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Invariance Principles for Empirical Processes

Miklés Csérgd

1. Introduction: ‘B‘ésic notions and definitions

Let X;, X, ... “pe independent identically distributed random variables (i.i.d.
v) on a probability space ({2, &, P) with values in a sample space (R RB).
Denote by u the probability distribution of X; on %, i.e., ‘ ¥

n(B)=Plo € 2: X\(w)EB} forall BER. (1.1)

For each w€ and Be® let nu,(B) be the number of those
Xi(@), . .., Xu(w) which fall into the set B. The number 1n(B) is called the

empiricai measure of B for the random sample X;,...,X,, conveniently
written as : \ ' ’

un(B)= n' 3 15(X) o )
where = ‘ ) |
1 ifxeB,
1 = . 4 “ : -
5(x) { 0 if x&B. : @3

The corresponding empirical measure process' B, is defined b’y

B.(B)= n"u,(B)- u(B), BEH. a4

Usually X, X,, . .. will be random vectors in the Euclidean space R? (d ? 1),

ie., R =R¢, an'd 93 is the Borel subsets of R% In this case let F be the right
continuous  distribution  function of X;, ie., F(x)=p((—>, x])=

f{ew RE" 0: X|(w) € (—, x.)}, where (=%, x] is a d-dimensional interval with
PR The corresponding empirical distribution function p,((—», x]) of the
. Tandom sample X;,..., X, will be denoted by F,(x), i.e., for each w € Q

lRE D
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whose components are less than or equal to the corresponding components of
x=(xy,..., %) €ERY conveniently written as ‘

: d
F(x)=n" [I Lo, ) (XGi) - (1.5)

ivy=

]

Whence on denoting B,((—«, x]) by B.(x), the empirical measure process of
(1.4) in terms of these distribution functions F, F, is

B.(x)= n'%(F,(x)~ F(x)), xER* (d=1), E 16)

and it will be simply called the empirical process. If X; is uniformly distributed
over the unit cube I¢=[0,1]¢ (d=1) then for F,, F, B, we use the symbols
E,. A, a, and the corresponding uniform empirical process then is

a(y)=n"P(E,(0)-AY)), y€EI? (d=1), 1.7

where A(y) =114, y, with y = (y;, ..., y)E I

In the context of continuous distribution functions F on R¢ the uniform
empirical process occurs the following way. Let & be the class of continuous
distribution functions on R¢ and let %, be the 'subclass consisting of every
member of & which is a product of its associated one-dimensional marginal
distribution functions. Let y; = Fp(x:) (i=1,..., d) be the i-th marginal dis-
tribution of FE€ # and let F(‘i;(y,-)=inf{x,~ER‘~: Fy(x;) =y} be its inverse.
Define the mapping L' : I¢ >R¥ by

L-I(Y) =.'L—1()’1, Ty yd) = (F(—ﬁ()’l), cec del)(yd))’ y= (YI? - .' . yd) e(lIdg)

Then (cf. (1.6) and (1.7)), whenever F € %,
6= B L), ¥=01--- Y)EI' @=1), 19
i.e., if F € %, then the empirical process B,(LH(y)) = aa(y) is distribution free
. (does not depend on the distribution function F). In statistical terminology we

say that when we are testing the independence null hypothesis

Hy: FE %, versus the alternative Hy: FEF-% (d= 22, 0)
. 1.

then the null distribution of B,(L™(y)) is that of a,(y), i.e., the same for. all
F € %, and for d = 1 with F simply continuous. Otherwise, i.e., if H; obtains,
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empirical distribution function of the i-th component of X; (j=1,...,n), i.e.,

Fu(x)=n"1>, Lo )(Xi), i=1,....d, ' . (1.11)
j=1
and define 7

d
L) = Tt v = (R~ TTFatx). d>2,  (L12)

with F, as in (1.5). In terms of the mapping L™ of (1.8) we define t,, the uniform
version of T,, by

60)= T 0D = w2 EFG0D, - Fg0a) - [T FaFGon)

d

= E,) - T Eu), (1.13)
where E;(y;)) (i=1,...,d) is the i-th uniform empirical distribution function
of the i-th component of L(X}) = (Foy(Xn), - .., Fa(Xu)) G=1,...,n),ie, Lis
the inverse of L™ of (1.8). Consequently H, of (1.10) is equivalent to
Hy: F(LY(y)) =& y; = A(y), i.e., given Hy, T,(L(y))= t.(y) is distribution
free. Hence, in order to study the distribution of T, under H,, we may take F
to be the uniform distribution on I¢ (d =2) and study the distribution of ¢,
instead. ' : :
If F is a continuous distribution function on R then its inverse function F*

will be called the quantile function Q of F, i.e., :

"Q(y)=F(y)=inf{x eR%: F(x)=y}
=infix ER: F(x)=y}, 0sy<l. . (114

Thus F(Q)=y€[0,1], and if we put U;= F(Xy), then U; is a uniformly
distributed rv on [0,1]. Also U,= F(X;), U,= F(X3), ... are independent
uniform-[0, 1] rv. Let X;, <X,, <---< X, be the order statistics of a ran-
dom sample on F which, in turn, induce the uniform-[0, 1] order statistics
Ul;,, = F(le) = U2:n = F(Xz;n) =S Un:n = F(Xn;n) of U1, U2, ey Un. The
empirical distribution function F, of (1.5) can be written as

N

0 if le >x, EE
Fux)=3kin if Xew <X <X, : (1.15)
1 if X, <ux,

x €RY, and the uniform empirical distribution function E, of Uy,..., U, as

the empirical process B, is a function oF Fand so will be also its distribution-
Hoeffding (1948), and Blum, Kiefer and Rosenblatt (1961) suggested an

alternate empirical process for handling Hy of (1.10). Let F,; be the marginal

En(y) = F.(Q(y)) =‘ k/n 1f Uinsy< Ukstin » (1.16)
i 1 1f Un:n = Y,




434 ) Mikiés Csérgo

0<y=<1. Then (1.7) takes up the simple form

()= Ba(QO) = nAE, () - y), 0<y<1. (L.17)

In terms of the latter empirical distribution functions F, and E, we define now
the empirical quantile function Q, by
Q.(y)= F7'(y) = inf{x ER": F,(x) = y}
=X,, if(k—1)/n<y<k/n (k=1,...,n) (118)

~ and the uniform empirical quantile function U, by

U.(y)= E;'(y) = inf{u €[0, 1]: F,(Q())=> y}
=Uk:n=F(Xk:n) lf(k_l)/ﬂ<}’sk/n (k=17‘--sn')
= F(Q.(y)) - o (119)
If F is an absolutely continuous distribution function on R, then let f = F’ be

its density function (with respect to Lebesgue measure). We define the quantile
process p, by

o) = RPFQONQ.0) ~ QL) YEW,D), (1.20)
and the‘ corresponding uniform quantile procéss U,-by
u(y) = n*(U,(y)~ y) - : (1.21)

A simple relationship like that of (1.17) for a, and B, does not exist for u, and
pn. However by (1.19) we have :

pn(y) = n2f(RQONQE(Q.() ~ Q)= u. )AQ/f(Q(8;0)))
: ) 1.22)

where U,(y) Ay <8, <U,(y)Vvy. Since u,(k/n) = —a,(Ue:) (k=1,...,n), it
is reasonable to expect that the asymptotic distribution theory of a, and u.
should be the same. This, in turn, implies that via (1.22) p, should also have the
same kind of asymptotic theory if f is ‘nice’. We are going to see in Section 4 that
this actually is true under appropriate conditions of f.

Let C(t) = fr¢ exp(i(t, x)) dF(x) be the characteristic function of F(x) on R4,
where (1, x)=3¢.; tixy, the usual inner product of t=(t,...,4), X=
(%1, . .., Xxs) ER4 With F, as in (1.5) the empirical characteristic function C, of

.,._.,,_..ﬂ_ﬁthe_sample X, -X,-is_defined by
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‘Next we define a number of Gaussian processes which play a basic role in the
asymptotic distribution of some of the empirical processes introduced so far.
Wiener process: A real valued separable Gaussian process

AW X ERG={W(x, ..., %), 0<x<o, i=1,...,d}
with continuous sample paths is called a Wiener process if EW(x)= 0 and

EW@W(y)=A(xay) with A(xay)=T] (6w, o

i=1

where x = (X3;...,%2), y = (V15 - -+ Ya) ERE (d = 1) : ,
Brownian bridge: {B(x); x € I} = {W(x) — Ax)W(, ..., 1); x € I
Whence EB(x)=0 and EB(x)B(y)=A(x AY)—AXAY), x = (X1, ..., Xg), ¥ =
(Y1 - - - ya) €E I¢ (d = 1), where A(x) = A(x A x).
Kiefer process: {K(x, t); (x, ) EI* X RL} ={W(x, )= A(x)W(Q,...,1,1); x €
I4 t=0}. Whence EK(x, t)=0 and :

EK(x, 1)K (y, )= (1 A B)ACE A Y) = A(EAG)),

where x=(x1, ..., %), y=(0O1 ..., Vo) EI4 t;, ,=0.

