]|
;‘

S e e e e RS =
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Note that existence of an unbounded solution of equatlon (1.11) results from
Corollary 5.1.

If conditions a) and b) of Theorem 2.4 are not provided, the following
assertion is proposed.

Corollary 5.2. If there exists an indez ¢ € {1,...,m} so that at least one
of the following conditions is provided,

esshm T t)/ Di 3)7‘ s)ds = (5.1)
or
d
esslim M = 00, (5.2)
t—+oc0 R(t)

then there exists an unbounded solution of equation (1.3), (1.4).

In order to prove Corollary 5.2 let us set v(¢,s) =t — s. The sufficiency
of condition (5.1) results from the proof of Theorem 3.1. The sufficiency
of condition (5.2) results from Theorem 3.2. Existence of an unbounded
solution of equation (1.12) results from Corollary 5.2.

Proof of Theorem 1.1. Whereas we have proved that necessity follows
from Theorem 2.4, sufficiency was proved by D.V. Izumova in her paper [18].

Proof of Theorem 1.2. Sufficiency was proved by M. Pinto [19]. Necessity
results from Theorem 1.1.

Remark 5.3. The fact that the coefficient p(¢) is nondecreasing in Theorem
1.1 is essential; for example the equation

" (t) + :c(t é) =0, te[l,+o0)
has an unbounded solutlon by Corollary 3.5, but

/OOT(t)dt=/°°ti2<oo
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The first two equations in (1.1) describe a reaction—diffusion process,
where y(z,?) and 2(z,t) denote the densities of two substances 4 and B,

Al : _ respectively, in the position z €  and at the moment ¢ [0,T]. The two
i - substances diffuse in the domain Q with the diffusion constants k1 and ks,
| , ‘ respectively and react (a(x) is a reaction coefficient; o molecules of A and
M B molecules of B react to produce some other substances). The functions f
and g represent two infusions of substances A and B, respectively.
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