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Abstract

We introduce a class of real Jordan triple systems, called JH-triples, and show, via the Tits–Kantor–
Koecher construction of Lie algebras, that they correspond to a class of Riemannian symmetric spaces
including the Hermitian symmetric spaces and the symmetric R-spaces.
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1. Introduction

It is well known that Jordan algebras and Jordan triple systems can be used to give an algebraic
description of a large class of symmetric manifolds and thereby one can apply Jordan theory in
the study of these manifolds. In finite dimensions, the symmetric R-spaces are known to be in
one–one correspondence with the isomorphism classes of real Jordan triple systems equipped
with a positive definite trace form, called compact Jordan triples [27]. In any dimension, the
simply connected Hermitian symmetric spaces are in one–one correspondence with the complex
Hilbert triples called JH*-triples [18] and hence these manifolds can be classified by JH*-triples.
The one–one correspondence between bounded symmetric domains in complex Banach spaces
and JB*-triples was established in [17]. Motivated by the fruitful connections between Jordan
algebras, geometry and analysis (see, for example, [9,17,18,22,23,29,34,35]), and some recent
developments in [5,6,8,14,19,20], we investigate a class of Riemannian symmetric spaces which
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correspond to real Jordan triple systems, including Hermitian symmetric spaces and symmetric
R-spaces. We give a unified approach to these manifolds via the Tits–Kantor–Koecher construc-
tion of Lie algebras and show they correspond to a class of real Jordan triple systems called
JH-triples which include the compact Jordan triples and JH*-triples described above. In fact,
non-degenerate JH*-triples are exactly the JH-triples endowed with a compatible complex struc-
ture. Therefore one can also view the approach in this paper as a real extension of the complex
theory in [18] as well as an infinite dimensional extension of the work in [27].

At the outset, we give an outline of the main ideas and results in various sections, and refer to
[7,34] for undefined terminology and literature. We consider throughout Riemannian symmetric
spaces of any dimension, namely, connected smooth manifolds modelled on real Hilbert spaces
(cf. [21]), which are symmetric in that every point in the manifold is an isolated fixed point
of an involutive isometry. The Lie algebras associated with these manifolds are involutive, and
among involutive Lie algebras, the ones which are orthogonal correspond exactly to the symmet-
ric spaces. Our task is to identify the class of Jordan triple systems which give rise to orthogonal
involutive Lie algebras. This can be achieved in two stages. First, using the Tits–Kantor–Koecher
construction, one obtains a class of normed involutive Lie algebras which correspond to normed
Jordan triple systems with continuous triple product. Next, these involutive Lie algebras, called
quasi normed Tits–Kantor–Koecher Lie algebras , contain two Lie subalgebras which correspond
to a pair of mutually dual symmetric spaces if, and only if, they are orthogonal, in which case the
involutive Lie algebra is said to admit an orthogonal symmetric part. Finally, one characterises
Jordan triple systems which correspond to the quasi normed Tits–Kantor–Koecher Lie algebras
with an orthogonal symmetric part. They are the JH-triples. Although not all symmetric spaces
arise in this way, the class of symmetric spaces corresponding to JH-triples, which include Her-
mitian symmetric spaces and R-spaces, is sufficiently large to be of interest. It seems natural to
call this class Jordan symmetric spaces.

We show in Section 2 that the category of normed Jordan triple systems with continuous left
multiplication is equivalent to the category of quasi normed canonical Tits–Kantor–Koecher Lie
algebras. We define the symmetric part, so-called because of the correspondence with symmetric
spaces, of these Lie algebras and determine when the Lie product on the symmetric part is norm
continuous. In Section 3, we show the correspondence between symmetric spaces and orthogonal
involutive Lie algebras, where a Lie algebra g with involution θ is called orthogonal if there is
a positive definite quadratic form on p which is invariant under the isotropy representation of
k on p, with k and p being the 1 and −1 eigenspace of θ respectively. A real non-degenerate
Jordan triple system V with Jordan triple product {·, ·, ·} is called a JH-triple if it is a real Hilbert
space with continuous left multiplication (x, y) ∈ V 2 �→ {x, y, ·} :V → V and the inner product
satisfies 〈{x, y, z}, z〉 = 〈z, {y, x, z}〉. We give examples of JH-triples and prove that a Jordan
triple system V is a JH-triple if, and only if, the corresponding Tits–Kantor–Koecher Lie algebra
L(V ) admits an orthogonal symmetric part. This enables us to conclude the correspondence
between Jordan symmetric spaces and JH-triples in Section 4.

2. Jordan triples and Tits–Kantor–Koecher Lie algebras

For later applications, we begin by showing the correspondence between Jordan triple systems
and Tits–Kantor–Koecher Lie algebras which originate in the works of Tits [33], Kantor [15,16],
Koecher [22] and Meyberg [26], while we adopt the terminology in [25,36]. In finite dimensions,
this correspondence depends on a trace form which is not available in infinite dimension. We
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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show a version of the correspondence, with norm and involution, to suit our purpose for arbitrary
dimension.

By a Jordan triple system, we mean a real vector space V , equipped with a trilinear triple
product {·, ·, ·} :V 3 → V which is symmetric in the outer variables and satisfies the Jordan triple
identity

{
a, b, {x, y, z}} = {{a, b, x}, y, z

} − {
x, {b, a, y}, z} + {

x, y, {a, b, z}}
for a, b, x, y, z ∈ V .

A complex Jordan triple system is one in which the vector space V is complex and the triple
product is conjugate linear in the middle variable instead. By restricting to real scalars, a complex
Jordan triple system is regarded as a real one.

Definition 2.1. A Jordan triple system V is called non-degenerate if for each a ∈ V , we have
a = 0 whenever Qa = 0, where Qa : x ∈ V �→ {a, x, a} ∈ V denotes the quadratic operator
defined by a.

Given a Jordan triple system V and x, y ∈ V , we define a linear operator x y :V → V , called
a box operator or left multiplication operator, by

(x y)(v) = {x, y, v} (v ∈ V ).

Let V V = {x y: x, y ∈ V } and let V0 be the real linear vector space spanned by V V . Then
V0 is a real Lie algebra in the bracket product

[h, k] = hk − kh

due to the Jordan triple identity

[x y,u v] = {x, y,u} v − u {v, x, y}.

Lemma 2.2. Let V be a non-degenerate Jordan triple system and let a ∈ V . If x a = 0 for all
x ∈ V , then a = 0.

Proof. We have

0 = {
x, a, {y, a, y}}

= {{x, a, y}, a, y
} − {

y, {a, x, a}, y} + {
y, a, {x, a, y}}

= −{
y, {a, x, a}, y}

for all y ∈ V which implies Q{a,y,a} = 0 for all y ∈ V . Hence {a, y, a} = 0 for all y ∈ V and
a = 0. �
Lemma 2.3. Let V be a non-degenerate Jordan triple system and let

∑
j aj bj = ∑

k uk vk .
Then we have

∑
bj aj = ∑

vk uk .
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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Proof. We have

[∑
j

aj bj , x y

]
=

(∑
j

(aj bj )x

)
y − x

(∑
j

bj aj

)
y

=
[∑

k

uk vk, x y

]

=
(∑

k

(uk vk)x

)
y − x

(∑
k

vk uk

)
y

which gives x (
∑

j bj aj )y = x (
∑

k vk uk)y for all x, y ∈ V . By Lemma 2.2, we conclude∑
j bj aj = ∑

k vk uk . �
In finite dimensions, non-degeneracy is sometimes defined in terms of the trace form. In fact,

a finite dimensional Jordan triple system V is non-degenerate if it admits a non-degenerate trace
form

〈x, y〉 = Tr(x y) (x, y ∈ V )

in which case, we have

〈
(x y)u, v

〉 = 〈
u, (y x)v

〉
(u, v ∈ V )

and hence Tr(x y) = Tr(y x). Our definition of non-degeneracy applies to infinite dimensional
Jordan triple systems.

We now consider Lie algebras. By an involutive Lie algebra (g, θ), we mean a real Lie alge-
bra g equipped with an involution θ , i.e. an involutive automorphism θ :g → g. We will always
denote the 1-eigenspace of θ by k, and p the (−1)-eigenspace of θ so that g has the decomposition
g = k ⊕ p.

Lie algebras with a finite grading have been classified by Zelmanov in [36] where the Tits–
Kantor–Koecher construction plays an important part. Given a Lie algebra g which admits a
direct sum decomposition

g = g−1 ⊕ g0 ⊕ g1

into subspaces, g is said to be graded if [gα, gβ ] ⊂ gα+β with gα = 0 if α 	= 0,±1. We introduce
the following definition for subsequent developments.