For a proof of existence of the multitime parameter Wiener process
{W(x); x R4}, which is sometimes called the Yeh—Wiener process or
Brownian (Wiener) sheet, we refer to Yeh (1960), Cencov (1956), or Csorgd
and Révész (1981a, Section 1.11). A Kiefer process at integer valued arguments
t=n can be also viewed as the partial sum process of a sequence of in-
dependent Brownian bridges {B;(x); x € I‘}7;:

{K(x,n);xEI“,n=1,2,...}={En:B,-(x);xEId,n=1,2,...},

i=1
and (1.24)

(Bu(x); x € It = {K(x, n)— K(x, n—1): x € I} (n=12..)

is a sequence of independent Brownian bridges. .

For further properties of a Kiefer process we refer to M. Csérgo and P.
Révész (1981a, Section 1.15 and Theorem S.1.15.1). -

Strong approximations of empirical processes are going to be described in
Section 2. For distribution theory of tests based on the sample distribution
function on R! we refer to Durbin (1973a). A direct treatment of the empirical
process on R! and many of its statistical applications can be seen in this volume
by Cséki (1982b), and Doksum and Yandell (1982) (cf. Also Cséki, 1977a,
1977b, 1982a). For the parameters estimated empirical process on R¢ (d = 1)

Ci()=n1 S exp(ids, X)) = j exp(ils, ©) dFy(x), tERY. (123)
k=1 R

we 're§er to Durbin (1973b, 1976), Neuhaus (1976) and- M= D Burke; M Cs61g0;
S. Csorgo and P. Révész (1979). For a theory of, and further references on

strong and weak convergence of the empirical characteristic function we refer

to S. Csorgd (1980, 1981a,b).
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Recent work on the limiting distribution of and critical values for the
multivariate Cramér-von Mises and Hoeffding-Blum—Kiefer-Rosenblatt in-
dependence criteria is reviewed in Section 3.

-An up-to-date review of strong and weak approximations of the quantile
process, including that of weak convergence in ||-/g|}-metrics, is given in Section 4.

" For further readings, references on this subject andits statistical applications, we
refer to Chapters 4, 5 in Csérgoand Révész (1981a), Csorgd and Révész (1981), M.
Csorgo, (1983), and Csdrgo, Csorgo, Horvath and Révész (1982). For the
parameters estimated quantile process we refer to Carleton Mathematical
Lecture Note No. 31 by Aly and Csdrgo (1981) and references therein. For recent
results on the product-limit empirical and quantile processes we refer to Carleton
Mathematical Lecture Note No. 38 by Aly, Burke, Csdrgd, Csorgo and Horvéth
(1982) and references therein and to Chapter VIII in M. Csorgo (1983).

2. Strong and weak approximations of empirical processes
by Gaussian processes

There is an excellent recent survey of results concerning empirical processes
and measures of i.i.d. rv by Gaenssler and Stute (1979). Chapter 4 of Csdrgo
and Révész (1981a) is also devoted to the same subject on R'. For further
references, in addition to the ones mentioned in this exposition, we refer to
‘these sources. Even with the latter references added, this review is not and,
indeed, does not intend to be complete. In this section we are going to list, or
mention, essentially only those results for @, and B, which are best possible or
appear to be the best avaijlable ones so far in their respective categories.

First, on strong approximations of the uniform empirical process a, of (1.7)
or, equivalently, that of a,=B,(L™") of (1.9) in terms of a sequence of
Brownian bridges {B,(x); x € I¥}5-; we have

Tueorem 2.1. Let X4, ..., X,, (n=1,2,...) be independent random d-vectors,
uniformly distributed on I%, or with distribution function F € %, on R Let a, be
as in (1.7) or in (1.9). Then one can construct a probability space for X1, X, . . .
with a sequence of Brownian bridges {B,(y); y € I¢ (d = 1)}~ on it so that:

() for all n and x we have (cf. Komlds, Major and Tusnddy, 1975a)

P{sup |a, ()~ B,(y)| > n~"*(Clog n+ x)} <Le™, 2.1)
yeEI

where C, L, A are positive absolute constants,
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(iii) for any A >0 there exists a constant C>0 such that for each n (cf.
Csérgo and Révész, 1975a) :

P{sup las(y)— Bn()| > C(log n)*n 24 <n™, d=1. 2.3)
y€&€I .

The constants of (2.1) for example can be chosen as C = 100, L=10, A = 1/50
(¢f. Tusnddy, 1977b,c).

COROLLARY 2.1.  (2.1), (2.2), (2.3) in turn imply

sup |, (y) ~ B, »IEOm2logn), . (2.4)
yeI . .

sup |, (y) ~ B, )| = O(n?log? n), (2.5)
yer? ,

sup Ia,.(y) B,(y)| = O(n"¢*Y(log ny?), d=1. (2.6)
yEI .

Due to Bartfai (1966) and/or to the ErdGs-Rényi (1970) theorem, the O()
rate of convergence of (2. 4) is best possible (cf. Komlds, Major, Tusnady, 1975a,
or Theorem 4.4.2 in Cs6rgd and Révész, 1981a).

Next, on strong approximations of the uniform empirical process a, of 1.7
or, equivalently, that of B,(L~ 1 of (1.9) in terms of a single Gaussian process,
the Kiefer process {K(x, t); (x, t) € I¢ X R1}, we have

Tueorem 2.2. - Let X;, . . , X, (n=1,2,...) be independent random d-vectors,
uniformly distributed on I°, @ or with dlstrlbutlon function F € %, on R°. Let a, be
as in (1.7) or in (1.9). Then one can construct a probability space for X, Xo, . . .
with a Kiefer process {K(y, t); (y, t) € I* XR1} on it so that:

(i) for all n and x we have (cf. Komlos, Major and Tusnady, 1975a)

P{sup sup |k1/2a;c - K(y, k)>(Clogn+ x) logn}<Le ™, (2.7)

1<k=n yeI'

where C, L, A are positive absolute constants, :
(ii) for any A >0 there exists a constant C >0 ‘such that for each n (cf Csorgo
and Révész, 1975a) :

P{ sup sup |k, (y)— K(y, k)| >Cn@»2¢Dog? n}<n™, d=1.

Isksnyerd

(i) for all n and x we have (cf. Tusnddy, 1977a) 2.8)
~ ‘ CoroLLary 2.2. (2.7), (2.8) in turn imply
P{sup |a,(y)— B,(y)| >n""*Clogn+x)log n}<Le™, 2.2) _ '
e T — _
n"12 sup sup [k*2a*(y)— K(y, k)] = O(log? n/n*?), 2.9)

where C, L, A are positive absolute constants,

1<k=n yer!
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w2 sup sup K% (5)~ K (5 )| OG-0 logh ), d>1.
I<ksn yeId (2.10)

The first result of the type of (2.4) is due to Brillinger (1969) with the a.s. rate
of convergence O(n~"*(log n)"?(log log n)"4). Kiefer (1969) was first to call
attention -to the desirability of viewing the one dimensional (in y) empirical
process a,(y) as a two-time parameter stochastic process in y and »n and that it
should be a.s. approximated in terms of an appropriate two-time parameter
Gaussian process. Miiller (1970) introduced {K(y, t); (y,t)€ I*XR1} and
proved a corresponding two dimensional weak convergence of {a,(y);y €
I''n=1,2,..} to the latter stochastic process. Kiefer (1972) gave the first
strong approximation solution of the type (2.9) with the a.s. rate of con-
vergence O(n~Y(log n)*3).

Both Corollaries 2.1 and 2.2 imply the weak convergence of a, to a
Brownian bridge B on the Skorohod space D[0, 1], Writing k = [ns] (s €
[0, 1]), [ns]"2apug(y)/n*? is a random element in DIo, 1]%*! for each integer n,
and (2.10) implies also

COROLLARY 2.3. - [1 - [®2au (-)/n'?> K(-, ) on D0, 1]¢*.

