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Cette matrice est conjuguée dans H a la matrice:

Loy L.
<0 /1>®1d®1d.

‘Comme le produit de ces deux matrices agit comme l’homothétie de rapport 4, on en
déduit que 7 (w) = —2gmt(1), ce qui prouve le corollaire aussi dans ce cas.
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Matrix-valued harmonic functions on groups

By Cho-Ho Chu at London

e 11Abstract. We study the basic structures of matrix-valued harmonic functions on
; ally compact groups. We §how that the bounded matrix-valued harmonic functions
n a group form a Jordan triple system and we determine its structure. We also show

that Liouville property impli ili
] plies amenability of the group. We characteri
matrix-valued harmonic functions on abelian groups. . Frize the unbounded

bl

1. Introduction

o In thlso paper, we embark on a systematic study of matrix-valued harmonic functions

funftri?;}s)&w ur ﬁtrst (;cask 1s to understand the basic structures of matrix-valued harmonic
. We extend some well-known results for real (com i i

: v 1 mplex) harmonic functions on

iglraoups to tfhe mgtnx-valued case, but in contrast, we show that the bounded matrix-valued

latrtmoplc gnctlons form a ternary Jordan algebra, that is, a Jordan triple system. The

er introduces a new aspect of non-associative structure into the theory of harmonic

We begin with some background. Let G be a Li
: d. le group and let A be the Lapla
iorfx:;?tor onG. A functhn fe C°°.(G) is harmonic if Af = 0. It is well-known (cf. [22] P[26C]f)3
Gs case that therej exists a family {o;}:0 of absolutely continuous probability meeisures
on G such that f satisfies the following convolution equations

f=f*o (1>0)

which motivates the followin iti i ili
g definition. Given a probability measure
compact group G, a Borel function f: G — R is called a-harmoZic if f=f Z ao o locally

RecenI;armomg functions on groups play an important role in many areas of mathematics.
Y Y, matru‘i—va_lued harmonic functions on groups have been studied in [8], [10], [33]
some applications to problems concerning the L”-dimension of vector—v;llueci self:

similar measures. As in the scala i
: . r case, the matrix-valued harmoni i
arise naturally in the following way. e functions on groups
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Let G be a Lie group and let M, be the C*-algebra of n x n complex matrices. Let
1 be the left-invariant Haar measure on G. Let L*(G, M,,) be the usual Banach space of

(equivalence classes of) M,-valued L?-(Bochner) integrable functions on G (w.r.t. /1) (cf.
[15], p. 97). Naturally L*(G, M) is a left Hilbert M,-module with the Mj,-valued inner

product

fr90= éf f(x)g(x)" dA(x).

Let C* (G, My) be the space of Mj-valued infinitely differentiable functions on G with
compact support, where a function f = ( fi): G — My isin C*(G, M,,) if and only if each
fyis in C°(G). Then C°(G, M) is dense in L*(G, M,).

Let w e C®(G, M,,) be pointwise positive and invertible, and let

 L3(G,M,) = {hw™': he L*(G, My)}
which is a left Hilbert M,-module with inner prodilct_ LF gy = {fw,gw).

Let &: C°(G, M) — LL(G, M;) be an (unbounded) operator which generates a one-
parameter semigroup of bounded operators

H;: L2(G,M,) — LL(G,M,) (tz0).
Let & be left—iﬁvariant, that 1s, 3 commutes with the left translation
Lu: LfV(G,/Mn) L I2(G,M,)
defined by |

(L)) =F@y) @,ye6)

Suppose that # is a left M,-module map. Then so is H,. If, for any ¢ > 0 and x € G, the
left M,,-module map - ; ‘

feLX(G,My,) — H.f(x) e M,

is bounded and H,f is continuous, then there exists ¥ x € L2(G, M) (cf. [20], Proposition
4.4) such that

)

Hif () = [ O 0)ex(3) 40,

Since L,.% = ¥L,, we have (L, H;)f(x) = H:f (u~'x) which gives, for 1-almost all y € G,

W (D), 1x(3) = W (W) ¥yx(wy)  (u € G).

