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Proor. By Corollary 4.1 the set function v(-) = sup{P(-): P € 2} is a 2-alternating
capacity. In order to prove that 2 is generated by v, it is, by Lemma 2.2, sufficient to show

that for every monotone sequence of sets B; C By C --- C B, there is a measure P € &

such that P(B;) = v(B;). Thus let B; = {w1, +-+, w;} for i = 1, ..., n. As before, the
measure @ is defined by the conditions @ (B;) = v(B;) fori =1, -- -, n. Let (Pg, @) form
a least informative binary experiment in 2 X {@}. Arguing as in Lemma 4.1, we assume by
contradiction that Pg # . This implies that there exists a € (0, 1) such that the set A,
= {w:aPy(w) < (1 — a)@(w)} satisfies conditions (i) and (ii). Since v is a 2-alternating
capacity, Lemma 2.1 implies @(A4.) < v(4,). Moreover, since v is the upper probability of
P, there is P € Zsuch that P(A,) > Pg(A.). For B € (0, 1) and B sufficiently close to 1 we
obtain T,[BPe + (1 — B)P, Q] > T.(Po, Q). Thus (Pg, @) cannot be least informative in
2 X {Q}. This completes the argument. 0

Let  be a Polish space, & its Borel o-field, and let .# stand for the set of all probability
measures on 4. The main result of this section, stated below, is a consequence of Lemma
2.3 and Theorem 4.1.

THEOREM 4.2. Let 2 C M be convex and weakly compact. If for every @ € M and
finite subfield o/ C % there exists a least informative binary experiment in P|sf X
{Q} | « then P is generated by a 2-alternating capacity. 0 i :
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Let Yy, Yo, -+, Y. (n=1,2, ...) be independent random variables
(r.v.’s) uniformly distributed over the d-dimensional unit cube, and let a,(-)
be the empirical process based on this sequence of random samples. Let V,, ¢
() be the distribution function of the Cramér-von Mises functional of (),
and define Vu(-) = liMnow Va,a(:), Ang = SUPo<z<on | Vi,a (%) — Va(x)|. We
deduce that A,,q = O(n™"), d = 1, and calculate also the “usual” levels of
significance of the distribution function Vy(-).for d = 2 to 50, using expansion
methods. Previously these were known only for d = 1, 2, 3. ‘

1. Introduction. Let Yi, .-, Y, be independent random variables (r.v.’s) uniformly
distributed over the d-dimensional unit cube I¢ (d = 1), and let E,( ¥) be the empirical
distribution function of Y7, - - - , Yy, i.e, fory = (1, -+, ya) EI E, () is the proportion
of i = (Y1, -3 Yja),j=1, -+-, n, whose components are less than or equal to the
corresponding components of y, conveniently written as

(1.1) E.(y) = En(y1, +++ , ¥a) = 07 Rer [Tt Loy (Y0,
where, for real numbers a, u € [0, 1],
o 1 fu=<a
1.2 )=

The corresponding uniform empirical process is
(1.3) an(y) =n'2{E.(y) =\»)}, ye€If, d=1,

where A(y) = II%; y;.

This process occurs in the context of continuous distribution functions F on R in
the following way. Let & be the class of continuous distribution functions on d-dimensional
Euclidean space R (d = 1), and let % be the subclass consisting of every member of &
which is a product of its associated one-dimensional marginal distribution functions. Let

+ Xy, -+, X, be independent random d-vectors with a common distribution function F &

Z, aI;d let F;,(x) be the empirical distribution of X1, ..., X,. That is, for x = (x5, + -+ , x4)
€ R°,

(1.4) Folx) = Folx, -+, x3) =n"" 30y [ T, 1 (X5),

where, for all real numbers ¢ and x,
1 fusa
1.5 e, = .

Now consider the empirical process

(1.6) Bn(x) =n'2{Fo(x) —F(x)}, x= (%, --,%)ER? d=1

Let y; = F;(x:) be the ith marginal distribution of F € & and let F;(.) be its inverse.
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Now if F € %, then
Bn@) = n*{Fo(x) = [[fs Fi(x:)} = 0V (Fu(FT (), -+ -, FZ' (3a)) =M ()}
= R4 En(y) = A} = e (?), €Y dzl

Therefore, if F € %, then B, is distribution free.
As to a,(+), the following results are known.