For d = 1 the latter result is essentially the above mentioned result of Miiller
(1970) (cf. also discussion of the latter on page 217 in Gaenssler and Stute,
1979).

Corollary 2.2 also provides strong invariance principles, i.e. laws like the
Glivenko-Cantelli theorem, LIL, etc. are inherited by «,(y) from K(y, n) or
vice versa (cf;, e.g., Section 5.1, Theorem S.5.1.1 in Csdrgo and Révész, 1981a).
The main difference between the said Corollaries is that such strong laws like
the ones mentioned do not follow from Corollary 2.1. In the latter we have no
information about the finite dimensional distributions in n of the sequence of
Brownian bridges {B.(y)};-1. On the other hand, the inequalities (2.1), (2.2)
and (2.3) can be used to estimate the rates of convergence for the distributions
of some functionals of a, (to those of a Brownian bridge B), and those of the
appropriate Prohorov distances of measures generated by the sequences of
stochastic processes {a,(y); y € I°}5-; and {B,(y); y € I%},-; (cf., e.g., Komlss,
Major and Tusnédy, 1975b; Theorem 1.16 in M. Csorgo, 1981a; Theorem 2.3.1
in Gaenssler and Stute, 1979 and references therein; Borovkov, 1978; and
review of the latter paper by M. Cs6rgo, 1981, MR 81j; 60044; the latter two to
be interpreted in terms of {a,(y); y € I“}3=1 and {B,(y); y € I}, instead of
the there considered partial sum and Wiener processes).

When the distribution function F of (1.6) is not a product of its marginals for
all x €ER? (d =2), then strong and weak approximations of 3, can be described
in terms of the following Gaussian processes assoczated with the distribution
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‘ parameter real valued Gaussian process with the following properties

EBr(x)=0,  EBg(x)Be(y)= F(x ny)— F(x)F(y),
lim Be(xy,...,x)=0 (i=1,...,d),

—>—00
X‘—’

i lim Br(x1,...,x5)=0,
)

where for x, y ER? we write X Ay = (X1 A Y1, . -, Xa A Ya)-

Kiefer process Kp(-,-) on R? X [0, ) associated with the distribution function
Fon R? (d =2): A separable (d + 1)-parameter real valued (x €ER% 0 <t <)
Gaussian process with the following properties:

 Kr(x,0)=0,

lim Kp(xl, .y

X>—®

X 0)=0 (i=1,...,d),

-3xd>t)=09

e ) (5, )

i EKr(x,t)=0 and EKr(x, t)Kr(y, ;) = (A B)(F(x A y)— F(x)F(y))

for all x, y ER? and 4, ,=0. ‘
A more tractable description of Br and K can be given in terms of the
mapping L : R¢ - I defined by

, Faxa))= 1, ..., yayE I,
(1, ..., %) ER?,  (2.11)

© L(x)=L(x,. . ., Xa) = (Fay(x1), e

¢ the inverse map of L™ of (1.8), where, just as in the latter map, y; = F(x;)
(i=1,...,d) are the i-th marginals of F. It is well known that (cf. p. 293 in
Wichura, 1973; or Lemma 1 in Philipp and Pinzur, 1980; or Lemma 3.2 in
Moore and Spruill, 1975) there is a d-variate distribution function G on I¢ with
uniform marginals on [0, 1] such that

F(x)= G(L(x)), G(y)=FL'()), 2.12)
ie, G on I4 has uniform marginals y; = Fy(x) (i = ,d) on [0, 1]. (We
note for example that if F € %, then G(y)= A(y) w1th /\() as in (1 7) ie., in
the latter case G(y) is the uniform distribution functlon onI4)

Now consider the d-parameter Wiener process Wg associated thh the
distribution function G on I¢, defined as follows.
Wiener process Wg on I¢ assocmted with the distribution function G on I¢

(d=2): A real valued d-parameter Gaussian process {Wa(y); y € I¢} with

function F(x) (x ER4, d =2).
Brownian bridge By associated with F on R% (d=2): A separable d-

EWs(y)=0, EWs(x)Ws(y)= G(x A y), and W5(yy, ..., ys) =0 whenever y; =
0G=1,...,d). -
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Then the d-parameter Gaussian process

3 yd).— G(yb sees yd)WG(lv L) 1)’
., ya) ET% (2.13)

{Bo(); y € I} = {Wolym, ..
y= (}’17 ..

is a Brownian bridge process on I¢ associated with G on I and the Brownian
bridge process Br associated with F on R can be represented via (2.12) and
(2.13) as : :

{Br(x); x € RY} = {Wo(L(x))— GILE)Wo(l, . .., 1); x ER)
and ' ' (2.14)

{B-(L(y); y € I} = {Bo(y); y € I}

Consider also the (d + 1)-parameter Wiener process Wg(-,-) on I X [0, ©)
associated with the distribution function G on I¢, defined as follows.

Wiener process Wg(+, ) on I¢ X [0, %] associated with the distribution function
G on I* (d=2): A real valued (d+ 1)-parameter Gaussian process
{Ws(y, t); y € I, t =0} with Ws(yy, ..., Ya t)=0 whenever any of yj,...,y,
or t is zero, EWg(y, t)=0, and EW5(y, 1) Ws(x, )= (t: A )G(x A y).

Then the (d + 1)-parameter Gaussian process '

> Vs t)— G(yl, R yd)Wg(l, Ceey 1, t);
-7yd)e{d,t20} (2.15)

{Ks(y, 1); y € I¢, t = 0}i= {W5(y1, . . -
y=0m--

is a Kiefer process on I X [0, %] associated with G on I°, and the Kiefer process
Kk (-, -) associated with F on R¢ can be represented via (2.12) and (2.15) as

{Kr(x, 1); x ERY, t =0}

= {Ws(L(x), )~ GLx)Ws(L, ..., 1, 1); x ERY, r =0}
and ‘ o (2.16)
{Kr(L'(y), 1); y € I4, t =0} ={Ks(y, 1); y EI%, 1 =0}

“We note that if F € %, or d = 1, then the latter Kiefer processes Ks(-,-) and
Kz (-, ") coincide with our originally defined Kiefer process K(-,+) on I4 X Ri.
The same is true concerning our originally defined Brownian bridge B, and the
Brownian bridges Bg and B in the context of F € %,. Note also that in general 8,
of (1.16) can be written as

Bu(L7'()) = n*P(FE(L7 () — L)) |
— nl/Z(Fn(L—l(y)) - G(y))’ yE Id , (2.17)
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procesé B, of (1.6) or, equivalently, that of B,(L™) of (2.17) is (for more recent
information we refer to Borisov, 1982). -

THEOREM 2.3 (Philipp and Pinzur 1980). Let Xi, ..., X (n=1, 2,...) be

. independent d-vectors on R with distribution function F. Let B, be as in (1.6) or,

equivalently, as in (2.17). Then one can construct a probability space for
X,, Xs, . .. with a Kiefer process {Kg(x, t); x € R4, t =0} associated with F on it
such that '

P{ sup sup k2B, (x) — K (x, k)| > CinP4}

1<k=n x€R
= P{sup sup [k"?B(L}(y))— Ks(y, k)|> CintP} < Cyn0+139)
I<ksn yeI T (2.18)

for A = 1/(5000d?), where Cy, C; are positive constants depending only on F and
d.

COROLLARY 2.4. (2.18) in turn implies

172 sup sup |k2B(x)— Kr(x, k)|

1<k<n x€R?

=n"'2 sup sup [k"2B (L))~ Ko(y, k)| = O(n™) 2.19) -

1sk<n yeI? .

with A as in Theorem 2.3.