Definition 2.4. A graded Lie algebra g = g−1 ⊕ g0 ⊕ g1 is called a Tits–Kantor–Koecher Lie
algebra or TKK Lie algebra if g admits an involution θ satisfying

θ(gα) = g−α.

We call g canonical if [g−1,g1] = g0.
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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We define the canonical part of g to be the Lie subalgebra

gc = g−1 ⊕ [g−1,g1] ⊕ g1

which is also a TKK Lie algebra with the restriction of θ as its involution.
The symmetric part of g is defined to be the following Lie subalgebra:

gs = {a ⊕ h ⊕ −θa: a ∈ g−1, θh = h ∈ g0}
where

[a ⊕ h ⊕ −θa, b ⊕ k ⊕ −θb] = ([a, k] + [h,b]) ⊕ [h, k] ⊕ ([−θa, k] − [h, θb]).
The restriction of θ to gs is an involution. The Lie subalgebra

g∗
s = {a ⊕ h ⊕ θa: a ∈ g−1, θh = h ∈ g0}

is called the dual symmetric part of g, which is the 1-eigenspace of θ .
We define the dual involution θ∗ on g by θ∗(a ⊕ h ⊕ b) = −θb ⊕ θh ⊕ −θa, which restricts

to an involution on g∗
s .

Remark 2.5. With the dual involution, (g, θ∗) is also a TKK Lie algebra and g∗
s now becomes

the symmetric part of (g, θ∗).

To facilitate later application, we outline below the Tits–Kantor–Koecher construction of Lie
algebras from Jordan triple systems.

Lemma 2.6. Let V be a non-degenerate Jordan triple system. Then there is a canonical Tits–
Kantor–Koecher Lie algebra L(V ) with grading

L(V ) = L(V )−1 ⊕ L(V )0 ⊕ L(V )1

and an involution θ such that L(V )−1 = V = L(V )1 and

{x, y, z} = [[x, θy], z]
for x, y, z ∈ L(V )−1.

Proof. Form the algebraic direct sum

L(V ) = V−1 ⊕ V0 ⊕ V1

where V−1 = V1 = V and V0 is the linear span of V V . By Lemma 2.3, the mapping

x y ∈ V V �→ y x ∈ V V

is well defined and extends to an involution � :V0 → V0 satisfying

[x y,u v]� = −[y x, v u].

Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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This enables us to define an involutive automorphism θ :L(V ) → L(V ) by

θ(x ⊕ h ⊕ y) = y ⊕ −h� ⊕ x (x ⊕ h ⊕ y ∈ V−1 ⊕ V0 ⊕ V1)

where we also write (x,h, y) for x ⊕ h ⊕ y, x for (x,0,0), y for (0,0, y), and h for (0, h,0)

if there is no confusion. By identifying Vα naturally as subspaces of L(V ), we see immediately
that θ(Vα) = V−α for α = 0,±1.

One can show that L(V ) is a Lie algebra in the following product:

[x ⊕ h ⊕ y,u ⊕ k ⊕ v] = (
h(u) − k(x), [h, k] + x v − u y, k�(y) − h�(v)

)
and we have

{x, y, z} = [[x, θy], z] (x, y, z ∈ V−1).

Given x ∈ V−1 and y ∈ V1, we have [x, y] = [(x,0,0), (0,0, y)] = (0, x y,0) which gives
[V−1,V1] = V0 and hence L(V ) is canonical. We also have [V−1,V−1] = [V1,V1] = 0. �
Remark 2.7. The involution θ in the Tits–Kantor–Koecher Lie algebra g = L(V ) is the unique
involution satisfying

a b = [a, θb] = −θ(b a) (a, b ∈ V−1 = V )

and is called the main involution (cf. [22, p. 793]).
The dual involution θ∗ :L(V ) → L(V ) is given by

θ∗(x ⊕ h ⊕ y) = −y ⊕ −h� ⊕ −x

and we have a b = −[a, θ∗b].

Remark 2.8. The above construction translates the non-degeneracy of a Jordan triple system V

into the following property of its TKK Lie algebra L(V ):

[[a, θy], a] = 0 for all a, y ∈ L(V )−1 ⇒ a = 0

which is equivalent to the condition

(ada)2 = 0 ⇒ a = 0
(
a ∈ L(V )−1

)
(2.1)

since (ada)2(x ⊕ h ⊕ y) = −Qa(y) for a ∈ L(V )−1 and x ⊕ h ⊕ y ∈ L(V ).

A TKK Lie algebra g = g−1 ⊕ g0 ⊕ g1 is called non-degenerate if (ada)2 = 0 ⇒ a = 0 for
a ∈ g−1. We now show the correspondence between non-degenerate Jordan triple systems and
non-degenerate Tits–Kantor–Koecher Lie algebras. Given two Jordan triple systems V and V ′,
a bijective linear map ϕ :V → V ′ is called a triple isomorphism if it preserves the triple product:

ϕ{x, y, z} = {ϕx,ϕy,ϕz} (x, y, z ∈ V ).
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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Two TKK Lie algebras (g, θ) and (g′, θ ′) are said to be isomorphic if there is a graded iso-
morphism ψ :g → g′ which commutes with involutions:

ψθ = θ ′ψ.

Given a TKK Lie algebra g = g−1 ⊕ g0 ⊕ g1 with involution θ , we can identify g1 with g−1
by θ . In fact, every TKK Lie algebra (g, θ) is isomorphic to, and hence identified with, a TKK
Lie algebra

g′ = g′−1 ⊕ g′
0 ⊕ g′

1

in which g′−1 = g′
1 = g−1 and g′

0 = g0, with involution θ ′(x ⊕ h ⊕ y) = y ⊕ θh ⊕ x and product
[·,·]′ defined by

[x, y]′ = [x, θy], [h,y]′ = (
0,0, [θh, y]) (

(x,h, y) ∈ g′−1 × g′
0 × g′

1

)
but otherwise identical with the product [·,·] of g. The graded isomorphism ψ :g → g′ is given
by ψ(x ⊕ h ⊕ y) = x ⊕ h ⊕ θy.

With the above identification, let G be the category of non-degenerate canonical TKK Lie
algebras in which the morphisms are graded isomorphisms commuting with involutions. Let V
be the category of non-degenerate Jordan triple systems in which the morphisms are triple iso-
morphisms.

Theorem 2.9. For each V in the category V of non-degenerate Jordan triple systems, let
L(V ) ∈ G be the TKK Lie algebra constructed in Lemma 2.6. Then the functor L :V → G is
an equivalence of the two categories V and G.

Proof. Given a triple isomorphism ϕ :V → V ′ between two non-degenerate Jordan triple sys-
tems, we have

ϕa ϕb = ϕ(a b)ϕ−1 (a, b ∈ V ).

Hence there is a graded isomorphism ϕ̃ : (L(V ), θ) → (L(V ′), θ ′) defined by

ϕ̃(a ⊕ h ⊕ b) = ϕa ⊕ ϕhϕ−1 ⊕ ϕb

which satisfies

ϕ̃θ = θ ′ϕ.

Conversely, given a non-degenerate TKK Lie-algebra g = g−1 ⊕ g0 ⊕ g1 with involution θ

and g1 = g−1, we let V = g−1. Then it follows from the Jacobi identity and [g−1,g−1] = 0 that
V is a non-degenerate Jordan triple system with the Jordan triple product defined by

{x, y, z} = [[x, θy], z]
and we have L(V ) = g if g is canonical.
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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If ψ : (L(V ), θ) → (L(V ′), θ ′) is a graded isomorphism satisfying ψθ = θ ′ψ , then the restric-
tion ψ |V :V → V ′ defines a triple isomorphism. �

We note that TKK Lie algebras are reduced. We recall that an involutive Lie algebra (g, θ) with
eigenspace decomposition g = k⊕p is reduced if k does not contain any nonzero ideal of g, which
is equivalent to the condition that the isotropy representation adk :X ∈ k �→ adgX|p ∈ End(p) is
faithful (cf. [2, p. 21]).

Lemma 2.10. The Tits–Kantor–Koecher Lie algebra (L(V ), θ) of a non-degenerate Jordan triple
system V is reduced.

Proof. Let L(V ) = k ⊕ p be the decomposition into eigenspaces of θ , where

k = {u ⊕ h ⊕ u: u ∈ V, θh = h}.

Let X = u ⊕ h ⊕ u ∈ k be such that [X,Y ] = 0 for all Y ∈ p. For each g ∈ V0 satisfying
θg = −g, and for each v ∈ V , we have

[u ⊕ h ⊕ u,v ⊕ g ⊕ −v] = 0 = (hv − gu) ⊕ ([h,g] − u v − v u
) ⊕ (gu − hv)

which gives hv = gu and in particular hv = 0 for all v ∈ V if g = 0. Hence h = 0 and
u v + v u = 0 for all v ∈ V . Choose Y = (0, g,0) with g = v v, then (v v)(u) = 0 and
hence (v u)(v) = −(u v)(v) = (v v)(u) = 0 for all v ∈ V . This implies v u = 0 for all
v ∈ V since {x + v,u, x + v} = 0 for all x, v ∈ V . Therefore u = 0 by Lemma 2.2 which proves
X = 0. �
Remark 2.11. The above arguments also show that, in a non-degenerate Jordan triple system,
{v,u, v} = 0 for all v implies u = 0.