(1.7
y=0n, -

THEOREM A. Let X, -+, X, (n=1, 2, ...) be independent random d-vectors with a
commeon distribution function F € % and let o, (-) be as in (1.7). Then one can construct
a probability space (Q, o, P) with {a.(y);y €EI%d=1),n=1,2, ---} and a sequence of
Brownian bridges {B.(y); y € I? (d = 1)} on the space so that for any u > 0 there exist

a C > 0 such that (cf. Csorgd and Révész, 1975) for each n
' 1

(1.8) P{supyert| an(y) — Ba(y)] > Cllog n)*’n 5@} < n*, dz 1
Further, if d = 2, then (cf. Tusnady, 1977) for all n and x
(1.9) P{supyer? | 0x(y) — Bn(y)| > n~"*(Clog n + x)log n} < Le™%,

where C, L, \ are positive absolute constants.

For illuminating comments concerning rates of approximation in higher dimensions, we
refer to Tusnady (1977b), and for best possible rates of approximation in case of d = 1, we
refer to Komlés, Major and Tusnady (1975), and Tusnidy (1977a). We recall in passing
that a Brownian bridge {B(y); y € I’} is a separable Gaussian process with EB(y) = 0
and EB (x)B(y) = [ (x: A i) = [T x) [ ). :

Given F € %, we are interested in the asymptotic distribution of the multiyariate
Cramér-von Mises statistic o

(1.10) Wi a= f B2(x) T[¥1 dF:(x:) =J’ an(y) [I#1 dys, d=1,

’ R4 14
where B.(x), an(y), y; = F;(x;) are as in (1.7). Naturally, say by (1.8), we have for d = 1
that : :

@y B(en(-)) —o R (B(-)),

for every continuous functional A on the space of real valued functions on I 4 endowed with
the supremum topology, and whence also

B*(y) dy =-g)f Bi(y)dy= W), d=1L1

rd

(112) W24, Wi= J

Id

Here, and in what follows, dy stands for [[&: dy;. For further results concerning the
distance of W2 ; and W%(n), we refer to Corollary 1 in Csérgé (1979).

‘Let Vi,,a(x) be the distribution function of W2 ; of (1.10) and let V,(x) be that of W%

of (1.12). Then (1.12) reads
(1.13) limpw P{WZia=<x} =lmpw Va,alx) = Valx), d=1

Put Ay, = SUPo<r<w | Vin,a(x) — Va(x)|. Then we have the following. ™
THEOREM B (Gotze, 1979). A..1= O(n™"") for any ¢ > 0.

Earlier; S. Csorgé (1976) showed that A,; = O(n"!log n) and, on the basis of his
complete asymptotic expansion for the Laplace transform of W2 1, he conjectured that
A, 1 is of order 1/n. This conjecture was further studied by S. Csérgé and L. Staché (1979)
by giving 4 recursion formula for the exact distribution function V., of the r.v. W2.. They
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prove that the latter is [n/2] times continuously differentiable, and reduce the proble;
of proving A,; = O(1/n) to that of showing the boundedness of the sequen(
{J /32| ViR ()| dx}nzes, where V9 stands for the 49th derivative of V,, ;. Their recursic
formula is, in principle, also applicable to tabulating V;, , exactly. Actually Gétze (197
proved A,: = O(n~Y) without explicitly stating it: his Remark 2.6 holds for W2, '
n7t Yo A, yp) with A(x, y) = 274 x® + 90 — (x v/ y) + % (cf. Example 2.13 in Gétz'
1979), and hence (2.5) of Theorem 2.3 in Gétze (1979) implies ‘

j
;
i
i

COoROLLARY 1. A,1=0(n™").

Naturally, much work has already been done to compile tables for V,, ;. A survey an
comparison of these can be found in Knott (1974), whose results prove to be the mos
accurate so far. All these results and tables are based on some kind of an approximation ¢
Va1. An extensive tabulation of Vi (cf: (1.13)) can be found in the recent monograph ¢
Martynov (1978), where the theory and applications of a wide range of univariate Cramé;
von Mises type statistics are surveyed.

As to higher dimensions, d = 2, no analytic results appear to be known about the exac
distribution of V; a4 (cf. (1.13)). The characteristic function of V (cf. (1.13)) is known (c
Dugue, 1969; Durbin, 1970), and also it is known that (cf. Anderson and Darling, 195!
Rosenblatt, 1952) W% may be written in the form :

(L14) Wi=YiapiXi, d=1,

where the X; are independent standard normal random variables and the g, are th
eigenvalues of the integral equation