Remark 2.1. We note that Philipp and Pinzur (1980) state only (2.19) in their
Theorem 1. S. Csérgd (1981b) noted that going through their proof one can see
that they had in fact proved the somewhat stronger (2.18). ’

ReMark 2.2. Theorem 2.3 and Corollary 2.4 are best available in the sense

that in them there are no assumptions made on F. The a.s. rates of convergence

of Corollary 2.2 are of course better than that (2.19), but in the former F is
assumed to be uniformly distributed on I4 While in case of d =1 the latter
assumption is not a restriction (for d = 1 and F continuous we have (1.9), and if
F is arbitrary in the latter case, then (2.1) and (2.7) remain true (cf. Remark 1
in S. Csorgo, 1981a)), for d =2 it is. Csorgo and Révész (1975b) actually proved
(2.18) with the better rate n@*@4+9]og? n (cf. (2.8)) replacing its present rate of

n@2=% () = 1/(500042)), but only for a class of d-variate distribution functions

satisfying a rather strict regularity condition.
Clearly, for all fixed ¢ >0,

{(F KR (L), 1); y € 1= {r""Ko(y, 1); y € I}

which, in turn, reduces to the equality of (1.9) whenever F € %, or d = 1.
As far as we know, the best available strong approximation of the empirical

2 (Br(L'(y)); y € I4h = {Bs(»); . € I} - (2.20)

Therefore Corollary 2.4 implies
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CoROLLARY 2.5. B,(L7Y(+))= Bo(") on D[0, 1]¢. - @.21)

~ Also ondvrlriting k = [ns] (s €[0, 1]), [ns]"™Bpsy(L"*(y))/n*?is arandom elément
in D[0, 1]#*! for each integer n, and (2.19) implies :

COROLLARY 2.6.  [n-]"2By,y(L(-))/n? > K5(-, -) on D[0, 1]+ . 2.22)

The result of (2.21) was first proved by Dudley (1966) (cf. also Neuhaus
1971; Straf, 1971; Bickel and Wichura, 1971; Theorem 2.1.3 in Gaenssvler and,
Stute, 1979, and discussion of the latter theorem therein). The result of (2.22)
was first proved by Bickel and Wichura (1971) (cf. Theorems 2.1.4 and 2.1.5 in
Gaenssler and Stute, 1979; see also Neuhaus and Sen, 1977).

A common property of the quoted results so far is that they are uniform
approximations of measures over intervals only (of I or those of R¢ mapped
onto. _I"). Concerning now the more general problem of approximating the
empirical measure process B8, of (1.4) by appropriate Gaussian measure pro-
cesses, the question is over how rich a class of subsets 4 C % of (R, B) (cf.
paragraph one of Section 1) could we possibly have theorems like, for example
Theorems 2.1, 2.2 and 2.3. Let (R, %, 1) = (I, B, 1), A the uniform Lebesgue
measure on I4 ie., X,..., X, (n=1,2,...) are distributed as in Theorems 2.1
and 2.2. In’ this case write a,(B)= n'*(A,(B)— A(B)), B € %, instead of B, of
(1.4). Then, while it is true (cf. Philipp, 1973) that - ’ ‘ "

hr'rfrp )s;é];) (2n loglog n)?a,(By=4%, - . (2.23)
where € = 6(2) is the class of convex sets of I?, it is also known that the law of
the iterated logarithm (2.23) fails for € = 4(d), the class of convex sets of I¢
(d=3). The latter negative result for d =3 was only recently proved by
Dudley (1982) (for a discussion of previous results see e.g. Gaenssler and Stute
1979). In spite of (2.23) dimension two (d = 2) is also critical, for Dudley (1982)
§howed also that if € is the collection of lower layers in I?\(a lower layer in I?
is a set B such that if (x, y) € B, u <x and v <y, then (4, v) € B), then the law

‘of the iterated logarithm (2.23) fails again (for previous mostly negative results

and references along these lines for higher dimensions we refer to Stute, 1977;
and Gaenssler and Stute, 1979). The same kind of negative results hold true
concerning the problem of central limit theorem for «, (B) (cf. Dudley, 1979), i.e.,
concerning empirical measure processes on I4 or R4, for the central limit theorem
as well as law of the iterated logarithm the critical dimension is 2 for the lower
layers and 3 for the convex sets. Hence any extension of results like those of
Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 in terms of uniform distances over a
class of sets € of I¢, other than the intervals already considered, can only be true
forsomewhatrestricted-classes-6-CB-Révész-(1976a,byextended(2:6yand(2:16)
over setsin I defined by differentiability conditions. For example, instead of (2.6)
we have (Révész, 1976a)
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sup |, (B) — B.(B)| s d(n-1(19) . . . (2.24)

Beg

and, instead of (2.10) we can have (Révész, 1976a)

12 sup |n'2a, (B) = K(B, n)| = O(n%), \ @25

Beg

where €. is the class of those Borel sets of I? which ‘have twice differen-
tiable boundaries, and {B.(B); B € €}%.; respectively {K(B,n); BE ¢,
n=1} are Gaussian measure processes with mean zero and covariance
function EB,(B)B.(D)=A(BND)-ABID) (n=12,.. .) respectively
EK(B, n)K(D, m)= (n »n m)(A(BND)— A(BA(D)) for all B, D€ €. Similar
extensions hold true over sets in I¢ (d = 2) with differentiable boundaries (cf.
Révész, 1976b; Ibero, 1979a,b). o
A common feature of the results of Theorem 2.2, Corollary 2.2 and that of
the first one of these types by Kiefer (1972) is not only that they improve (they
imply for instance functional laws of iterated logarithm (cf., e.g., Section 5.1 in
Csorgd and Révész, 1981a)) and are conceptually simpler than the original
weak convergence result of Donsker (1952) on empirical distribution functions,
but they also avoid the problem of measurability and topology caused by the
fact that D[0, 1]¢ endowed with the supremum norm is not separable (cf., e.g.,
Billingsley, 1968, p. 153). This idea of proving a.s. or in probability invariance
principles 4 la Kiefer (1972) also works for distribution functions on R¢ (cf.
Theorem 2.3 and its predecessors by Révész (1976a, Theorem' 3), and Csorgod
and Révész (1975b, Theorem 1)) and, as we have just seen in (2.24) and (2.25),
for uniform distances over sets of I¢, defined by differentiability conditions (see
also Révész, 1976b; Ibero, 1979a,b). Recently Dudley and Philipp (1981) used
the same idea to reformulate and strengthen the results of Dudley (1978,
1981a,b), Kuelbs (1976) on empirical measure processes while removing their
previously assumed measurability conditions. They do this by proving ‘in-
variance principles for sums of not necessarily measurable random elements
with values in a.not necessarily separable Banach space and by showing that
empirical measure processes fit easily into the latter setup. We refer for
example to Theorems 1.5 and 7.1 in Dudley and Philipp (1981) which can be
viewed as far reaching generalizations (with slower but adequate rates of
convergence) of Theorems 2.2, 2.3 and their Corollaries 2.2,2.4, and also that of
(2.25), in terms of Kiefer Measures {K, (B, n); B € ¢, n= 1} associated with
probability measures & on (R, B) over a subclass 4 (of some generality) of %.
The strong and weak approximations of the empirical characteristic function
C, of (1.23) can be accomplished, on R! in terms of Gaussian processes built on
Kiefer and Brownian bridge processes (cf. S. Csdrgd, 1981a) and on R? (d =2)

_.in terms of Gaussian processes built on Kiefer and Brownian bridge processes

associated with F on R¢ (cf. S. Csorgd, 1981b). For further references we refer
to the just mentioned two papers of S. Cs6rgo. :




444 Miklés Csorgo

3. On the limiting distribution of and critical values for the multivariate
Cramér—von Mises and Hoeffding-Blum-Kiefer—Rosenblatt independence
criteria

A study of empirical and quantile processes on R! with the help of strong
approximation methodologies is given. in Chapters 4 and 5 of Csoérgd and
Révész (1981a). We are also going to touch upon some of these problems in the
light of some recent developments in Section 4. of this exposition. An excellent
direct theoretical and statistical study of the empirical process on R! can be
seen in this volume by Cséki (1982b). The latter is recommended as parallel
reading to the material covered in this paper. In this section we add details to
Theorems 2.1, 2.2 and Corollaries 2.1, 2.2 while studying Cramér—von Mises
functionals of the empirical processes «, (cf. (1.7) and (1.9)) and 1, = T,(L™)
(cf. (1.13)).