We now consider topological structures for Jordan triple systems and their Tits–Kantor–
Koecher Lie algebras. If a Jordan triple system V is equipped with a norm, we denote by L(V )

the normed space of linear continuous self-maps on V .
A Lie algebra g is called a normed Lie algebra if g is a normed linear space and the Lie

product is continuous:

∥∥[X,Y ]∥∥ � C‖X‖‖Y‖ (X,Y ∈ g)

for some C > 0. Further, g is called a Banach Lie algebra if g is a Banach space.
A non-degenerate Tits–Kantor–Koecher Lie algebra g = g−1 ⊕ g0 ⊕ g1 with involution θ is

said to be quasi normed if g is a normed linear space such that the maps θ :g−1 → g1 and (a, b) ∈
gα ×gβ �→ [a, b] ∈ gα+β are continuous. In this case, the dual involution θ∗|g−1 = −θ |g−1 is also
continuous on g−1.

Let V be a non-degenerate Jordan triple system and let

L(V ) = V−1 ⊕ V0 ⊕ V1
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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be the corresponding Tits–Kantor–Koecher Lie algebra with the main involution θ . We denote
the symmetric part of L(V ) by

g(V ) = {
(a,h,−a): a ∈ V, θh = h

}
.

The restriction of θ to g(V ) is an involution, also denoted by θ . The dual symmetric part of L(V )

will be denoted by g∗(V ).

Lemma 2.12. Let V be a non-degenerate Jordan triple system and L(V ) = V−1 ⊕ V0 ⊕ V1
its Tits–Kantor–Koecher Lie algebra with symmetric part g(V ). The following conditions are
equivalent.

(i) g(V ) can be normed to become a normed Lie algebra.
(ii) g∗(V ) can be normed to become a normed Lie algebra.

(iii) V can be normed to have continuous inner derivations, that is, one can define a norm on V

such that the map (a, b) ∈ V × V �→ a b − b a ∈ L(V ) is continuous:

‖a b − b a‖ � c‖a‖‖b‖ (a, b ∈ V )

for some c > 0.

Proof. (i) ⇒ (iii). Let g(V ) be a normed Lie algebra with norm ‖ · ‖g(V ). We equip V with the
norm

2‖a‖ = ∥∥(a,0,−a)
∥∥

g(V )
(a ∈ V ).

Then there is some constant C > 0 such that

‖a b − b a‖g(V ) = ∥∥[
(a,0,−a), (b,0,−b)

]∥∥
g(V )

� 4C‖a‖‖b‖

for all a, b ∈ V. It follows that a b − b a ∈ L(V ) and (a, b) ∈ V 2 �→ a b − b a ∈ L(V ) is
continuous since, for x ∈ V , we have

2
∥∥(a b − b a)(x)

∥∥ = ∥∥({a, b, x} − {b, a, x},0, {b, a, x} − {a, b, x})∥∥
g(V )

= ∥∥[ [
(a,0,−a), (b,0,−b)

]
, (x,0,−x)

]∥∥
g(V )

� 8C2‖a‖‖b‖‖x‖.
(iii) ⇒ (i). Let V be equipped with a norm ‖ · ‖V so that the inner derivations are continuous.

Given h = ∑
j aj bj ∈ V0 satisfying θh = h, we have

2h =
∑
j

(aj bj − bj aj ) ∈ L(V ).

We equip the Lie algebra g(V ) with the norm∥∥(a,h,−a)
∥∥ = 2‖a‖V + ‖h‖L(V ) for (a,h,−a) ∈ g(V ).
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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Then we have

∥∥[a ⊕ h ⊕ −a,u ⊕ g ⊕ −u]∥∥ = ∥∥(
hu − ga, [h,g] − a u + u a,ga − hu

)∥∥
� 2‖h‖‖u‖ + 2‖g‖‖a‖ + 2‖h‖‖g‖ + c‖a‖‖u‖
� (2 + c)‖a ⊕ h ⊕ −a‖‖u ⊕ g ⊕ −u‖

for some c > 0. Hence g(V ) is a normed Lie algebra with the above norm.
The equivalence of (ii) and (iii) is proved analogously since

[a ⊕ h ⊕ a,u ⊕ g ⊕ u] = (
hu − ga, [h,g] + a u − u a,hu − ga

)
. �

The continuity of the triple product in a normed Jordan triple V requires its TKK Lie algebra
L(V ) be quasi normed, as shown below.

Lemma 2.13. Let V be a non-degenerate Jordan triple system and L(V ) = V−1 ⊕ V0 ⊕ V1 its
Tits–Kantor–Koecher Lie algebra. The following conditions are equivalent.

(i) L(V ) can be quasi normed.
(ii) V can be normed to have continuous left multiplication, that is, one can define a norm on V

such that the map (a, b) ∈ V × V �→ a b ∈ L(V ) is continuous:

‖a b‖ � c‖a‖‖b‖ (a, b ∈ V )

for some c > 0.

Proof. (i) ⇒ (ii). Let L(V ) be quasi normed. Then V = V−1 inherits the norm of L(V ). For
α,β ∈ {0,±1}, there are positive constants cα,β such that∥∥[x, y]∥∥

L(V )
� cα,β‖x‖L(V )‖y‖L(V ) for (x, y) ∈ L(V )α × L(V )β.

Given a, b, x ∈ V , we have

∥∥(a b)(x)
∥∥

V
= ∥∥[[a, θb], x]∥∥

L(V )

� c0,−1
∥∥[a, θb]∥∥

L(V )
‖x‖V

� c0,−1c−1,1‖a‖V ‖θb‖V ‖x‖V

� c0,−1c−1,1‖θ‖‖a‖V ‖b‖V ‖x‖V .

Hence V satisfies condition (ii).
(ii) ⇒ (i). We have V0 ⊂ L(V ) and L(V ) can be equipped with a natural norm

‖x ⊕ h ⊕ y‖ = ‖x‖V + ‖h‖L(V ) + ‖y‖V

(
x ⊕ h ⊕ y ∈ L(V )

)
.

We have ∥∥θ(x,0,0)
∥∥ = ∥∥(0,0, x)

∥∥ = ‖x‖V = ‖(x,0,0)‖L(V )
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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and hence θ :V−1 → V1 is continuous. Given a ∈ L(V )α and b ∈ L(V )β for α 	= β , we have
[a, b] = ±a b if α,β 	= 0, and for αβ = 0, we have [a, b] = ±h(x) for some h = ∑

k uk vk

with x = a or b. It follows from condition (ii) that the maps (a, b) ∈ L(V )α × L(V )β �→ [a, b] ∈
L(V )α+β are continuous. �

The symmetric part gs of a quasi normed TKK Lie algebra g inherits the norm of g. The norm
completion gs is called the complete symmetric part of g. The Lie product of gs extends to gs

and the involution θ extends to θ on gs . The complete dual symmetric part g∗
s is defined likewise.

We see from Theorem 2.9 and Lemma 2.13 that the category of quasi normed canonical TKK
Lie algebras is equivalent to the category of normed Jordan triple systems with continuous left
multiplication.

3. Symmetric spaces and orthogonal Lie algebras

In finite dimensions, Riemannian symmetric spaces correspond to orthogonal involutive Lie
algebras. The first objective of this section is to extend this correspondence to infinite dimen-
sional setting. This then leads to the second objective of characterising the class of Jordan triples
whose TKK Lie algebras admit orthogonal symmetric parts.

In what follows, we shall not distinguish a quadratic form and its associated symmetric bilin-
ear form, and use the same notation for both.

We adapt the notion of an orthogonal involutive Lie algebra in finite dimensions (cf. [13,
p. 213], [1, p. 35] and [2, p. 21]) to our setting below.

Definition 3.1. Let (g, θ) be an involutive Lie algebra with the canonical decomposition g = k⊕p

into ±1-eigenspaces of θ , with k the 1-eigenspace. Then g is called orthogonal if there is a
quadratic form

q :p × p → R

which is positive definite, i.e. q(X,X) > 0 for X ∈ p\{0}, and invariant under the isotropy repre-
sentation adk of k on p:

q
(
adZ(X),Y

) + q
(
X, adZ(Y )

) = 0

for X,Y ∈ p and Z ∈ k, where the second condition above is equivalent to

q
(
adZ(X),X

) = 0 (Z ∈ k,X ∈ p).