(1.15) - f E{B(x1)B(x2)} f (%) dxz = pf (1)
Id X

with eigenfunctions f and kernel EB (x,)B (x.). Whence, in order to tabulate Vald=2
just as in the case of V; (cf. Durbin and Knott, 1972) one may try working with a numerics
inversion of the characteristic function of V,, or one may try to calculate a number of th
necessary eigenvalues for (1.14). Unfortunately, both methods turn out to be quite difficul
~ to follow directly. Durbin (1970) succeeded in solving the latter problem for d = 2, as di
Krivyakova, Martynov and Tyurin (1977) for d = 3. In a similar vein, due to (1.14), oni
could also try to approximate critical values of the distribution function V; via a Zolotare'
(1961) or Hoeffding (1964) type tail expansion of the latter. Unfortunately, this route als<§
requires a number of the eigenvalues for (1.14) and, as just noted, the calculation of thes:
is difficult in higher dimensions.
Using the characteristic function of Dugue (1969), in this paper we obtain a recursiv
equation for the cumulants of W%, and then use the Cornish-Fisher asymptotic expansior
to calculate its critical values for d =2, 3, - - - , 50 at various levels of rejection probabilities

These critical values are within 3% of Durbin’s values for d = 2 and of those of Krivyakova;

Martynov and Tyurin for d = 3. As far as we know, there exist no other tables for d = 4i
Details, as to how to calculate approximate significance points for all d > 1 and tables foi
the “usual” levels of significance for d = 2 to 50, are given in Section 3. Proofs for the
statements of the latter are given in Section 4.

As' to the question of convergence of the Cornish-Fisher expansion for the distribution
1 -————fu.nctton-oifthe"rN.—'W%TWe‘do‘ndt‘h‘aVE'mbre‘evide’nb"e'th'an the good numerical agreemen
with Durbin (1970) for d = 2 and with Krivyakova, Martynov and Tyurin (1977) for d =

3 (cf. Rema}rk 3.2 and Table 1 for details). In addition, we note also that errors in ou
tables for higher dimensions should be further reduced due to the fact that the cumulant;
K, of W7 are O(e™® (cf. Corollary 7 and Remark ‘3.2). Therefore our tables should be

quite accurate for all the dimensions calculated, indeed improving as d increases. Giver|

that other me:*thods did not work for us, and that no other tables seem to be available fo:
d = 4, we decided to proceed with the rigorous calculation of cumulants of V; for the saké
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of the Cornish-Fisher formal expansion of the latter, having observed the good agreement

w1th existing tables for d = 2 and 3.

Since nothing appears to be known about the exact distribution function V, 4 for d =
2; it is desirable to have an analogue of Corollary 1 for A, s whend =2. A complete solution
to this problem is again contained in Gétze (1979), as outlined in our next section.

‘2. On Rates of Convergence for V, «(d = 2). As a point of reference here and for
further use in the sequel, we first quote the following.

TuEOREM C (Dugue, 1969). The characteristic function ¢(t) of the r.v. Wid=1)is

.. d -1/2
(21) o) =FEexp (itW3) = limn— E exp (itW3,q) = {l2d 1_@ Cd(t)} ) dz1,

wfzere . .
(2.2) C1(t) = cos{(2it)*?},
and
) t
(?-3) . Ca(t) =I/a Cd—1{6.—_—1/2)2?}, d=2.

COROLLARY 2 (following Durbin, 1970). For the characteristic function ¢(t) of the
r.v. W% (d = 1) we also have the following forms

(2:4) ety 2= —2d% Ca(t), u=2it(d=1),

o [y 2
U G-wi)
and Ca(t) (d = 2) is as in (2.3). Whence

2.6) : 6~2t) = P()S(?)

where

where

(2.5) Ci(t) =

: 2it
<o [5Gyl - , d=1,
=1 H""_l{l =% (Ja— %)sz"}
—W e a= W™ 1d
)= Zjl_ 2141—1 %t ) = —Zalog P(t).
{1 ( ; 1/2)2 (]d — 1/2)2 2d
PROOF By (2.2) we have (2.5), since (cf. formula (4.3. 90) in Abramowitz and Stegun,
- 1964) o

2it
(2:7) cos{(2it) %} = H;?=1{ 1- T]_—li/z)_zﬂ'—z}

By (2.3) and differentiation we also get (2.4).

“Tt follows from Theorem 2.9 and the calculations of Example (2.13) of Gotze (1979) that
not only does one have Corollary 1, but also that asymptotic expansmns of arbitrary order
of V1 exist; cf. also S. Csérgd (1976). Commenting on an earlier version of our paper, Dr.