When testing the null hypothesis H, of (1.10), or that of F being a
completely specified continuous distribution function on R!, one of the
frequently used statistics is the Cramér-von Mises statistic w24, defined by

d - d
wia=|  Brx) [[dFu)= J’d az() [Ty
R i=1 I i=1

. n d d . . d
=nt 3 {H A= (uVvy))— 11 271 y%) - IJl 7M1 -yH)+ 3"‘} ,

k=1j=1 ‘i=1

(3.1)

d=1, where (v, ..., yia)l=1 With y; = Fp(X;) (i=1,..., d) are the observed
values of the random sample X; = (X1, ..., Xu), j=1,..., n. One rejects H,
of (1.10), or that of F being a given continuous distribution function on R!, if
for a given random sample Xj, ..., X, on F the computed value of w2, is too
large for a given level of significance (fixed size Type I error). Naturally, in
order to be able to compute the value of w%, for a sample, Hy of (1.10), i.e. the
marginals of F, or F itself on R?, will have to be completely specified (simple
statistical hypothesis). While- it is true that the distribution of w2, will not
depend on the specific form of these marginals (cf. (1.9)), the problem of
finding and tabulating this distribution is not an easy task at all.
Let V,4 be the distribution function of the rv w2, i.e.,

Voa(x)=P{ows<x}, 0<x<ow. (3.2)
Csorgd and Staché (1979) gave a recursion formula for the exact distribution
function V,; of the rv w?%;. The latter in principle is applicable to tabulating

V.1 exactly for any given n. Naturally, much work has already been done to
compile tables for V,,;._A_survey and comparison_of these can be found in Knott
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dimensions d =2, no analytic results appear to be known about ‘the exact
distribution function V.. It follows by (2.6) that we have

lim V,4(x) = P{o?<x}:=V4(x), 0<x <, d=1, (3.3)

ne—®

where w3 = [ B¥(y)dy, {B(y); y € I’} a Brownian bridge, and dy = L, dy;

from now on. . o
For the sake of describing the speed of convergence of the distribution

functions {V,4}%-1 to the distribution function V, of wj (cf. (3.3)) we define

Apg= sup |Vina(x)— Va(x)l - . (34)

0<x<oo

S. Csorgd (1976) showed that 4,; = O(n™"? log n) and, on the basis of his complete
asymptotic expansion for the Laplace transform of the rv w?; (cf. (3.1)), he
conjectured that A, is of order 1/n. Indeed, the lattsr turned out to be correct (cf.
Corollary 1: 4,; = O(n™"), in Cotterill and M. Cs6rgo, 1982), and it can be deduced
from the ground breaking work of Gotze (1979). Actually the latter work. when
combined with Dugue (1969), and Bhattacharya and Ghosh (1978) implies (cf.
Section 2 in Cotterill and M. Cs6rgd, 1982) an asymptotic expansion of arbitrary
order for the distribution function V,, of (3.2) and also that :
A,4=0@n"), d=1, (3.5)

(cf. Corollary 3 in Cotterill and M. Csérgo, 1982). |

An extensive tabulation of the distribution function Vi (cf. (3.3)) can be
found in the monograph of Martynov (1978), where the theory and applications
of a wide range of univariate Cramér-von Mises types statistics are also
surveyed. . .

There appear to be no tables available for the distribution function V4
(d=2) (cf. (3.2)). Hence, and in the light of the just quoted r¢51_11t gf 3.5),
tables for the distribution function V; (d=2) of (3.3) are of special interest.
Durbin (1970) tabulated V, for d =2, and Krivyakova, Marty'nov_ and Tyu.nn
(1977) for d = 3. Using the characteristic function of the d;/StI‘lbllthl’l fupctlon
V, (cf. Dugue, 1969; Durbin, 1970), Cotterill and M. Cs'érgq (1982) obtaln.ed‘a
recursive equation for the cumulants of the rv % and, using the first six pf»
these cumulants in the Cornish-Fisher asymptotic expansion, tabulated its
critical values for d =2, 3, . .., 50 at various levels of significance. These critical
values are within 3% of Durbin’s values for d =2 and those of Krivyakova,
Martynov and Tyrin for d = 3. We note also that errors in the said tables for
higher dimensions should be further reduced due to the fact that cumulants of

(1974), whose results prove to be the most accurate so far. All these results and
tables are based on some kind of an approximation of V,;. As to higher

0% are O(e~?) (cf. Corollary 7 and Remark-3.2.in-D..S. Cotterill and M
Csbrgd, 1982). As far as we know, for the present there exist no further tables

~of V, for d = 4.
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As mentioned already, for the sake of computing the value of w2, for a
sample, Hy of (1.10) will have to be completely specified. An alternate route to
testing for H, of (1.10) can be based on the empirical process 4, = T,(L™) of
(1.13) which will not require the specification of the marginals of F under H,,
i.e., it will work also when Hj of (1.10) is a composite statistical hypothesis.

.. For the sake of describing the latter approach due to Hoeftding (1948), and

Blum, Kiefer and Rosenblatt (1961), we define the sequence of ~Gaussian
processes {T")X(y); y € I}, by

d
(T0)y € 19={B.()= 2 B, Lyo 1., D [T s
i=1

J#Ei

y=0--- ,' y_d)eld(d;—éz)}' | (3.6)

where {B.(y); y € I4(d = 2)}%., is a sequence of Brownian bridges.
Define also the Gaussian process {T(y, t); y € I¢, t =0} by

d
(T, 1y, yeI4 t=01=K(y, t)- K@, ...,Ly1,...,1,0)
y 2. ‘
x [Ty y €I4d=2), rao}, 3.7)

L J#E

where {K(y, t); y € I4(d =2), t =0} is a Kiefer process.
Obviously ET"X(y)= ET(y, f)=0, and simple but somewhat tedious cal-
culations yield the covariance functions

d a d
ETO)TO) = [T ny)+ @ =D Ty =3 (6 ay) [Ty,
=t i=1 i=1 ji
=p(x,y) foralln, ’ (3.8)
and _
ET(x, s)T(y, 1)= (s A Dp(x,y), (3.9)
where x = (x1,...;Xx0), y =1, ..., ) EI* (d=2) and s, t =0.

Strong approximations of #, = T,(L™) in terms of the latter Gaussian pro-
cesses follow quite directly by Theorems 2.1 and 2.2. The following results are
known (cf. Theorems 3 and 4 in M. Csérgd, 1979).

TuEOREM 3.1. (Csérgé'), 1979). Let X, . ...,X,t (rL =1,2,...) be independent
random d-vectors on R< with distribution function F € %, and let t, be as in

(1.13). Then one can construct a probability space for X1, X,, . .. with a sequence

of Gaussian processes {T"(y); y € I¢ (d=2)}:,, defined as in (3.6), and a
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P{sup |t,(y)— T®() >n""*(Clogn+ x)logn}<Le™ (3.10)
2 . .

yeI

where C, L and A are positive absolute constants, v
(ii). for any A >0 there exists a constant C >0 such that

P{sup |1,(y) - T®@)|> Clog nY2n-"24 Dy < p=2, d=2,  (3.11)
yerd ) .

and . _
P{sup sup |k*,(y)~ T(y, k)| > CnD2éD log? ny < ™, d=2.
<k<n d
1<k<n yEI G.12)
CororLary 3.1. (3.10), (3.11), (3.12) in turn imply ‘
sup|4,(y) =~ T¥()| = O(n 2 log? n), (3.13)
yer ) ) :
sup|6,(y) — T®(y)| = O(n ™" Ylog nj*?), d=2, (3.14)
ye}'d
n2 sup sup [k*24(y)— T(y, k)| £ O(n~1@+og?n), d=2.
1sk=n yEId (315)
It follows from (3.6) and (3.7), or by (3.8) and (3.9), that for each n
{TO(y); y € I4(d = D} 2 (12T (y, n); y I (d = 2}
' (T, 1); YEI¢ (d=2)}. (3.16)

Define the Gaussian process {T'(y); y € I¢ (d =)} by
{T)yEI* (d=2}={T(, 1)y €I (d=>2),t=1}

d , _
E{B(y)—zB(la ""51’ ¥i 17-’1)Hy]’
e

jFEi

Y= y)EI (@d= 2)} - 3.17)

where {B(y); y € I* (d =2)} is a Brownian bridge. Thus T'(-) has mean zero
and covariance function p(-,-) of (3.8), and weak convergence of t, to the
Gaussian process T of (3.17) on the Skorohod space D[0, 1]¢ follows by (3.14)
say. Also, a Corollary 2.3 type weak convergence of [n-]"2t,4(-)/n*? to T(-,")
of (3.7) on D[0, 1]¢** follows by (3.15). ‘

Blum, Kiefer and Rosenblatt (1961) proposed the following Cramér—voh Mises

type test statistic for Hy of (1.10):

Gaussian-process{T(y,-1);y-€ 1 (d->2)-+=0}-defined-as-in-(3:7); on it so-that—
@) for all n and x we have

J .
Cua = f ,T2) [TdFy(x) = Ld 2(y)dy, d=2. (3.18)
R i=1
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One rejects Hp of (1.10) if for a given random sample Xj,..., X, on F the
computed value of C..q is too large for a given level of significance. -

Let I, be the distribution function of the rv G4, 1.€.,

Fa(x)=P{Ca<x}, 0<x<wx, d=2. (3.19)

Then, by (3.14) say, we have

lim [ 4(x)= P{Ci s x}:=T4(x), 0<x<o», d=2, (3.20)

n=>

where C; = [« TX(y)dy with {T(y); y € I (d =2)} as in (3.17).