We note that q is invariant under θ .

Unless otherwise stated, all manifolds are modelled on a real Hilbert space where, as usual,
a complex Hilbert space is regarded as a real Hilbert space by restricting to real scalars and
taking the real part of its inner product. Given a Hilbert space H , we denote by L(H) the von
Neumann algebra of bounded linear operators on H . The group U(H) of unitary operators on H

is a topological group in the strong operator topology, and is right amenable, that is, there is a
unital positive linear functional Ψ :Cru(U(H)) → R on the space Cru(U(H)) of bounded right
uniformly continuous functions on U(H) and Ψ is invariant under right translations [12], it is
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
doi:10.1016/j.aim.2008.08.001
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called a right invariant mean on Cru(U(H)). If H is separable, then U(H) is a metric group and
there is a positive linear functional ϕ in the predual L(H)∗ of L(H), which is faithful, that is,
ϕ(T T ∗) = 0 implies T = 0 for all T ∈ L(H) (cf. [32, p. 78]), where T ∗ denotes the adjoint of T .

We denote by e, unless otherwise stated, the identity of a group. By a Banach Lie subgroup
of a Banach Lie group G, we mean a direct subgroup and a submanifold K of G, in which case
K is closed and a Banach Lie group in the induced topology of G [34, p. 128], and further, the
quotient space G/K of left cosets carries the structure of a Banach manifold and the quotient
map π :G → G/K is a submersion [34, Theorem 8.19]. We call M = G/K a homogeneous
space and will assume that G is connected in the sequel. The natural action of G on G/K is
denoted by

τg :aK ∈ G/K �→ gaK ∈ G/K (g ∈ G).

Let g be the Lie algebra of G and k the Lie algebra of K , which is a split Lie subalgebra of g.
Let p = π(e) = K . Then the differential (dπ)e :g → TpM has kernel kerdπe = k and gives the
canonical isomorphism g/k ≈ TpM .

Definition 3.2. Let G/K be a homogenous space. Following [13, p. 209], we call (G,K) a
symmetric pair if there is an involutive automorphism σ :G → G such that G0

σ ⊂ K ⊂ Gσ where
Gσ is the fixed point set of σ and G0

σ the connected identity component.

Now let M = G/K be a Riemannian symmetric space, then (G,K) is a symmetric pair in
which the involution σ of G is induced by the symmetry sp at p = π(e) ∈ M and satisfies

τg = spτσ(g)sp. (3.1)

The tangent space TpM at p is a Hilbert space in the Riemannian metric and we denote the
unitary group of TpM by Up which is an amenable group in the strong operator topology of
L(TpM). The Lie algebra g of G has the canonical decomposition

g = k ⊕ p

into ±1-eigenspaces of the involution θ = (dσ )e . We have

[k, k] ⊂ k and [k,p] ⊂ p.

If K is compact, there is an adk-invariant inner product on k. In infinite dimension, there may
still be a nonzero positive semidefinite quadratic form on k, invariant under adk, as shown below.

Let ψ = AdG/K :K → Up ⊂ GL(TpM) be the isotropy representation of K on p = TpM

given by the differential map

AdG/K k = (dτk)p :TpM → TpM

where (dτk)p ∈ Up and ψ induces a Lie algebra homomorphism

ψ∗ := d
(
AdG/K

)
: k → L(TpM).
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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In the operator norm topology, Up is a Banach Lie group and the adjoint representation
AdUp

:Up → Autup of Up on its Lie algebra up = {X ∈ L(TpM): X + X∗ = 0} is given by

(AdUp
u)X = uXu∗ (u ∈ Up, X ∈ up).

Lemma 3.3. Let ℵ0 � dimTpM > 1. Then there is a nonzero positive semidefinite quadratic
form q on the Lie algebra up of Up , which is AdUp

Up-invariant:

q
(
(AdUp

u)X
) = q(X) (u ∈ Up, X ∈ up)

and q is continuous in the norm topology of up .

Proof. We make use of amenability of Up as a topological group in the strong operator topology
of L(TpM). Since TpM is separable, there is a faithful normal real state ϕ on L(TpM).

For X,Y ∈ up , we define a bounded function fX,Y :Up → R by

fX,Y (u) = ϕ(uXY ∗u∗) (u ∈ Up).

We have fX,Y = f
Y,X

and fX,X > 0 for X 	= 0 by faithfulness of ϕ. Moreover, fX,Y is right
uniformly continuous on Up , in the strong operator topology, that is, given a net (uα) converging
strongly to the identity operator I ∈ L(TpM), we have

sup
{∣∣fX,Y (vuα) − fX,Y (v)

∣∣: v ∈ Up

} → 0.

Indeed, since multiplication and the ∗-operation are continuous in Up in the strong operator
topology, we have, by the Cauchy–Schwarz inequality,

sup
v∈Up

∣∣fX,Y (vuα) − fX,Y (v)
∣∣ = sup

v∈Up

∣∣ϕ(
v
(
uαXY ∗u∗

α − XY ∗)v∗)∣∣
� ϕ

((
uαXY ∗u∗

α − XY ∗)(uαXY ∗u∗
α − XY ∗)∗)1/2 → 0.

By amenability of Up , there is a right invariant mean Ψ :Cru(Up) → R. We can define a
quadratic form q on up by

q(X,X) = Ψ (fX,X) (X ∈ up).

Then q is positive semidefinite and AdUp
Up-invariant since f

uXu∗,uXu∗ is a right translation of
fX,X:

fuXu∗,uXu∗(v) = ϕ(vuXX∗u∗v∗) = fX,X(vu)

and right invariance of Ψ yields

q(uXu∗) = Ψ (fuXu∗,uXu∗) = Ψ (fX,X) = q(X).

The inequality supv∈Up
|fXn,Yn(v) − fX,Y (v)| � ‖XnY

∗
n − XY ∗‖ implies that q is norm con-

tinuous.
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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Finally, one can find X,Y ∈ up such that XX∗ + YY ∗ � I . Indeed, if dimTpM =
2,4,6, . . . ,∞, we can pick X and Y having block diagonal matrix representation of the form⎛

⎜⎜⎜⎜⎝
0 1

−1 0
0 1

−1 0
. . .

⎞
⎟⎟⎟⎟⎠ .

If TpM has odd dimension, we can pick

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0

. . .

0 1
−1 0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0 1

−1 0
. . .

0 1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It follows that fX,X(u) + fY,Y (u) � 1 for all u ∈ Up and q(X,X) + q(Y,Y ) =
Ψ (fX,X + fY,Y ) � 1. Hence q 	= 0. �
Remark 3.4. If dimTpM < ∞, then the quadratic form q in Lemma 3.3 is positive definite by
compactness of Up since, for X 	= 0, we have fX,X � c > 0 on Up which implies Ψ (fX,X) �
Ψ (c1) = c > 0. We note that Ψ need not be unique.

Denote by Exp :up → Up the exponential map. We have the commutative diagram

K
ψ

Up ⊂ GL(TpM)

k

exp

ψ∗
up ⊂ L(TpM)

Exp

where, for h = AdG/K k ∈ Up with k ∈ K and for Y ∈ up , we have (AdUp
h)Y = hYh−1 and

hence

Exp
(
AdG/K k

)
Y

(
AdG/K k−1) = (

AdG/K k
)
ExpY

(
AdG/K k−1).

Let X ∈ k and t > 0. Let Ad :K → Aut(k) be the adjoint representation of K . From the commu-
tative diagram above, we have

Exp tψ∗
(
(Adk)X

) = AdG/K
(
exp(Ad k)tX

)
= AdG/K

(
k(exp tX)k−1)

= (
AdG/K k

)(
AdG/K exp tX

)(
AdG/K k−1)

= (
AdG/K k

)
(Expψ∗tX)

(
AdG/K k−1)

= Exp t
(
AdG/K k

)
(ψ∗X)

(
AdG/K k−1)
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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which gives

ψ∗
(
(Adk)X

) = AdG/K k(ψ∗X)AdG/K k−1 (k ∈ K). (3.2)

The adjoint representation AdG :G → Aut(g) splits when restricted to K :

AdG(k)(X + Y) = (Ad k)X + (
AdG/Kk

)
Y (k ∈ K, X ∈ k, Y ∈ p).

Let q be the quadratic form on up in Lemma 3.3 and define a positive semidefinite quadratic
form q0 on k by

q0(X,X) = q(ψ∗X,ψ∗X) (X ∈ k).

Then q0 is invariant under adk since for k ∈ K , we have from (3.2) that

q0
(
(Ad k)X

) = q
(
ψ∗(Ad kX)

)
= q

(
AdG/K k(ψ∗X)AdG/K k−1) = q(ψ∗X)

and hence the infinitesimal version

q0
(
adZ(X),Y

) + q0
(
X, adZ(Y )

) = 0 (X,Y,Z ∈ k).