‘Gétze (private correspondence, 1980) pointed out to us that the same is true for the o

distribution function V, 4 (d = 2) (cf. (1.13)). Namely for W24 (d = 2), whose limit in
distribution is (1.14), it follows from the just-quoted result of Dugue (1969) that infinitely
many pi* of the latter are nonzero and hence (2.4) of Theorem 2.9 in Gotze (1979) is
satisfied. As to the remaining smoothness condition (2.8) of Theorem 2.9 in Gédtze (1979),
one has

(2.8) W2 a=n" Y m h(xi, )
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where
Az, y) =I5 {1 = (Vv 2p)} = [[5=1 270 = x3) = [[§-1 271 — y;) +37%

Since x — A (x, y) is differentiable if x, 5 y, for every p and fulfills the conditions of Lemma
2.2 of Bhattacharya and Ghosh (1978), it follows from this lemma that

Lim supjg>cso

f exp{ith(x,¥)} dx; -+ dxg | <1—-86, ~&§>0.
Id

for every y € I% and condition (2.8) of Theorem 2.9 in Gétze (1979) also follows, resulting
in an asymptotic expansion of arbitrary order for V, 4.

This result that there exist asymptotic expansions of arbitrary order of V, 4 is, at
present, of theoretical interest only, since there exist so far no expressions for the limiting
distribution V;of V,, 4 and for its first few approximations in terms of power series (defining
the distribution function) instead of their characteristic functions. Hence it is of interest to
note that Remark 2.6 in Gotze (1979) holds also for z(x, y) of (2.8) above, and hence (2.5)
of Theorem 2.3 in Gétze (1979) also implies the following.

COROLLARY 3. Let A,,s (d=1) be as.in Section 1. Then

An,d = O(n_l), d =1.

3. Calculation of the Critical Value of the d-Dimensional Cramér-von Mises
Distribution. Our first goal is to calculate the cumulants of the r.v. W5 (cf. (1.12)). Our
starting point is Theorem C via its Corollary 1. To obtain the required cumulants, we need
the following lemma.

LEMMA 1. For

d
|u|< (g) , with u=2it, — % log Cy(t) =Yoo LE.1u™,

where
2 2n 2 2n
Lo=Y5a {(j—%)?a} "= (;) S +2/) = (;) A(2n),

and A(m) is a tabulated function (cf., e.g., formula (23.2.20) in Abramouwitz and Stegun,
1964).

As mentioned in the Introduction, all the required proofs of this section are given in
Section 4.

THEOREM 1. Using the above nomenclature, the cumulant function log ¢(t) of the
r.v. W% is the solution of the differential equation:

2 3‘.’; log 6(8) = Z:(8) ~ Z:(8)/Zs(t),

where

ZAt)=N=_o Le " d it 7\¢
) =Dmmo-Lrsatt™—Zs(t) = T aty—u=2it-ful<{3] .

COROLLARY 4. The characteristic function ¢(t) of the r.v. W% is given by

n d
o7Ht) =2%Y 5 L,‘f+1u"exp<—.2$=1 L;'f—u—>, u=2it, |ul< (g) .

We note that the above series converge rapidly, so it is easy to calculate the values of
¢(t) in the manner indicated.
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COROLLARY 5. The numerical values of the cumulants K, of the r.v. W% are calcu-
lated, in sequence, from the system of equations
Kn = 2n_1(Zn - Xn+1);
where

Zn+1 = n!Lg+1, Xn+2 = Zn+2 - Z}L=1v (7) Xn+2—ij+1}/Z1'

COROLLARY 6. The numerical values of the moments M, of ther.v. W% are calculated,
in sequence, from the system of equations

M, =2"P, 1,
where

2Ppi2 = Quiz+ 2 j=1 <;Z> Qni2-iPjs1, Qni1=Zn—Xpn
and Z,, X, are defined in Corollary 5.

COROLLARY 7. The mean pq and the variance o3 of the r.v. W% are

5\ ~a
pa=2"9-38"% 3= 2.3-”‘{2-‘1— 2<§) + 3—d}.

CoroLLarY 8. From Corollary 7, as d increases, us and o2 tend to zero and the V,
distribution (cf. (1.24)) concentrates as a unit mass at the origin.

CoROLLARY 9. From Corollary 5 and using the Cornish-Fisher asymptotic expansion,
. (cf.,, e.g., Abramowitz and Stegun, 1964 (26.2.49)) a table of critical values of V3 is
calculated and summarized in Table 1.