Define h; = w?¥, .. Then hy(x71y) = w2(x " 1y) ¥y o (x71y) = w2 (9) ¥r2()-
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We call a function f € C*(G, M,) &-harmonic if £f = 0. Given such a function f,
we have

.

fO) = Hf () = [ fO)h(x1p) dAy) = F * (hed)(x) (2> 0)

G

where /,(z) = hy(z"!) and h,.A is an M,-valued measure on G. Thus f satisfies a family of
matrix-valued convolution equations. '

Let G be a locally compact group and let o be an M,,-valued measure on G. A func-
tion f: G — M, is called o-harmonic if it satisfies the following convolution equation

f;f*a

where the convolution can be computed in the following way. Given f = (f;) and o = (gy)
where f;: G — C and oy is a complex-valued measure on G, the function f *o: G — M,
has the ij-th entry ' o

(F o)y =T furoy

=

Examples of & cén be constructed from different ‘weights” w. For simple illustration,
. A
if we take w = 1, then 3:"Cc°°(G, M,) — L*(G, M,,) and we can have & = .
etA _ A
So H; = . (cf. [13], p. 149) and (fij) is #-harmonic if and only if each f; is
otA '

A-harmonic. We note that however, in general, if f = (f;) is o-harmonic for some measure

g = (o), each f; need not be ¢y-harmonic.

We now give a brief review of the paper. We first develop in Section 2, for com-
pleteness, some basic tools for matrix-valued measures and integration, such as polar rep-
resentation of a measure, Riesz Representation Theorem, Fubini Theorem and convolu-
tion, which will be used for later computation. We give a brief introduction in Section 3 to
Jordan structures in Banach spaces and prove some structure results for the ranges of
contractive projections on type I finite Jordan triple systems. These results are motivated
by a later application. In Section 4, we study bounded matrix-valued harmonic functions.
Given an M,-valued measure ¢ on a locally compact group G with |[o]| = 1, we construct
a contractive projection P on the space L®(G, M,) of (essentially) bounded M,-valued
functions on G such that the range of P is the space H,(G,M,) of bounded M,-valued
o-harmonic functions on G. This extends a result in [9]. Using the non-associative analysis
in Section 3, we determine the structure of H,(G, M,,) completely as follows: H,(G, M,) is
linearly isometric to a finite #*-sum @ L®(Qx) ® Cx where Cy is a finite-dimensional Car-
tan factor of the following type: k '

(i) My, the space of complex p x g-matrices;

(i) S,, the space of complex p x p symmetric matrices;
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(iii) Ap, the space of complex p X p skew symmetric matrices;

(iv) V,, the spin factor of dimension at least 3, consisting of complex p x p matrices
such that a € ¥, implies a* € ¥, and a? is a scalar multiple of the identity matrix.

Further, H,(G, M,) is a Jordan algebra if there is a unitary o-harmonic function on
G. The above result generalizes the familiar one in the scalar case [1], [9], namely, H,(G,C)
is isometric to L% (Q) which gives a Poisson representation of H,(G,C), with the spectrum
of L®(Q) as the Poisson boundary.

We next study the Liouville property. Using a matrix-valued Fourier transform and
the Peter-Weyl Theorem, we show that, as in the scalar case, every continuous M,-valued
o-harmonic function on a compact group is constant if ¢ is positive, adapted and llo]l = 1.
A similar result for abelian groups has been proved in [8] and one expects that it should
generalize to some other groups including nilpotent groups. Using the contractive projec-
tion P, we also show that a group G is necessarily amenable if there is a positive, norm-one
M,-valued measure o on G such that all bounded M,-valued o-harmonic functions on &
are constant. -

Section 5 concerns unbounded harmonic functions. Our objective is to extend
Schwartz’s result [41] for mean periodic functions on R to the matrix-valued case. For
this, we introduce a useful device, namely, the determinant of a matrix-valued measure
which enables us to reduce some arguments to the scalar case. Given an M,-valued mea-
sure o on an abelian group G with compact support, we make use of [23], [19] to extend
Schwartz’s result by showing that the continuous M,-valued g-harmonic functions on G are
synthesized from the M,-valued exponetial polynomials. Finally in Section 6, we extend
Choquet and Deny’s method in [4], [14] to show that the (unbounded) positive matrix-
valued g-harmonic functions on abelian groups, with range commuting with that of o, are
integrals of matrix-valued exponential functions. Naturally several directions can be fol-
lowed, an obvious next step is to examine other classes of groups and to extend, for instance,
the results in [7], [9], [11] to the matrix-valued case. This will be considered elsewhere. One
can also consider harmonic functions taking values in subspaces of M,, for example, in
matrix groups. ' : ' '