Lemma 3.5. Let M = G/K be a Riemannian symmetric space. Then the Lie algebra g of G is
orthogonal with respect to an involution whose 1-eigenspace is the Lie algebra of K .

Proof. Let σ :G → G be the involution satisfying (3.1) and let g = k ⊕ p be the canonical de-
composition of the Lie algebra g with respect to the involution θ = (dσ )e. We first show that the
1-eigenspace

k = {
X ∈ g: (dσ )eX = X

}
coincides with the Lie algebra {X ∈ g: exp tX ∈ K, ∀t ∈ R} of K . Since (G,K) a symmetric
pair, we have G0

σ ⊂ K ⊂ Gσ where Gσ is the fixed point set of σ with connected identity com-
ponent G0

σ . Hence σ(exp tX) = exp tX for all t ∈ R implies (dσ )eX = X. Conversely, X ∈ k

implies σ(exp tX) = exp tX for all t ∈ R since the two one-parameter subgroups have the same
initial velocity. Hence exp tX ∈ G0

σ .
Next, let 〈·,·〉p be the AdG/KK-invariant inner product on the tangent space p = TpM induced

from the G-invariant Riemannian metric. Then 〈·,·〉p is adk-invariant on p and g is orthogo-
nal. �

We now extend the characterisation of finite dimensional symmetric spaces by orthogonal Lie
algebras [13] to infinite dimension. By [11, p. 73], if a Banach Lie algebra is the Lie algebra of
a Banach Lie group, then it is the Lie algebra of a connected and simply connected Lie group.
Hence, for our purpose in the sequel, we can confine our attention to simply connected Lie
groups.
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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Proposition 3.6. Let M = G/K be a homogeneous space where G is a simply connected Banach
Lie group and K is connected. The following conditions are equivalent.

(i) M is a Riemannian symmetric space.
(ii) The Lie algebra g of G is involutive and orthogonal, and the Lie algebra k of K is the

1-eigenspace of the involution.

In the above case, the involution of g is given by θ = (dσ )e where σ :G → G is the involution
induced by the symmetry of M at p = π(e).

Proof. (i) ⇒ (ii). This follows from Lemma 3.5.
(ii) ⇒ (i). We show that M = G/K , equipped with a G-invariant metric, is a symmetric space.

The involution of g induces a local involutive automorphism of G, which can then be extended
to an involutive automorphism σ of G by simply connectedness (cf. [4, p. 49]). Since K is
connected, we have K ⊂ {g ∈ G: σg = g} and (G,K) is a symmetric pair. We can define an
involution s on M = G/K by

s(gK) = σ(g)K (gK ∈ G/K).

Evidently p = K ∈ G/K is an isolated fixed point of s. We complete the proof by showing that
G/K admits a G-invariant metric and s is an isometry for this metric.

Let g = k ⊕ p be the eigenspace decomposition with respect to the involution of g. Or-
thogonality provides a positive definite quadratic form q on p, invariant under adk. Under the
identification p ≈ TpG/K , where p = K is the identity of G/K , we have (ds)pX = −X for
X ∈ p and the quadratic form q is an AdK-invariant inner product on TpG/K , which extends to
a G-invariant metric 〈·,·〉 of G/K :

〈X,Y 〉p = 〈
dτg(X), dτg(Y )

〉
gK

(g ∈ G and X,Y ∈ TpG/K)

where τg is the left multiplication by g.
Now we show that s :G/K → G/K is an isometry in this metric. We have

sτg−1 = τσ(g−1)s

since, for each aK ∈ G/K ,

sτg−1(aK) = s
(
g−1aK

) = σ
(
g−1)σ(a)K = τσ(g−1)s(aK).

It follows from the G-invariance of the metric that

〈X,Y 〉gK = 〈dτg−1X,dτg−1Y 〉K
= 〈

(ds)p dτg−1X, (ds)p dτg−1Y
〉
K

= 〈
dτσ

(
g−1)(ds)gKX,dτσ

(
g−1)(ds)gKY

〉
σ

(
g−1)

s(gK)

= 〈
(ds)gKX, (ds)gKY

〉
. �
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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We now characterise Jordan triple systems which correspond to orthogonal involutive Lie
algebras. We first consider the algebraic structures. Let V be a non-degenerate Jordan triple
system and L(V ) its Tits–Kantor–Koecher Lie algebra with the main involution θ . Let

V θ
0 = {h ∈ V0: θh = h} = {h ∈ V0: h + h� = 0}

which is a Lie subalgebra of V0 and the symmetric part g(V ) is contained in V ⊕ V θ
0 ⊕ V . The

dual symmetric part g∗(V ), with the dual involution θ∗(a,h, a) = (−a,h,−a), is also contained
in V ⊕ V θ

0 ⊕ V .

Lemma 3.7. Let V be a non-degenerate Jordan triple system and let L(V ) be its Tits–Kantor–
Koecher Lie algebra, with the main involution θ . The following conditions are equivalent.

(i) The symmetric part (g(V ), θ) of L(V ) is orthogonal.
(ii) The dual symmetric part (g(V ), θ∗) of L(V ) is orthogonal.

(iii) V admits an inner product 〈·,·〉 satisfying

〈
(a b)x, x

〉 = 〈
x, (b a)x

〉
(a, b, x ∈ V ).

Proof. (i) ⇒ (iii). Let (g(V ), θ) be orthogonal with eigenspace decomposition

g(V ) = k ⊕ p

= {
(0, h,0): θh = h

} ⊕ {
(a,0,−a): a ∈ V

}
.

Let q be a positive definite quadratic form on p, invariant under adk. Then V is endowed with
the following inner product:

〈x, y〉 := q
(
(x,0,−x), (y,0,−y)

)
.

Let a, b ∈ V . Then θ(a b − b a) = a b − b a and the adk-invariance of q gives

0 = q
([

(0, a b − b a,0), (x,0,−x)
]
, (x,0,−x)

)
= q

(({abx} − {bax},0, {bax} − {abx}), (x,0,−x)
)

= 〈
(a b)x, x

〉 − 〈
(b a)x, x

〉
.

(iii) ⇒ (i). Let k ⊂ g(V ) be the 1-eigenspace of θ and p the (−1)-eigenspace. We define a
positive definite quadratic form qV :p × p → R by the inner product 〈·,·〉 of V :

qV

(
(a,0,−a), (u,0,−u)

) = 〈a,u〉 (
(a,0,−a), (u,0,−u) ∈ p

)
.

Then qV is adk-invariant. Indeed, let Z = (0, h,0) ∈ k. Then we have

qV

([
Z, (u,0,−u)

]
, (u,0,−u)

) = qV

(
(hu,0,−hu), (u,0,−u)

)
= 〈hu,u〉
Please cite this article in press as: C.-H. Chu, Jordan triples and Riemannian symmetric spaces, Adv. Math. (2008),
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which vanishes. Indeed, let h = ∑
j αj xj yj . Then θh = h implies

∑
j αj (xj yj + yj xj ) =

0 and hence

2〈hu,u〉 =
∑
j

〈
2αj (xj yj )u,u

〉

=
∑
j

〈
αj (xj yj )u,u

〉 + 〈
u,αj (xj yj )u

〉

=
∑
j

〈
αj (xj yj + yj xj )u,u

〉 = 0.

Therefore g(V ) is orthogonal.
The equivalence of (ii) and (iii) is proved similarly. �
We now consider topological structures. Our goal is to characterise Jordan triple systems V

whose Tits–Kantor–Koecher Lie algebra L(V ) admits an orthogonal normed symmetric part.

Definition 3.8. A non-degenerate Jordan triple system V is called a JH-triple if V is a Hilbert
space in which the inner product 〈·,·〉 satisfies〈

(a b)x, x
〉 = 〈

x, (b a)x
〉

(a, b, x ∈ V )

and there is a constant c > 0 such that∥∥(a b)(x)
∥∥ � c‖a‖‖b‖‖x‖ (a, b, x ∈ V )

where the latter condition is equivalent to continuity of the left multiplication (a, b) ∈ V 2 �→
a b ∈ L(V ), where L(V ) is the Banach space of continuous linear operators on V .

Let V be a JH-triple. Then V θ
0 is a subspace of L(V ) and by Lemma 2.13, the TKK Lie

algebra L(V ) is quasi normed and the symmetric part g(V ) is a normed Lie algebra with norm∥∥(u,h,−u)
∥∥ = 2〈u,u〉1/2 + ‖h‖.