REMARK 3.1. The critical values of Table 1 were calculated by digital computer, using
the recursion formula of Corollary 5 to calculate the first 6 cumulants, and then using

TasLE 1.
Critical Values for d-Dimensional Cramér-Von Mises Statistic

Probability of Exceeding Critical Value
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these in the Cornish-Fisher asymptotic expansion. The coefficients of the latter are
tabulated in Abramowitz and Stegun (1964, (26.2.51)). The computer program is fairly
brief, and is available for us upon request. '

REMARK 3.2. For the two-dimensional case, d = 2, the critical values for the Vg
distribution are compared with those calculated by Durbin (1970) as follows. ;

i

CRITICAL VALUES

P Durbin Present work Error %
.10 0.25533 0.25585 .00052 0.20365
.05 - 032611 0.33088 .00477 1.46269
.01 0.50166 : 0.51471 .01305 2.60136
005 0.58 app. ©0.5940 0140 24187
.001 0.77 app. 0.7705 .0005 0.065
.0005 0.85 app. 0.8414 .0086 —1.012

The error is attributed to the use of the Cornish-Fisher expansion, which calculates the
critical values as a function of the standardized cumulants K, /¢”. We used the first 6 |
cumulants. For higher orders, K,/¢" becomes very large, as follows. ‘

n = 3 4 5 6 7 8 9 10
K,./c"=2390 9.271 4878 322.23 2557 23682 250682 2985300

For higher dimensions, d > 2, the errors are reduced because the cumulants K, decrease
as d increases, K, = O(e™).

CoroLLARY 10. Each of the critical values given in Table 1 can be written as
C(p: d) = Ud + 0q- W(P; d)

where g and 6y may be calculated from Corollary 4.

Thus the values W(p, d) are shift- and scale-free critical values, and they are listed in'
Table 2.

TABLE 2.
“Scale-Free” Critical values W(P, d) for d-Dimensional Cramér-Von Mises Statistic

Probability of Exceeding Critical Value

DEM Mult* - Source
25 .10 .05 .025 01 .005 .0025 .001 .0005
1 347 461 743 1.168 K-S
2 25533 .32611 *.50166 .58 app J77app .85 app D
2 165427 255847  .330883 409203 514715 .594055 871778 770489 841437 [o]
3 101916 149276 188768 230000  .285406  .326865 .367230 417995 454015 C
3 1489 .1860 2779 3101 4166 4592 KMT
4 .056837  .079600  .098645 118543  .145260 .165216  .184595 .208871 226002 [o]
5 030197  .040609 049338 058458 .070690 .079807  .088637 099652 107381 C
6 015621 .020235 .024108  .028151  .033564 .037586 041467 046280  .049630 C
7 007956  .009957  .011637 .0133%0 .015729 .017460  .019122 021167 022576 C
8 004015  .004869  .005587  .006334  .007328  .008059 008758 009608  .010186 C
9 002015 .002376  .002678  .002993  .003410 .003715  .004004 004352 .004584 o]
10 .001008 001159  .001285 001417  .001590 .001716 1001834 .001974  .002066 [o]
10 1072 .10078 11588 .12854 .14167 15899 - .17154 18340 19743 .20662 o]
15 107 .31106 .32907 .34403 .35933 37896 .39266 .40487 41804 42537 C
20 107° 09620 09822 .09988 .10155 10364 .10504 .10622 .10735 10782 C
25 1077 .29910 .30133 .30312 .30490 .30709 .30853 .30969 31072 31108 C
30 107 .93268 93511 98702 .93891 94122 94274 94397 94505 94538 [}
35 107 .29120 29147 29167 .29187 29212 29229 29243 29256 .29261 C
40 1071 90965 90998 .91020 91041 91068 91087 91108 91120 91129 C
45 107 28424 28427 .28430 .28432 .28435 28437 28439 28441 28443 C
50 107 88821 88824 - ~.88827 - .88829 .88832 .88835 .88837 .88840 .88842 o]

Sources: K-S Kendall and Stuart (1967) from Anderson and Darling (1952); D Durbin (1970); KMT Krivyakova, Martynov,
Tyurin (1977); C Present work.
* Each line in the table is to be multiplied by the factor given in this column.