2. Matrix-valued measures and integration

For future reference and to clarify terminology as well as avoiding possible measure
theoretic pitfalls, we first develop a self-contained theory of matrix-valued measures and
integration which may also be of some independent interest. Let G be a locally compact
space and 4 be the o-algebra of Borel subsets of G. Let M, be the C*-algebra of complex
n x n matrices and let M;" be the positive cone of M, consisting of all self-adjoint matrices

with non-negative eigenvalues. The trace Tr: M, — C is a positive linear functional of norm -

n. Bvery continuous linear functional ¢: M, — C corresponds to a unique matrix 4, € My
such that p(B) = Tr(4,B) and |¢|| = Tr(|4,|) where |4p] = /ApAy. We will identify-the
dual M}, via the map pe M, — 4, € M, with the complex vector space M, equipped
with the trace norm || 4|1 = Tr(|A]) = ||4]|. Given 4 = (a;) € My, we have
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i < (;laz}!z)i < Al

Henceznorm convergence in ﬂ/{n is equivalent to entry-wlise convergence. We also note that
Tr(|4]") = Tr(44%) = 3 |ag|* and || 4] < VA Tr(|4])? < n]l4]. |
] o

By an Mn-valued measure ;. on G, we mean a (norm) countably additive function
u: # — M,. Since the trace norm | - ||; is equivalent to the C*-algebra norm on M, and
M} = (My, || - ||1), we can also regard an M,-valued measure on G as an M, *'-valuednmea-
sure, and vice versa. A measure u is said to be positive if it is M} -valued. A ré:omplex mea-
sure v: # — C is also regarded as the M,-valued measure v(-)I, where I, (or simply I if n is
understood) always denotes the identity matrix in M,. Likewise, a complex function
f: G — Cis regarded as the M,-valued function f(-)I,. ’

If we use the matrix notation u = () t_hen each y; is a complex-valued measure
on G. We note that complex-valued measures are not only bounded, but also of bounded

variation [38], Theorem 6.4. The variation |v| of a Banach space-valued i
et s 1] 2 o V] p alued measure v on G is

() = sup{ = (2 |

wh‘ere. the. supremum is taken over all partitions # of E into a finite number of
pairwise disjoint Borel sets. One can verify directly that |v| is a monotone non-negative
extended real-valued, finitely additive set function. We say that v is of bounded variation if
[V[(G) < oo in which case we define the norm of v to be ||v|| = |v|(G).

R.eI.nark 1. The positive matrix |u(E)| = +/u(E)u(E)* should not be confused with
the positive number |y|(E). ‘ A

. Lemma 2. Let u be an M,-valued measure on G. Then u is of bounded variation and
|| is countably additive.
Proof. Let u= (). If {Ex} isa finite partition of G, then

1

(Bl < (2 mij(Eknz)i < 5y (B

which gives Xk: le(ER)| £ ijz |y (Ex)| = 3 |uz1(G). Hence |u](G) < oo. The countable
o e . v g " ‘
additivity of |u| follows from [15], p. 3. [J ' o

Throughou’r: the paper, all M,-valued measures u are assumed to be regular which
;neans that po u is a regular complex Borel measure for every p € M,* (cf. [38], p. 131). It
ollows that the variation |y is also regular. We will write pu for p o p.
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For an M,-valued measure , its total variation norm is given by ||u[| = |Wl(G). If we
regard u as M -valued, then its variation |\ul1 with respect to the trace norm | - [|1 i also
bounded and we denote by ||lull1 = |ul1(G) the corresponding total variation norm of 4.

Let M(G, M?) be the space of all M -valued measures on G, equipped with the total
variation norm || - ||1. It is clearly isomorphic to the space M (G, M,,) of M,-valued mea-
sures on G, equipped with the total variation norm |- Il Let Co(G, M,) be the space of
continuous M,-valued functions vanishing at infinity, equipped with the supremum norm.
We will show that M (G, M) can be identified as the dual of Co(G, M,). We need to define

matrix-valued integration first.
Given z € M(G, M,), using the natural bilinear map
(4,B) e M, x My — AB e M,,

as in [2], [10], one can define the u-integrable f_unctions f: G — M, and the bilinear
vector integrals [ f du for E € #. For our purpose, we extend the notion of a complex-

E

valued u-integrable Borel function, which is stronger than the definition of a u-integrable
complex function, to the matrix-valued case. Given u = (), a function f=(fy): G— M,
is said to be u-integrable if each fj is a Borel function and the integrals | f3; du, exist for
all i, j, k,Z in which case, we define G

[ fdu= (Znifﬁkd;z;g>eMn (Ec®).
E k=1E ,

By a simple function f:G — M,, we mean f =Y Aixg where Aie My, xg, 18
%

the characteristic function of Ey € % and {E;} is a partition of G. For such a function f,
we have ' ‘ ‘

[ fdu="73 Axp(E N Ey).
E %

Given any u-integrable function f: G — M,, entry-wise considerétion yields a sequence
(fi) of simple functions on G such that H}ngo [ fin(x) —f(x)]| =0 for each xe G and

[fdu= lirré0 [ fn dufor every E € 4. From this and using [10], p. 161 and Lemma 2.3,
E m=o g '

and fn < fur1 = f. An M} -valued function will be called positive.