There does not seem to be anything known about the exact distribution
function I',4 of the rv C,4 As to the speed of convergence in (3.20) via (3.10)
and (3.11) we get (cf. Theorem 1 in Cotterill and Cs6rgo, 1980)

._ O(n2 log? it d
Vpa:= sup lrn,d(x) - Fd(x)\ = {ng—ll(zd+2g)(1;l; n)¥2) ;f d

0<x <00

2,
3.

Vo

(3.21)

As far as we know the rates of convergence in (3.21) are the only ones available
so far. ‘

Concerning tables for the distribution function I, for d =2, Blum, Kiefer
and Rosenblatt (1961) obtained the characteristic function of the distribution
function I; of the rv C; and tabulated its distribution via numerical inversion
of the said characteristic function. The statistic C,, of (3.18) itself cannot be

. computed unless F € %, of Hy of (1.10) is completely "specified. Hoeffding

(1948), and Blum, Kiefer and Rosenblatt (1961) suggested, as critical region for
H, of (1.10) when it is viewed as a composite statistical hypothesis, large values
of ' ’

: C,,,d#f T2(x)dF,(x), d=2, (3.22)
R4 .
or those of
] ) - .
Cou = Ld T2(0) [1dFu(x), d=2. (3.23)

i=1

These two statistics are equivalent to C,, in that both converge in dis-
tribution to the rv C,. This was already noted by Blum, Kiefer and Rosenblatt
(1961), and for a detailed proof of this statement we refer to Section 4 in
Cotterill-and Csérgd_(1980).-Recently DeWet (1980).studied a version.of (3.23)

in the case of d =2 with some nonnegative weight functions multiplying the
integrand T2 of C,, Koziol and Nemec (1979) studied C,q of (3.22) and its
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performance (power properties) in testing for independence with bivariate
normal observations. '

As to.tables for the distribution function I’y for d =2, Cotterill and Csorg0 |

(1980, Section 4) find an expression for the characteristic function of the rv C,
d =2, via utilizing the representation of the stochastic process {T(y);yEI?
(d =2)} of (3.17) in terms of Brownian bridges. This in turn enables them to
find the first five cumulants of the rv C;, and using these in the Cornish—Fisher
asymptotic expansion, they tabulated its critical values for d =2,...,20 at the
usual’ levels of significance. These tables and details as to how to calculate
approximate critical values of the rv C, for all d =2 are given in Sections 5 and
6 of the said paper. Compared with the figures of Blum, Kiefer and Rosenblatt
(1961) for d = 2, the Cornish-Fisher approximation seems to work quite well. For
d >2 we do not know of any other tables for the rv Cu. ' '

Another approach to this problem was suggested by Deheuvels (1981), who
showed that the Gaussian process {T(y);y € I¢ (d =2)} of (3.17) which ap-
proximates the empirical process i, of (1.13) (cf. Theorem 3.1) can be decom-
posed into 2¢ — d — 1 independent Gaussian processes whose covariance func-
tions are of the same structure for all d =2 as that of T(y) for d = 2. If tables
for the Cramér-von Mises functionals of these 2¢ —d — 1 independent rv were
available, then one could test asymptotically independently whether there are
dependence relationships within each subset of the coordinates of X ERY,
d=2. ’

4. On strong and weak approximations of the quantile process

In this section we are going to give an up-to-date summary of strong and
weak invariance principles for. the quantile process p, of (1.20). For further
readings, references on this subject and its applications to statistics we refer to
Doksum (1974), Doksum and Sievers (1976), Doksum, Fenstad and Aaberge
(1977), Parzen (1979, 1980), Chapters 4, 5 in Csorgd and Révész (1981a),
Csérgd and Révész (1981b), M. Csbrgd (1981b,1983), and Csbrgd, Csorgd,
Horvéth and Révész (1982). Random variables are R'-valued throughout this
section. We start with comparing the general quantile process p, of (1.20) to its
corresponding uniform version, the uniform quantile process u, of (1.21) (cf.
also (1.22), and (1.14)—(1.19) for definitions used in this section).

Turorem 4.1 (Csorgd and Révész, 1978). Let X1, X,, ... be iid. rv with a’

continuous distribution function F and assume
() is twice differentiable on (a,b), where a=sup {x: F(x)=0}, b=
inf{x: F(x)= 1}, ~o<a <b s+,
(i) F'(x)= f(x)>0 on (a, b),
(iii) for some y >0 we have

sup y(d=y) ‘;(g(y» <7
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Then, with 8, = 25n"'log log n,

sup Jpa() ~ un(»)| £ O(n~17 log log n), BN CEY

Sy<y=<1-§,

If, in addition to (i), (i) and (iii), we also assume

(iv) A=1lim,, f(x) <o, B =lim,y; f(x) <<,

(v) one of (v,a) AnB>0, (v,B)if A= 0 (resp. B = 0) then f is nondecreas-
ing (resp. nonincreasing) on an interval to the nght of a (resp fo the left of b),
then, if (v, @) obtains,

sup [0 ()~ u0)|E O(n*Ploglog n), (42

O=sy=l

and if (v, B) obtains,

O(n~*?loglog n) it y<1,
sup |p.(y) = u.(y)| = { O(n"?(log log ny?) Sif y=1,
O=y=1 O(n "*(log log n)(log n)(“s)(’/‘l)) if y>1,

@43)
where € >0 is arbitrary, and v is as in (iii).
The above theorem also implies approximatioris of p, in terms of appropriate

sequences of Brownian bridges {B,(y),0<y =<1} (cf Csorgd and Révész, 1978;
Section 3.1 in M. Cs6rgd, 1983) due to ’

THEOREM 4.2 (Cs6rgo and Révész, 1975c, 1978). For an ii.d. sequence of rv

X, X, . .. there exists a probability space with a sequence of Brownian bridges
{B,} on it such that .

sup |u,(y)~ B, (y)i

Osy=<l

"O(n~"log n). 4.4)
Naturally, from the above-two theorems it fol_lows'that

p.() 2 B() | o : (4.5)

~in Skorohod’s space D[0, 1].

Let g(y)=0 be a continuous function on [0, 1] which is strictly positive on
(0, 1), nondecreasing on [0, %], and symmetric about y =3, and let

' 12 .
h() = (y(1-y)loglog ), O0<ys<1. B L)

PACEES Y/

Define also g(y) = q(y)/ h(y) so that

Invariance principles for empirical processes - 451

) = q)h(y)~> as y=0. ' 4

Then g(y)= g(1— y) by definition. -
Shorack (1979) showed that with g and g as above the COl’ldlthn 4.7) is
sufficient for O’Reilly’s (1974) sufficient condition on ¢ for

sup ()= B.(»)/g(y) >0 (4.8)

H(n+1)sy<n/(n+1)

to be true with the Brownian bridges B, of (4.4). For an up-to-date discussion

of O’Reilly’s (1974) theorems in the light of strong approximations we refer to -

Chapter V in M. Cs6rgé (1983). Similar work to that of O’Reilly’s was done
earlier by Chibisov (1964), and Pyke and Shorack (1968). S. Csérgo (1982)
showed that on assuming conditions (i), (ii), (iii), (iv) and (v) of Theorem 4.1
and the condition (4.7), we have

sup  |(oa(y) = B.(y))q(»)| 0 ’ 4.9)

1/(n+1)<sy=n/(n+1)

with B, as in (4.4), provided that y of condition (iii) is less than 1. Otherwise,
i.e., if in (iii) y =1, growth conditions had to be introduced for the function
G()=inf{g(y):0<y=<r}ast] 0. M. Csorgo (1983, Theorem 5.1.1) verified
(4.9) only under the conditions (i), (ii), (iii) of Theorem 4.1 and (4.7). Stute
(1982) proved (4.9) with ¢ =1 under (4.7) and only the conditions (iv), (v) of
Theorem 4.1 as follows: we have (4.9) with g =1 if (v, @) obtains, or if (v, B)
obtains, provided that in the latter case both

gAQUINIFQ() >= asy—0" I (4.10)'_

and (symmetrically)

gF(QU-yYAf(QU-y)= asy—0. (4.11)

for each A =1 (note that in Stute’s (1982) case g = 1/h on account of g=1).
Shorack (1982) announced the latter result with g and g as in (4.7) (for a proof
we may, for example, refer to M. Csdrgd, 1983, Corollary 5.3.2). All the
afore-mentioned results concerning (4.9) are contained in

TreOREM 4.3 (M. Csdrgo, 1983, Theorem 5.3.1). Let a, b be as in Theorem 4.1
and assume that F has a continuous density function F' = f that is positive on
(@, b), the support of F. Let q be any given O’Reilly weight function with 4.7.
Then, as n -, with the sequence of Brownian bridges {B,} of (4.4) we have

(4.9) under (4.7), provided that with g of the latter the following assumption_also

holds true:
For any given 0<n <1 and & >0 there exist 0<c <1 and ny such that
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fQGY) 1 _
d {Wfi‘)i’y& WP H(Q6,) 20) }\

and similarly

Q)
P{l—csiiﬁnm P76, 80) } <7 (4.12)

for all n 2 ny, where U,(y) Ay <8,, <U,(y)Vvy.