DIM Mean S.D. 1
a a o Source
25 .10 05 025 01 005 .0025 001 .0005
1 1.2095 1.9742 3.8659 6.7169 K-S
2 .138889 095581 1.2182 1.9588 3.7954 4.614 6.602  7.439 D
2 .138889 095581 27765 1.22365 2.00870 2.82810 3.93200 4.76208 5.57524 6.60798 7.35025 C ‘
3 087963 050212 27788 1.22108 200758 2.82874 3.93218 4.75786 5.56174 6.57274 7.29010 C ;
4 .050154 024163 .27655 1.21863 2.00684 2.83032 3.93605 4.76191 5.56396 6.56861 7.27759 [o] i
5 027135 011069 27669 1.21738 2.00600 2.82994 3.93504 4.75870 5.55651 6.55166 7.24999 C
8 0142533 004914 27835 1.21715 2.00503 2.82772 3.92902 4.74733 5.53702 6.51627 7.19802 C
7 0073552 0021368 .28127 1.21772 200393 2.82398 3.91873 4.72882 5.50669 6.46372 7.12288 [o]
8  .0037538 .00091524 .28522 1.21888 2.00269 2.81893 3.90484 4.70427 546717 6.39650 7.02779 o]
9 .0019023 00038775 29001 1.22052 2.00126 2.81272 3.88788 4.67463 5.41994 6.31709 6.91621 C
10 .00095963 00016293 20552 1.22251 1.99961 2.80543 3.86826 4.64069 5.36636 6.22782 6.79146 o]
10 95963 (~3)* .16293 (—3) 29552 1.22251 1.99962 2.80543 3.86826 4.64070 5.36636 6.22782 6.79146 [o]
15. 30448-(—4)——.19910-(~5) -~33044—1:23517—1:98669—2:.75491 3.74111- - 4.42907 5.04215 5.70386 6.07200 C
20 95339 (—6)  .23121 (-7) 37165 1.24761 1.96418 2.68586 3.58893 4.19423 4.70429 5.19339 5.39920 o]
25 20801 (=7)  .26423 (—9) 41326 1.25641 1.93308 2.60667 3.43616 3.97889 4.42022 4.80808 4.92824 C
30 93132 (—9)  .30041 (—11) 45178 1.26103 1.89700 2.52558 3.29687 3.80080 4.21036 4.57001 4.68075 [}
35 .29104 (—10) .34095 (—13) 48562 1.26233 1.85977 2.44858 3.17655 3.66123 4.06750 4.45290 4.60928 C
40 90949 (—12) .38675 (—15) 51437 1.26156 1.82434 2.37915 3.07560 3.55407 3.97452 4.41679 4.64938 C 3
45 28422 (—13) .43863 (—17) 53828 1.25981 1.79253 2.31879 2.99201° 3.47137 3.91394 4.42512 4.74441 C i
50  .88818 (~15) .49743 (—19) 55789 1.25789 1.76521 226767 2.92296 3.40586 3.87164 4.45030 4.85281 C

Critical value = pq + 04 - W(P, d)
! Same sources as Table 1.
* By .95963 (~3) we mean .95963 X 107,
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4. Proofs of Statements in Section 3.

ProoF oF LEMMA 1. By Corollary 2 to Theorem C, we have

. ¢ - v2it
Cu(t) =TI Cd—l{m}, Ci(t) =[Ir= {1 —m}

Let u = 2it. Then

u
log Ci(t) = Yn-1 108{1 —_(7:—1/2‘)_277}
Thus '

00 -] — u
log Ca(t) = Ym=1 +++ Dmy=1 1og{1 (= )2 v (g — 1/2)%2"‘} ]
=Yoo -er o= log(l — vdn,..nd,

where
Anyong = {1 —%)? -+ (na = %)*n*} 7,

and so

d -
2108 Calt) = =it +++ Tims Aneonell = ey ™

This can be expanded in powers of  provided that [#An,...ns | <1, that is, if |u]| <

7\2d
E ™
d -] n
Then 7 log Ca(t) = ¥7=0 Spitt”,
where
S =T e Yot ALy = N o+ N {1 = 9)? -+ (na — W)™}
B ) (G R ke S
Thus

d : .
—=-log Ca(t) = Lo Léau®, Lo=35a[(— %771

Hence the required result. We méy write

L= (%)2 Tro (1 +27)7

with

Yo (1 +27) 7" =A(2n),

a function tabulated in Abramowitz and Stegun (1964, (23.2.20)) and related to the
Riemann Zeta function. (This relationship might be useful in any attempt to find an
expression for the V; distribution in terms of standard functions. The series converges
very rapidly so that we simply sum it directly.)

PROOF OF THEOREM 1. From Corollary 1 to Theorem C
d
2= —29— Cy(t), = 2if. .
& (t) au a(t) u = 21
From Lemma 1

—% log Ca(t) = Z1(t) = ¥7=0 L u™
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. d
Thus T Cu(t) = Zi(t)Calt).

Combining, we have

& (8) 7% = 29Z,(¢) Ca(2),
or
(4.1) ‘ 27% = X(t)Zi() Ca 2).

Differentiate with respect to « = 2it to obtain

d d ,
0== {62t} Z:(t) Calt) + Mt){a Zl(t)}cd )+ ¢2(t)Z1(t){d% Ca (t)}.