Let V θ
0 be the closure of V θ

0 in L(V ). Then

g(V ) = {
(u,h,−u): u ∈ V, h ∈ V θ

0

}
is the completion of g(V ). The Lie product of g(V ) extends naturally to g(V ). With the extended
involution

θ(u,h,−u) = (−u,h,u)
(
(u,h,−u) ∈ g(V )

)
,

(g(V ), θ) is a real involutive Banach Lie algebra with involution θ and eigenspace decomposition

g(V ) = {
(0, h,0): h ∈ V θ

0

} ⊕ p (3.3)

where p = {(u,0,−u): u ∈ V } is also the (−1)-eigenspace of θ in g(V ).
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Likewise g∗(V ) = {(u,h,u): u ∈ V, h ∈ V θ
0 } is the completion of the dual symmetric part

g∗(V ), which is a real involutive Banach Lie algebra with the extended involution θ∗(u,h,u) =
(−u,h,−u) for (u,h,u) ∈ g∗(V ).

Given h ∈ V θ
0 , we have 〈hu,u〉 = 0 for all u ∈ V , by the proof of (iii) ⇒ (i) in Lemma 3.7.

Hence h is skew-symmetric with respect to the inner product of V :

〈hx,y〉 + 〈x,hy〉 = 0 (x, y ∈ V ),

in other words, h∗ = −h = h� where h∗ is the adjoint of h in L(V ).

Theorem 3.9. Let V be a non-degenerate Jordan triple system and (L(V ), θ) its Tits–Kantor–
Koecher Lie algebra, with symmetric part g(V ) and (−1)-eigenspace p ⊂ g(V ) of θ . The follow-
ing conditions are equivalent.

(i) V is a JH-triple.
(ii) L(V ) is quasi normed such that p, with the inherited norm, is a Hilbert space and, with the

extended involution θ from θ , the complete symmetric part g(V ) is an involutive Banach Lie
algebra, orthogonal with respect to the inner product of p.

Proof. (i) ⇒ (ii). Let (V , 〈·,·〉) be a JH-triple. By the above remarks, L(V ) is quasi normed and
the norm on p is a Hilbert space norm:∥∥(u,0,−u)

∥∥ = 2〈u,u〉1/2.

The symmetric part g(V ) is a normed Lie algebra and its completion g(V ), with the extended
involution θ , is an involutive Banach Lie algebra. It remains to show orthogonality.

Let g(V ) = k⊕ p be the eigenspace decomposition with respect to θ , where k = {(0, h,0):h ∈
V θ

0 }. Let 〈·,·〉p be the inner product of p. For h ∈ V θ
0 with h = limn hn and hn ∈ V θ

0 , we have
〈hu,u〉p = 4 limn〈hnu,u〉 = 0 for all u ∈ V . Hence, as in the proof of Lemma 3.7, 〈·,·〉p is
invariant under ad

k
, that is, g(V ) is orthogonal.

(ii) ⇒ (i). Let (g(V ), θ) be orthogonal with respect to the complete inner product 〈·,·〉p of p.
Then g(V ) = k ⊕ p is also orthogonal with respect to 〈·,·〉p. We equip V with the complete inner
product

〈x, y〉 = 〈
(x,0,−x), (y,0,−y)

〉
p

whose norm is equivalent to the inherited norm on V from L(V ). By Lemma 3.7, we have〈
(a b)x, x

〉 = 〈
x, (b a)x

〉
(a, b, x ∈ V ).

Finally, by Lemma 2.13, we have

‖a b‖ � c‖a‖V ‖b‖V (a, b ∈ V )

for some c > 0. Hence (V , 〈·,·〉) is a JH-triple. �
Remark 3.10. Evidently, there is an equivalent version to condition (ii) above, in terms of the
dual symmetric part g∗(V ). We omit the details to avoid repetition.
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Remark 3.11. If V is finite dimensional in Theorem 3.9(i), then one can define an inner product
〈·,·〉k on k = {(0, h,0): h ∈ V θ

0 } by the trace:

〈
(0, h,0), (0, g,0)

〉
k
= Tr(hg∗)

(
h,g ∈ V θ

0

)
which is adk-invariant since

〈[
(0, h,0), (0, g,0)

]
, (0, g,0)

〉
k
= Tr

([h,g]g∗) = 0

where [h,g]g∗ = hgg∗ − ghg∗ = −hg2 + ghg by skew-symmetry of g. It follows that the posi-
tive definite quadratic form q :g(V ) × g(V ) → R defined by

q
(
(a,h,−a), (a,h,−a)

) = 〈
(0, h,0), (0, h,0)

〉
k
+ 〈

(a,0,−a), (a,0,−a)
〉
p

is invariant under θ and adk.

By [1, p. 40], a finite dimensional reduced orthogonal involutive Lie algebra g = k ⊕ p is
semisimple if, and only if, the centralizer z(p) = {X ∈ g: [X,p] = 0} is trivial.

Corollary 3.12. Let V be a finite dimensional JH-triple. Then the TKK Lie algebra L(V ) is
semisimple.

Proof. By Lemma 2.10, L(V ) is reduced. Hence z(p) ⊂ p by [1, Proposition 4.26]. We show
that z(p) = {0}. Fix X = a ⊕ h ⊕ −a ∈ z(p) where θh = −h. For u ⊕ p ⊕ −u ∈ p, we have

0 = [a ⊕ h ⊕ −a,u ⊕ p ⊕ −u]
= (

hu − pa, [h,p] − a u + u a,hu − pa
)
.

Choose p = 0, then hu = pa = 0 for all u ∈ V and hence h = 0 and a u = u a. If we choose
p = u u, then u u(a) = 0 implies u a(u) = a u(u) = 0 for all u ∈ V . By Remark 2.11, we
have a = 0. This proves z(p) = {0}. �

We now give some examples of JH-triples.

Example 3.13. A finite dimensional real Jordan algebra V is called formally real if a2 + b2 = 0
implies a = b = 0 in V . Such a Jordan algebra admits a non-degenerate trace form [24, p. 118].
A finite dimensional real Jordan algebra is formally real if, and only if, it has an identity and is
equipped with an inner product 〈·,·〉 which is associative, that is,

〈ab, c〉 = 〈b, ac〉

(cf. [9] and [3, p. 320]). It follows that a finite dimensional formally real Jordan algebra V is a
JH-triple in the canonical Jordan triple product

{a, b, c} = (ab)c + a(bc) − b(ac).
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We note that the finite dimensional formally real Jordan algebras are exactly the finite dimen-
sional JB-algebras defined in [10].

The real Jordan algebras, called JH-algebras, introduced in [29] are also JH-triples. A familiar
example is the spin factor which is an orthogonal direct sum H ⊕ R of a real Hilbert space
(H, 〈·,·〉) and R, with the Jordan product

(x ⊕ α)(y ⊕ β) = (βx + αy) ⊕ (〈x, y〉 + αβ
)
.

Example 3.14. A finite dimensional Jordan triple system V is called positive if the trace form
Tr(x y) is positive definite. A positive Jordan triple V is a JH-triple with the inner product
〈x, y〉 = Tr(x y). These Jordan triple systems are also called compact in [27] because they
correspond to symmetric R-spaces which are compact. This will be seen later as a special case
of the correspondence between JH-triples and symmetric spaces.

Example 3.15. A JH∗-triple, as defined in [18], is a complex Jordan triple system V which is a
complex Hilbert space in which the triple product is continuous and every operator a a :V → V

is Hermitian. The latter condition is equivalent to the associativity of the inner product:

〈
(a b)x, y

〉 = 〈
x, (b a)y

〉
(a, b, x, y ∈ V ).

JH*-triples can be regarded as real Jordan triple systems with associative real inner product
Re〈·,·〉, in which case the non-degenerate ones are JH-triples. However, the inner product of a
JH-triple need not be associative in the above sense, even in finite dimensions. Let M2 be the
C*-algebra of 2 × 2 complex matrices, regarded as a real non-degenerate Jordan triple system,
with the triple product

{x, y, z} = 1

2
(xyz + zyx).

Define a faithful positive functional ϕ :M2 → C by

ϕ

(
s t

u v

)
= 2s + v.

Let V be a real subtriple generated by a single element a = ( 1 i
0 1

)
in M2. Then V is a real Hilbert

space with the inner product

〈x, y〉 = Reϕ(xy∗) (x, y ∈ V )

and is a JH-triple since b c = c b for all b, c ∈ V , by power associativity. Nevertheless, we
have 〈(a a)a, a3〉 	= 〈a, (a a)a3〉.

In fact, non-degenerate JH*-triples are exactly those JH-triples which admit compatible com-
plex structures and they have been classified in [18,28].

Proposition 3.16. Let V be a non-degenerate Jordan triple system. The following conditions are
equivalent.
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(i) V is a JH*-triple.
(ii) V is a JH-triple with an inner product 〈·,·〉 and a complex structure J :V → V satisfying

〈Jx,Jy〉 = 〈x, y〉 and J (x y) = (x y)J

for x, y ∈ V .