All the afore quoted results concerning (4.9) can be put in terms of weak
convergence on D0, 1], provided we redefine u, (and hence also p,) to be
equal to zero on [0, 1/(n + 1)) and (n/(n + 1), 1].

The sufficient conditions of Theorem 4.3 (cf. (4.12)) for the weak ap-
proximation of p, on [1/(n+ 1), n/(n +1)] are nearly necessary as well. For
convenience, a weight function g will be called an O’Reilly weight function
from now on if g = g/h satisfies (4.7). We have

THEOREM 4.4 (Csorg0, Csdrgd, Horvath and Révész, 1982). Let a, b be as in
Theorem 4.1 and assume that F has a continuous density function F' = f that is
positive on (a, b), the support of F. If for any given g of an O’Reilly weight

- function g we have that the rv

(f(o(-,;)) /#@0u) /(3 a0z 1og ny
<f<Q<n; 1>>/f(Q(B(n—l)/n,n))>/g<%> (log log n)?

is, contrary to (4.12), bounded away from zero in probability as n — , then the rv
of (4.9) is also bounded away from zero in probability for any sequence of
Brownian brldges {B.,}. ‘

(4.13)

As to the problem of weak convergence of p,/q in sup-norm metric over
[0, 1], we first observe that for a Brownian bndge B

sup [B(y)g(y) >0 and  sup IB(y)/q(y)|—>0
O<ysl/n 1-l/nsy<1. .

as n—>= for any O'Reilly weight function g. Hence the only way for p./q to

converge weakly to B/q over [0, 1] in sup-norm metric is that we have the latter

two statements holding true also with p, replacing B in them. In this context

we have

" THEOREM 4.5 (Csdrgd, Csorgd, Horvith and Révész, 1982). Let a, b be as in

 Theorem 4.1 and assume that F has a continuous density function F' = f that is
positive on (a, b), the support of F. Let q be any given O’Reilly weight function
so that as n —®
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2 f(QEy) ¥
o Se“? a7 Q6 "

n FQOY) ® (4.14)
oy E 40V F(QE) o
where 0,,°is as in (4.12). Then, as n =,
sup |o.()/g()| >0, sup o (»)/g(y) 0. (4.15)

Osy<l/n (n—1)/n=y=l

If on the other hand, for the given q and g there exists a sequence of rv
. < 1/n so that the rv

n-l/l(f (Q(m))/f (Q(@,n,n)))/ q(7.), or
n T P(FQQA — 7))/ f(Q(B1-r, )4 (74)

(4.16)

with Ta A Uy <6, p S 7,V Uin and (L= 7)) A Upin < 01z n s(A-7)v U is
bounded away from zero in probabzlzty as n—>, then so "will be also the rv of
4.15).

We now mention some implications (examples) of interest which follow from
Theorems 4.3, 4.4 and 4.5: '

(1) We have already noted that Theorem 4.3 implies the Stute (1982)-
Shorack (1982) result: (4.9) holds true under the conditions (iv) and (v) of
Theorem 4.1 if (v, ) obtains, or if (v, 8) obtains and (4.10), (4.11) are also
assumed. If (v, @) obtains then F has finite support and hence (4.9) holds
immediately. If (v, B) obtains and, say, A of (iv)is zero, then for small enough c we
have

fQe) 1 _ o fQO) 1
voiree o QG 8D) ~ yumniree QO £0)

for some A =1 and all n = 1 with probability arbitrarily near to one by Remark
1 in Wellner (1978). Hence (4.17) implies the first condition of (4.12) and the
Stute (1982)-Shorack (1982) theorem follows from Theorem 4.3.

() (Taken from Csorgd, Csorgd, Horvath and Révész, 1982). For any
O’Reilly weight function g -such that g(y)—0 we have supo<y<y» 1/g(y) =
Hence in case of the uniform quantile process u, we can choose {r,} of (4. 16)
such that for any given constant K >0 we have (1/n*?q(,)) > K. Consequently,
for any g with g(0) = 0 and for any sequence of Brownian bridges {B,} we have

pisup |(u(y)— Ba(y))/q(y) ==} =1.

O=<y=l1

(3) (Taken from Cs6rgd, Csérgo, Horvath and Révész, 1982). As to the
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problem of having

sup [(on(y) = B.OWGON >0 @17)

O=<y=<1

“with B, as in (4.4), we note that choosing the g'function of g appropriately,
for some specific distributions (4.17) might turn out to be true. For ex-
ample in case of F(x)=1-e* x=0, we may choose g(y)=
Q(y)a(y)/(loglog(1/1~ y))'?, where now Q(y) =log(1/(1-y)), a(y)>> as y~>
1, and then (4.17) will hold true. Naturally a similar statement holds true
symmetrically for F(x)=1—-¢* x=<0. We note also that with the same g
function as above, (4.17) will hold true also for the Weibull distribution.

(4) As mentioned already, M. Csdrgd (1983, Theorem 5.1.1) verified (4.9)
only under.the conditions (i), (ii), (iii) of Theorem 4.1, and noted also
that Theorem 4.3 also contained the latter result. In order to see this, consider

sup sup

“u (U(y)vy 1- (U(y)Ay)>
1/(n+1)§ysn/(n+1) éy,n f(Q(ey,n)) Y(n+1)ysy<n/(n+1)

U:p)ny 1= (U v )
(4.18)

where vy is as in (iii) of Theorem 4.1, and the inequality is by Lemma 1 in
Csorgo and Révész (1978). Using now Lemma 2 in Wellner (1978) on the right
hand side rv of the 1nequa11ty of (4.18) it follows (cf. e.g., (2.8) in M. Csérgd,
1983) that

T P FOON S Nle "
e {1,(n+1>i‘35n/(,,+1) i“pf@(eyn))”} (*419)

“Hence condition (4.12) of Theorem 4.3 is satisfied-and consequently (4.9) holds
- true: with.'any O’Reilly weight function g under conditions (i), (ii), (iii) of
Theorem. 4:1. o
(5) (Taken from.Csérgd, Csdrgo, Horvath and Révész, 1982). Given the
conditions (i),:(ii)-of Theorem 4.1 and replacing its condition (iii) by requiring
the existence of the. limits (ef. (vi) of Theorem 4.7)

£0 w0

'

im » 1QO) _ m (1= ) £QO) _
SRS CIO N O

where y; and.y, are real numbers, then it can be.shown (cf. Theorem 3.A in
Parzen (1980), or page 7 of Seneta (1976), or Mason (1982)) that we have

f(Q(y)) =ynLy(y) as ylO0,

F(f)(u\\—ﬂ_ \77T (1 D)—as ‘,4]\1

(4.205

Aoy )—as—y

>

where L, and L, are slowly varying functions at 0 resp. at 1. If we simply
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assume the forms of (4.20) for f(Q) on the tails, then these are weaker
assumptions on f than that of (iii), for then we do not require the existence of f'
on (a, b), the support of F. So let us assume that f(Q) is as in (4.20) on the tails,
and consider its first statement (regarding the second one, similar conclusions
will hold true). It follows from Corollary on page 274 in Feller (1966) that for a
slowly varying function L; we have: for any & >0 there exist some positive
constants K;, K, and 0 < y,<1 such that“ we have

Kiyy* <Li(y)< Ky forall0<y=y,. © 421
Consider now (cf. first statement of (4.20) with y;=7)

QO) 1 _ oo (L) Lo L

su su = _ ,
l/(n+1)£y<c oy'"p f(Q (oy,'l)) q(y) 1/("+1)§?§¢ 8 Ll(ey,n) g(y)
| YKy 1
= 'su su (—X—> —ZXT—
1/(n+1)gy<c 0 P 0)%" ) Kloy,n g(y)

=- L>7+€&LL (4.22
b Sup(@m Kiy* g(y)’ (422

U(w+D<y<c 6,

It follows from (2 8) in M. Csérgd (1983) that for both y+¢> 0 and y+e<0
we have

P +e 3y s o ’
limlimvP{ sup- ,sup (—L>7 >a}=0. ' : »(4.23)

a—>% p—>wo 0)’ n

1(ntl)sy<c 0

Hence choosmg g(y)=y?, 6 >0 and then & >0 of (4.21) so that & < 5/2 then c

the first condition of (4.12) holds true by (4.22) and (4.23) combined. This
means that having assumed (4.20), which is weaker than (i), (ii), (iii) of

Theorem 4.1 combined, the statement of (4.9) holds only with g(y) y =8 for e

8 >0, arbitrary otherwise (cf. the last sentence of our example @))..