Substitute di Calt) = ~Zu(t)Calt),
u
and write Zs(t) = iZ1(13)-
du
Then
d
(4.2) A 0= Cd(t)[a {0%(8)3Z1(8) + ¢2(8){Za(2) — Z%(t)}}.

From the definition of C,;(¢), we have C;(0) = 1 and so C;(¢) # 0 for small £ Since
Zy(t) = Sw=0 LE ™,

Zy(0) = L¢ = {(%) 2x(z)}d.

But. A(2) = 7?/8, hence Z1(0) = 27¢ and so Z:(¢) # 0 for small £. Hence by (4.1), $2(0) =1
as it should be since ¢(¢) is a characteristic function. Hence ¢*(¢) s 0 for small ¢
Consequently we can cancel Cy(¢), Z:(¢) and ¢>(¢) in (4.2) to obtain

SO

d
0= 672(t) = 6() + (Z(0)/Z:(0)} = Z:(0),
and so 2 af‘-l; log 6(£) = Zu(t) — Za(6)/Za(2),
the required resuit.

_ REMARK 4.1. Having expressed the cumulant function in terms of power series in ¢
with known coefficients, the remaining results follow directly.

_ Proor oF COROLLARY 4. By Theorem 1, and after integrating Z:(¢) term by term to
give

u

n
i

Zo(t) = 2;';1 L,"f

(42

we have

d " d d

Integrating the latter gives
log ¢72(t) = — Zo(t) + log Zi(t) + K,
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thus
672(t) = CZu(t) exp{— Zo(1)},

where C, K are constants of integration. From above $%(0) = 1, Zo(0) = 0, Z:(0) = 274, Thus
C = 2% and

un
¢72(2) = 2% Ym0 Ligu" eXp( Se-1 L - >,

the required result.

ProoF oF COROLLARY 5. The cumulants K, of the rv. W5 are deﬁned by
(zt) u”

]'Og ¢ t) Zn—l Kn - = n=1 an—n ) u=2it.
Thus
K,=2" d
"% dut
u=0.
From Theorem 1 we have
d Z>(t)
— Z(t) = ——.
Zdu log ¢ () = Zu(2) — 7.0
Thus ‘
Z5(0)
= 7:(0) — X
K; 1(0) Z:.(0)
Write
Z(2) d dr
= = £), Zne1(t) =—=— Za(t).
Xo(t) AT X2 () T (t) 1(2) 0 1(8)
‘Thenforn =1,
2 iﬁl‘)g ¢(t) = Zn(t) - Xn+1(t)-
du
Thus ) Kn == 2n_1{Zn(0) _"'Xn-i-l(o)}’

as required. Since, by definition,
Zl t) 217.—-0 Ln.+1 u
then ! n+1(0) n' Ln+17

as required. , :
By definition, X»(2) = Zx(£)/Z:(¢), so that Xo(£)Z1(¢) = Zo(t). Then, by repeated
differentiation with respect to u, we get forn =1

Xoro() Za(8) + X (j ) X (8) Zpa(t) = Znaal2).

We now evaluate this expression for ¢ = 0 (u = 0) and, for compactness, write

X, = Xu(0),  Zn=Za(0).

Xn+2 = {Zn+2 - 21‘1 ( ;l ) Xn+2-fzj+1}/zl’

Zn+1 = Zn+1(0) =n! Lg+1.

Thus

as required with
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PrOOF oF COROLLARY 6. In a formal way, the moments M, of the r.v. W% may be
expressed as

o) =1+ (’t) =, M2~ 7‘;— u=2it.
Then =22 se)
" du® ¢ o

provided that this limit exists. We have, by Theorem 1,
d
2 Elog ¢(t) = Zl(t) - XZ(t):
where

d o
‘ —Zl(t)}
Z(t) _ { a
AT N AU

Xo(t) =

Write

d
T Pi(t), Qi(t) = 2log Pi(t) = 210g ¢(2), @n+1(£)

dr
Py(t) = ¢(2), Pria(2) = = Q:1(?)

Then 2%—log ¢(t) = @Q(t) = Zy(t) — Xa(2),

and by repeated differentiation with respect to u,

) Qn+1(t) = Zn(t) - Xn+1(t)’ nzl
Also,

Q1(t) = 2log Pi(t), Qa(t) =2 —d%log Pi(t) = 2 P:(t)/P:(2),
so that Q:2(t) P1(2) = 2Py(2).