Proof. We only need to show (ii) ⇒ (i). As usual, V is a complex Hilbert space with the complex
inner product

〈〈x, y〉〉 = 〈x, y〉 − i〈Jx, y〉.

Further, it is a complex Jordan triple system with the Jordan triple product

{{x, y, z}} = {x, y, z} + i{x,Jy, z}

which is conjugate linear in the middle variable. Substituting x +y and x + iy for z in the identity

〈〈(a b)z, z〉〉 = 〈〈z, (b a)z〉〉

yields 〈〈(a b)x, y〉〉 = 〈〈x, (b a)y〉〉. Hence (V , {{·,·, ·}}, 〈〈·,·〉〉) is a JH*-triple. �
Remark 3.17. If we define a general JH-triple to be a Jordan triple system satisfying all the
conditions for a JH-triple except non-degeneracy, then the above proof shows that the JH*-triples
are precisely the general JH-triples with a compatible complex structure. In a quasi normed TKK
Lie algebra g−1 ⊕ g0 ⊕ g1, without non-degeneracy, g−1 is a general JH-triple if the complete
symmetric part gs is orthogonal as in Theorem 3.9(ii).

Proposition 3.18. Every finite dimensional real JB*-triple carries the structure of a JH-triple.

Proof. We note that every non-degenerate subtriple of a JH-triple is also a JH-triple with the in-
herited inner product. The real JB*-triples are norm closed real subtriples of complex JB*-triples.
Therefore we need only consider complex JB*-triples. Let H be a finite dimensional complex
Hilbert space and L(H) the complex JB*-triple of linear operators on H . Then ‖a b‖ � ‖a‖‖b‖
for all a, b ∈ L(H) and every subtriple of L(H) is non-degenerate since Qa = 0 implies
{a, a, a} = aa∗a = 0. Define the canonical inner product 〈·,·〉 on L(H) by the trace:

〈x, y〉 = Re Tr(xy∗)
(
x, y ∈ L(H)

)
.

Then 〈·,·〉 is associative:

〈
(a b)x, y

〉 = 1

2
Re Tr(ab∗xy∗ + xb∗ay∗)

= 1

2
Re Tr(xy∗ab∗ + xb∗ay∗)

= 〈
x, (b a)y

〉 (
a, b, x, y ∈ L(H)

)
.
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It follows that L(H) and all finite dimensional JW*-triples are JH-triples.
We now consider the exceptional ones. The JB*-triple M3(O) of 3 × 3 Hermitian matrices

over the Cayley algebra O is a JB*-algebra which is the complexification of a JB-algebra and by
Example 3.13, admits an associative inner product via complexification.

Finally the JB*-triple M12(O) of 1 × 2 matrices over O is a subtriple of M3(O) and is there-
fore a JH-triple. �

We refer to [28] for a complete list of simple positive JH*-triples.

4. Jordan triples and symmetric spaces

We show in this final section the correspondence between JH-triples and Riemannian sym-
metric spaces, and conclude with some examples. We denote the centre of a Lie algebra (g, [·, ·])
by

z(g) = {
X ∈ g: [X,g] = 0

}
.

Although not all infinite dimensional Lie algebras are enlargeable, we have the following useful
condition for enlargeability (cf. [11, p. 7] or [30]).

Lemma 4.1. A Banach Lie algebra with trivial centre is the Lie algebra of a Banach Lie group.

We first consider the centre of the complete symmetric part g(V ) for a JH-triple V .

Lemma 4.2. Let V be a JH-triple and g(V ) the symmetric part of its Tits–Kantor–Koecher Lie
algebra (L(V ), θ). The centre of g(V ) is given by

z
(
g(V )

) = {
(a,0,−a): a x = x a, ∀x ∈ V

}
.

Proof. Let X = a ⊕ h0 ⊕ −a ∈ g(V ). If X ∈ z(g(V )), then for x ⊕ g ⊕ −x ∈ g(V ), we have

0 = [a ⊕ h0 ⊕ −a, x ⊕ g ⊕ −x]
= (

h0x − ga, [h0, g] − a x + x a,ga − h0x
)
.

Choose g = 0, then h0x = ga = 0 for all x ∈ V and hence h0 = 0 and a x = x a. The argu-
ments can be reversed since a x = x a for all x ∈ V implies ga = 0 for all g ∈ V θ

0 . �
The above lemma leads to the definition of the following closed subspace of a JH-triple V :

Z(V ) = {a ∈ V : a x = x a, ∀x ∈ V }.

As V is a Hilbert space, we have the direct sum decomposition

V = Z(V ) ⊕ Z(V )⊥.

Lemma 4.3. Given a JH-triple V , the subspace Z(V ) is an associative subtriple of V .
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Proof. We need only to show that Z(V ) is a subtriple of V for which, it suffices to show a ∈
Z(V ) implies a3 = {a, a, a} ∈ Z(V ), by the polarization formulae

6{b, a, b} = (a + b)3 + (a − b)3 − 2a3,

2{a, x, b} = {a + b, x, a + b} − {a, x, a} − {b, x, b}.

Let a ∈ Z(V ). We have

{
a, x, {a, a, y}} = {{a, x, a}, a, y

} − {
a, {a, x, a}, y} + {

a, a, {a, x, y}}
= {

a, a, {a, x, y}}
= {

a3, x, y
} − {

a, {a, a, x}, y} + {
a, x, {a, a, y}}

= {
a3, x, y

}
where {a, {a, a, x}, y} = {a, y, {a, a, x}} = {a, a, {a, y, x}}. Hence

(
a3 x

)
(y) = {

a, a, {x, a, y}}
= {{a, a, x}, a, y

} − {
x, a3, y

} + {
x, a, {a, a, y}}

= 2
{
a3, x, y

} − {
x, a3, y

}
= (

x a3)(y)

and a3 ∈ Z(V ). �
Lemma 4.4. Let V be a JH-triple and let z(g) be the centre of g(V ). Then we have the decom-
position g(V ) = z(g) ⊕ z(g)o where

z(g)o = {
(x,h,−x): x ∈ Z(V )⊥ and h ∈ V θ

0

}
is a Lie subalgebra of g(V ) with trivial centre.

Proof. The direct sum decomposition follows from Lemma 4.2 and the decomposition V =
Z(V ) ⊕ Z(V )⊥. We note that V θ

0 ⊂ L(V ) and by the remarks before Theorem 3.9, each g ∈ V θ
0

is skew-symmetric with respect to the inner product of V . Given x ∈ Z(V )⊥ and g ∈ V θ
0 , we

have

〈gx, a〉 = −〈x,ga〉 = 0

for all a ∈ Z(V ), as in the proof of Lemma 4.2. Hence gx ∈ Z(V )⊥.
Let X = (x,h,−x), Y = (y, g,−y) ∈ z(g)o. We have

[X,Y ] = (
hy − gx, [h,g] − x y + y x,gx − hy

)
where hy − gx ∈ Z(V )⊥ implies [X,Y ] ∈ z(g)o.
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Further, if [X,Y ] = 0, then choosing g = 0, we have hy = 0 for all y ∈ Z(V )⊥ and hence
h = 0 since ha = 0 for all a ∈ Z(V ). It follows that x y = y x for all y ∈ Z(V )⊥. But x a =
a x for all a ∈ Z(V ). Hence x ∈ Z(V ) ∩ Z(V )⊥ and x = 0. This proves the triviality of the
centre of z(g)o. �

Given a JH-triple V with TKK Lie algebra (L(V ), θ), we note from (3.3) that the (−1)-
eigenspace of θ in g(V ) coincides with the (−1)-eigenspace of θ in the complete symmetric part
g(V ). This motivates the following definition.

Definition 4.5. A Riemannian symmetric space G/K is said to be associated to a TKK Lie
algebra if the involutive Lie algebra (g, σ ) of G is the complete symmetric part (hs , θ) of a quasi
normed Tits–Kantor–Koecher Lie algebra (h, θ) and the (−1)-eigenspace of θ in hs coincides
with that of θ in hs , in which case, G/K is called a Jordan symmetric space.

Remark 4.6. A symmetric space G/K is a Jordan symmetric space if the Lie algebra (g, σ )

of G is the complete dual symmetric part (h∗
s , θ

∗) of a quasi normed TKK Lie algebra (h, θ)

and the (−1)-eigenspace of θ∗ in h∗
s coincides with that of θ∗ in h∗

s . Indeed, h∗
s is the complete

symmetric part of (h, θ∗) by Remark 2.5.

Theorem 4.7. We have the following correspondence between JH-triples and Jordan symmetric
spaces.

(i) Let V be a JH-triple. Then there is a Riemannian symmetric space G/K such that the Lie
algebra of G is the complete symmetric part g(V ) of the TKK Lie algebra L(V ) of V .