(6) We note that the conditions discussed in (4) and (5) for the Vahdlty of

(4.9) cannot, in general insure also the validity of (4.17). Namely we have the
following (Csorgd, Csorgo, Horvath and Révész, 1982) :

OBSERVATION. If limyoo f(Q(y))/ q(y) = or hmy->1 f (O(y))/ q(y) o, then
P{OSUPl 1) gl = °°} 1. ' (4 24) -

Next we mention some new strong approximations of p,. First we recall that

- conditions (i), (ii), (iii) of Theorem 4.1 imply (4.1), and given also the tail

momtomclty assumptions of (iv), (v) we have also (4.2) and (4.3). We have just

seen in Examples (4) and (5) that conditions (i), (ii), (iii) of Theorem 4.1 alone,
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or the somewhat weaker assumptions of (4.20) for the tail behaviour of f(Q),
o imply (4.9) (in (4) without any further restrictions on g, while in (5) with g(y) of
SRS the form y~? (6 > 0) only). As to the possibility of extending the statement of
il ‘ 1 . (4.1) over a wider range than [§,, 1 - §,], 8, = 25n™" log log n, but using only the
" i assumptions (i), (ii), (iii) of Theorem 4.1 and not those of its conditions (iv), (v)
which, when combined with (i), (ii), (iii), made (4.2) and (4.3) possible, we have

I THEOREM 4.6 (Csorgd, Csorgd, Horvath and Révész, 1982). Assume the con-
. ditions (i), (ii), (iii) of Theorem 4.1. Then

i | as. [O(n2(log log n)*7) if y<1,
o IKHQZZ‘EM,.H) r )= 1600 { 51 2(1g log myiog 7)*-) if =1,
4.25)

where € >0 is arbitrary, and vy is as in condition (iii).

JARE ' It is clear from Theorem 4.6 that, when proving (4.2) and (4.3) the conditions
(iv) and (v) of Theorem 4.1 come into play only because of the tail regions
[0,1/(n + 1)), (n/(n + 1), 1]. Having replaced &, of (1.8) by 1/(n + 1) in (4.25), we
have only paid the price of slightly weakened rates of convergence. While they
render (4.2) and (4.3) true, the extra conditions (iv) and (v) of Theorem 4.1 are

B somewhat disjoint from that of (iii). Next we modify the latter somewhat for
L t ‘ the sake of seeking further insight into the effect of the tail behaviour of the

| density-quantile function f(Q) on a statment like (4.25). We are going to
: formulate this over the interval [0, 2] only and note that similar statements can
TR ' be made over [3, 1].

\ e HEOREM s6rgd, Csdrgo, Horvath and Révész, ssume the con-
| T 47 (C Csa H h and R 1982). A h

EERL S ditions (i), (i), (ili) of Theorem 4.1 and, instead of its conditions (1v) ), we
i It assume now that
| ‘

d

Then, if yv1>0, we habe 4.3), and if v, >0 we have

sup  |0a(¥)— s (y) —=0 asn->o, (4.26)

‘ ‘ il
i! Rk nasy=1p

! ‘ | | 8 provided that a <1+1/2|y)). On the other hand, when y,<0, for a>
: { ‘ : . 1+ 1/2|y1l) there exists positive constants K = K(a) and A = A(a) such that

li [ n—>w n"t=y=l/2

T ‘ timr = —sup—iprty)t =K —ass: @27
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One of the interesting consequences of Theorem 4.1 is the following law of
iterated logarithm (LIL) for p,: :

— 2 12 a.s.
_~ = 4.2
lm (1og10g )" sup [pa ()| 1. . (4.28)

O=y=1

An interesting consequence of (4.26) of Theorem 4.7 is that it throws new
light on the latter LIL. We have

CoroLLARY 4.1 (Csorgd, Csorgd, Horvath and Révész, 1982). Assume the
conditions (i), (ii), (iii) of Theorem 4.1 and condition (vi) of Theorem 4.7. Then
if y1>0 we have (4.28), and if 1 <0 we have

— 2 1/2 ) as. { 1 lf a<l+ 1/(2|71D )
| s (1 429
BE (log log n) n‘aS:yIilﬂ o) © if @>1+1/Q2y). 429)

Proor. We have lim,... (2/log log n)? SUps-eaya [Un ()] a8y

Now the first statement of (4.29) follows from the latter combined with (4.26).
The second statement of (4.29) is by (4.17).

We note that Corollary 4.1 implies the non existence of LIL for p, over [0, 1]
under (1), (i), (iii) and (vi) if y; <0. On the other hand it follows from Theorem
3 in Mason (1982) that if we replace the weight function f(Q) in n‘l"zp by y*,
e >0, then

lim sup y*[Qu(y)— Q)0

n—> 0<y<l1/2

for every £ >0, given the conditions (i), (ii), (iii) and (vi), i.e., under the latter
conditions we always have a Mason type Glivenko—Cantelli theorem for
(Q.(y)— QB)).

Summarizing the main features of the problem of strong approximation of p,
by u, over [0, 1] in general, we have seen so far that under the conditions (i),
(i), (i), (iv), (v) of Theorem 4.1 we have (4.2) and (4.3), on dropping the
conditions (iv) and (v) we have (4.25), and when we replace the conditions (iv),
(v) by that of (vi) we have (4.26) and (4.27). Now we give an example which will -
amount to saying that for results like (4.2) and (4.3) neither the conditions (iv),
(v), nor the condition (vi) are necessary. This example is due to Parzen (1979,
page 116). Continuing the numbering of examples of this section, we now have

(7) Parzen’s example (1979) (Result of (4.32) is quoted from Csdrgod, Csorgd,
Horvéth and Révész, 1982): Let

1-F(x)=exp(-x—Csinx), x=0, 0.5<C<1.

Letting x = Q(y) 0<y=<1) we get
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—log(1-y)= Q(y)+ Csin Q(y)

and
fQY)) = (1—-y)1+ Ccos Qy))-
Hence .
Q) <llog(l-y)+C (4.30)
and '
- flRHN=1-y)A+ ). ' (4.31)
Also '

Q) = —(1- y)(1+ Ccos Q)f+ Csin Q).

Clearly then

o If(x) _ o) __1
swp F(1 - Fe) £E1= sup ya-n B,

i.e., conditions (i), (ii), (iii) of Theorem 4.1 are satisfied. Hence by Theorem 4.6
we have (4.25) with y =1/(1— C). On the other hand, as y—>1, Q(y)—> = and
f(Q(y)) oscillates. Hence conditions (1v) (v) of Theorem 4.1 are not satisfied.
Also, as y—1,

F(QG))
A=Y706)

oscillates, i.e., the right tail version limit requirement of condition (vi) is also not
satisfied. Nevertheless in case of this example we have

sup |p.(y) — u.(y)| = O(n~(log log n)@-O(log n)@+CA-C))  (4.32)

O=sy=l1

where C € (0.5, 1) as above. .

For a discussion of Bahadur’s (1966) representation of sample quantiles and
extension of Kiefer’s (1970) theory of deviations between the sample quantile
and empirical processes in the light of Theorem 4.1, we refer to Section 5.2 in
Csorgd and Révész (1981a) and Chapter VI in M. Csdrgd (1983).
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