Then, by repeated differentiation, ,
n
Qra(t) Pi(t) + X7 (j ) Qrr2-5(t) Pira(t) = 2 Pras(£)
which generates successive values of P,(t), and

M,,=2" d

¢(t) = 2"Pr11(0),

t=0

giving the required result when we write P.(0) as P,, @.(0) as @». Noﬁcé that P; = ¢(0)
= 1.

- PROOF OF COROLLARY 7. The values of the first two cumulants are K; = y4, K2 = 04,
the mean and variance of the V; distribution. From Corollary 5

Md—K1 AR Xz, 0’%1=K2=2(ZZ—X3)
nnr]

Zi=1L1f, Zy=L§ Zy=2L%.

2 ' 4 .
L1=<3) A@), Ls= (2) @), Lo= (_g_) A ().
aT T

By Abramowitz and Stegun (1964, (23.2.11) through (23.2.31)), A(2) = #%/8, A(4) = 7*/96
and

By Lemma 5
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. . (2m)® . (277) 1 7°
— - 6 = - 6 — 6 Y ———
AB) = (1 —2786) =1 -27) o lle 1-=27) B 1525
Thus .
Li=%, Lo=% Ly=%s, Z:=2"% Z,=67° Z3=2157,
and =27,/Z, = 6%/27¢=379

—d
15
X3 = (Zs XzZz)/Zl (2 15_ 3_d6_d)/2_.d = 2 . <—2—) - 3_2d.
Thus pe = K; and 63 = K, are as required.
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ADMISSIBILITY IN LINEAR ESTIMATION

By LYNN Roy LAMoTTE

University of Houston

Necessary and sufficient conditions for a linear estimator to be admissible
among linear estimators are described. The model assumed is general, allowing
for relations between elements of the mean vector and covariance matrix, and
allowing the covariance matrix to vary in an arbitrary subset of nonnegative
definite symmetric matrices.

1. Introduction. The work of Olsen, Seely and Birkes (1976) provided seminal results
in the characterization of admissible linear estimators in the general linear model. They
described necessary conditions for the admissibility of unbiased linear estimators and
showed that the admissible unbiased linear estimators form a minimal complete class of
unbiased linear estimators. Their necessary conditions are demonstrably not sufficient.
LaMotte (1977b) noted an obvious extension of their characterization.

Without the restriction to unbiasedness, admissible linear estimators have been char-
acterized only in special linear models. Cohen (1966) characterized admissible linear
estimators of the mean vector while assuming a covariance matrix of the.form ¢°I. C. R.
Rao (1976) accomplished the same characterization for models with mean vectors varying
through a linear subspace and covariance matrices of the form ¢*V with V known (i.e.,
restricted to a subspace of one dimension). Neither of these efforts appears to generalize
to models in which the covariance matrix varies over more than one dimension, or in which
the mean vector and covariance matrix are functionally related, or in which restrictions on
the parameters of the model restrict attention to a subset of the natural parameter space.
For example, in the simple linear regression model, C. R. Rao’s results guarantee that the
least squares estimator is admissible among linear estimators. But Marquardt (1970) and
Perlman (1972) observed that if the parameter space is restricted in certain ways, then the
least squares estimator is not admissible. Olsen, Seely and Birkes (1976) established a

‘relation between admissibility and bestness (defined below) which allowed them to

establish necessary conditions for admissibility in any given parameter space. The same
sort of relation is used here to characterize admissible linear estimators.

2. Definitions and Summary. Let ¥ be a random n-vector with mean-vector y and
variance-covariance matrix V, with (u, V) contained in an arbitrary subset £ of the
Cartesian product of Euclidean n-space R” and the set of n X n symmetric nonnegative
definite matrices. Let C be an n X ¢ matrix of constants and consider estimating C’ y by
linear functions L’ Y with L an n X ¢ matrix of constants. Total mean squared error will be
used as the risk function:

(2.1) TMSEL(V, p)=E{(L'Y—C'py(L'Y— C'p)} =tr{L'VL + (L— C)'p'(L— C)}.

For a matrix M, denote the transpose of M, the linear subspace spanned by the columns
of M, and the null space {x:Mx = 0} of M by M’, R(M ), and N(M ), respectively. Denote
the trace of a square matrix M by tr(M ). We will frequently deal with linear subspaces &/
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of r-X-s-matrices; in-which-case-thetraceinner producttr MH"-will-be-used, along with
the corresponding squared norm tr(MM ). If % is a linear subspace of a vector space &,
denote by % a linear subspace such that & is the direct sum of % and #%. The minimal
linear subspace containing a set 2 of vectors will be denoted by sp(2). For a subset 2 of
&, [ 2] will denote the minimal closed convex cone containing 2.
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