(ii) Let G/K be a Jordan symmetric space. Then there is a JH-triple V such that L(V ) is the
canonical part of the TKK Lie algebra associated to G/K . Further, if G/K is associated
to a canonical TKK Lie algebra, then the complete symmetric part g(V ) of L(V ) is the Lie
algebra of G.

Proof. (i) Let V be a JH-triple and let L(V ) be its TKK Lie algebra with involution θ . Then
the complete symmetric part g(V ) is a Banach Lie algebra and θ extends to an involution θ on
g(V ). By Lemma 4.4, we have g(V ) = z(g) ⊕ z(g)o where the centre z(g) is the Lie algebra of
itself as a Lie group, and the Lie algebra z(g)o has trivial centre and is therefore the Lie algebra
of a Banach Lie group. It follows that g(V ) is the Lie algebra of a simply connected Banach

Lie group G, and the 1-eigenspace k = {(0, h,0): h ∈ V θ
0 } ⊂ g(V ) of θ is the Lie algebra of a

connected Banach Lie subgroup K of G. By Theorem 3.9, g(V ) is an orthogonal involutive Lie
algebra and by Proposition 3.6, G/K is a Riemannian symmetric space.

(ii) Conversely, let G/K be a symmetric space such that the Lie algebra (g, σ ) of G is the
complete symmetric part (hs , θ) of a quasi normed Tits–Kantor–Koecher Lie algebra (h, θ) and
the (−1)-eigenspace of θ in hs coincides with that of θ in hs . Then, by Theorem 2.9 and the
construction in Lemma 2.6, there is a normed Jordan triple V such that

h = h−1 ⊕ h0 ⊕ h1 ⊃ L(V ) = V ⊕ V0 ⊕ V

with h±1 = V and hs contains the complete symmetric part g(V ) of the TKK Lie algebra L(V )

which is the canonical part hc of h.
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By Proposition 3.6, (hs , θ) is orthogonal with respect to a complete inner product 〈·,·〉p on the
(−1)-eigenspace of θ , which equals the (−1)-eigenspace p = {(a,0,−a) : a ∈ h−1} of θ in hs .
Since p is also the (−1)-eigenspace of θ in g(V ), it follows that (g(V ), θ) is also orthogonal with
respect to 〈·,·〉p. Hence V is a JH-triple by Theorem 3.9.

Finally, if h is canonical, then h = L(V ) and (hs , θ) = (g(V ), θ). �
In the correspondence between Jordan symmetric spaces and JH-triples, a pair of mutually

dual symmetric spaces corresponds to the symmetric part and the dual symmetric part of a TKK
Lie algebra L(V ). Let (g, σ ) be the involutive Lie algebra of a Jordan symmetric space G/K and
let V be a JH-triple such that g = g(V ) and σ = θ , where g(V ) is the symmetric part of the TKK
Lie algebra (L(V ), θ) of V . Let g = k ⊕ p be the eigenspace decomposition. The dual of G/K

has the Lie algebra (g′, σ ′) where

g′ = k ⊕ ip and σ ′(k + ip) = k − ip.

Given g = g(V ) = {(0, h,0): θh = h ∈ V θ
0 } ⊕ {(a,0,−a): a ∈ V }, we have

g′ = {
(0, h,0) : θh = h ∈ V θ

0

} ⊕ {
(ia,0,−ia): a ∈ V

}
.

The following Lie algebra isomorphism identifies g′ with the dual symmetric part g∗(V ):

ψ : (ia,h,−ia) ∈ g′ �→ (a,h, a) ∈ g∗(V )

where ψσ ′ = θ∗ψ and θ∗ is the dual involution of L(V ).
We conclude with the following examples showing the correspondence between JH-triples,

Hermitian symmetric spaces and R-spaces. Other examples of infinite dimensional symmetric
spaces have been studied in [11].

Example 4.8. The correspondence between Hermitian symmetric spaces and JH*-triples have
been shown by Kaup [18]. This correspondence can be seen from the perspective of TKK Lie
algebras.

Let M be a Hermitian symmetric space and let g = k ⊕ p be the associated Lie algebra and
decomposition with respect to the involution θ = Ad sx0 induced by the symmetry sx0 at a base
point x0 ∈ M . Let

J :p → p

be the complex structure of p satisfying θJ = Jθ . Let pc be the complexification of p and extend
J to a complex linear map on pc , also denoted by J . Let

p+ = {X ∈ pc: JX = iX}, p− = {X ∈ pc: JX = −iX}

be the ±i-eigenspaces of J so that

pc = p+ ⊕ p−
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and hence the complexification gc of g has a decomposition

gc = p+ ⊕ kc ⊕ p−

where

X ∈ p �→ X − iJX ∈ p+

is a complex linear isomorphism. The real Lie algebra gc has an involution given by

σX = θX

where the natural extension of θ to gc is still denoted by θ . We have σ(p+) = p− and

[kc,p±1] ⊂ p±1, [p±,p±] = 0

since [JX,JY ] = [X,Y ] for all X,Y ∈ p. We also have [p+,p−] ⊂ kc. Hence (gc, σ ), as a real
Lie algebra, is a Tits–Kantor–Koecher Lie algebra and the space p+ ≈ p is a Jordan triple system
with Jordan triple product

{X,Y,Z} = [[X,σY ],Z]
.

Moreover, g is orthogonal by Lemma 3.5, and identifies with the complete symmetric part of gc

by the map

(Y,X) ∈ g = k ⊕ p �→ (X − iJX,Y,X + iJX) ∈ gc

where X + iJX = −σ(X − iJX). Hence p is a general JH-triple and also a JH*-triple by Re-
mark 3.17.

If g is finite dimensional, reduced and semisimple, then it is the symmetric part of a canonical
TKK Lie algebra since in this case, we have [p,p] = k by [2, p. 23].

Conversely, let V be a non-degenerate JH*-triple and let

L(V ) = V−1 ⊕ V0 ⊕ V1

be its Tits–Kantor–Koecher Lie algebra with the main involution θ . Define

σX = (−1)αX (X ∈ Vα)

and X = σθX for X ∈ L(V ). Let g = {X ∈ L(V ): X = X} be the real form of X �→ X. Then
σ is an involution on g. Since X ∈ g if, and only if, X = σθX, in which case X is of the form
(a,h,−a) with a ∈ V and θh = h, it follows that σ |g = θ |g and (g, σ ) is the symmetric part of
L(V ) with orthogonal completion g = k ⊕ p, where p = {(a,0,−a): a ∈ V } inherits the Hermi-
tian structure from V and g gives rise to a Hermitian symmetric space.
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Example 4.9. Loos [27] has shown the one–one correspondence between symmetric R-spaces
and finite dimensional positive Jordan triple systems.

The construction in [27], same as in [31], is essentially equivalent to the TKK construction in
Lemma 2.6 apart from a sign difference. Indeed, given a finite dimensional positive Jordan triple
system (V , {·,·, ·}), which is a JH-triple, the Lie algebra L constructed in [27] is the TKK Lie
algebra (L(V ′), θ), where (V ′, {·,·, ·}′) is the Jordan triple (V ,−2{·,·, ·}).

The positive definiteness of the trace form

(x, y) ∈ V × V �→ Tr(x y) ∈ R

implies that θ is a Cartan involution since the Killing form B of L(V ′) satisfies

B(X,θX) = −BL(V ′)0(h,h�) − 2 Tr(hh�) + 2 Tr(a ′a) + 2 Tr(b ′b)

= −BL(V ′)0(h,h�) − 2 Tr(hh�) − 4 Tr(a a) − 4 Tr(b b)

which is negative definite for X = (a,h, b) ∈ L(V ′), where BL(V ′)0 is the Killing form of
L(V ′)0 = V ′

0 and a ′b(·) = {a, b, ·}′ = −2a b (cf. [31, p. 38]). The Lie algebra of the cor-
responding symmetric R-space is the dual symmetric part g∗(V ′) of L(V ′), with dual involution
θ∗(x,h, y) = (−y,−h�,−x), where

g∗(V ′) = {
(a,h, a): a ∈ V ′, θ∗h = h

}
= k′ ⊕ p′

= {
(0, h,0): θ∗h = h

} ⊕ {
(a,0, a): a ∈ V ′}.

The restriction of the Killing form B on p′ is negative definite:

B
(
(a,0, a), (a,0, a)

) = 4 Tr(a ′a) = −8 Tr(a a) < 0.

We note that (L(V ′), θ) is orthogonal with respect to the positive definite quadratic form
−B(X,θX) and g∗(V ′) is the 1-eigenspace of θ on L(V ′), which is the Lie algebra of a compact
subgroup of the Lie group of L(V ′).
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