Since ||u(E)|| < |ul(E) for every E € B, puis absolutely continuous with respect to |y
in the sense of [15], p. 10. By the Radon-Nikodym property of M, (cf. [15], p. 82), thereis a
Bochner |u|-integrable function w: G — M, such that

HE) = gwdl#l (E€%).

if f: G— M is u-integrable, then the sequénce (fm) can be chosen to be M-valued
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We denote this by 4 = w - |u| and call it the 1

n ) polar representation (or decomposition) of u. Wi
Fefer to [15], p. 44 for the definition of a Bochner integral. The set F = {x e G : Hco)(x) ”ﬂ> 1;
is |¢|-measurable and by [15], p. 46, we have B

ul (E) = g o)l dlul(x) (E e %)

which implies that |u|/(F) = 0. On the other hand, J(1=Jlox)) d|u|(x) : 0 for every
E

E e % mmplies that [o(x)| =1 |u|-almost everywhere. By redefining w, we can therefore
gssume/z that [[o(x)|| = 1 for every x € G. Likewise, there is a Bochner | ,Lt]l-integrable func-
tion w’: G — M, such that ||w'(x)||; = 1 for every x e G and "

H(E) = Efa)/d|ﬂ|1 (Ee ).

We note that if x is M -valued, then w(x) e M} for | i

M; , o ul-almost all x € G. This follows
iom tlie.fact that thfere is a sequence {p,} of positive linear functionals on M, such that
Ae Mn if, and only if, p,(4) = 0 for all k, and that 0 £ pu(E) = [ prowd|u|forall E ¢ &
implies p(x) 2 0 for |u|-almost all x € G. ' - E

Let f: G — M, be u-integrable. Then we have -

[fdu=[fodu (Eec%).
E E .

Indeed we have <I£fd,u> = Zk:gfikd,ukj = ;gﬁkwkj dly| = <jfcod],u]> since

g j
Upj = Dfj - |l

as complex-valued measures. We note that f is u-integrable if, and only if, it is Bochner

u/-integrable. Thi
Jn’lcegrali | e s fact and the above formula gnable us to use the theory of Bochner

We have the following matrix-valued version of Fatou’s Lemma.

Lemma 3. Let u be a positive M,-valued measure on G and let (f;) be a sequence

of M -valued u-integrable functions on G . o
‘ . conv > X
f:iG— M. Then . erging pointwise to a u-integrable function

Tr(ffd,u) < liminf Tr(ffkd,u) .
» G : k—o0 G

. EGl"roof. Let u = w - |u| be the polar decomposition. Then w(x) = 0 for |u|-almost all
- The sequence {Tr( f}c(x)a)(x))},‘f’=1 consists of |u|-almost everywhere non-negative
lons on G, converging pointwise to 77( f(x)w(x)). By Fatou’s Lemma, we have
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Tr(gfdﬂ>v = Tr(ffwdiﬂl> |

E;[ r(fo)dlyl = lmmlnffTr(ﬁcw d[/x\

= liminf Tr(fﬁcd,u) O

Lemma 4. Let y be an M, -valued measure and let f G — M, be u-integrable and
bounded. Then for E € %, we have

(] siimE @ | gfdu”l ; 1 ke B

Proof. By [15], p. 46, we have
|1 rodu| s [iratalaue < irele(®). O

We are now ready to show that Co(G, M,)" identifies with M(G, M) which is a
matrix-valued version of the Riesz Representation Theorem.

Lemma 5. The map ue M(G, M) r.—;,u(') € CO(G, M,)" defined by
un="(17dn) (7 CulG,M)

is a linear isometric order-isomorphism.

Proof. The map is clearly linear. We first show that it is an isometry. To see that
4| £ 141(G); let f € Co(G, My). Then | |

r{y)

) | oo aaed

IIA

[IIf ) ()l dls () < 1711141 (G)

which gives [|ju(-)|| < |#l1(G). To reverse the inequality, let ¢ > 0. Let {E;}E, be a par-

tition of G and choose compact sets K; = E; such that |u|(E\K;) < % Choose disjoint

open sets ¥; > K;, with compact closure, such that |u|(V;\K;) < 5—. There are continuous

, kn
functions f;: G — [0, 1] such that fi(K;) = {1} and f;(G\V;) = {0}. Let l,u(Ei)lv= u;u(E;)
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be the usual polar decomposition in. M,,, where
> u; is a partial isometry in M,. Defin
function f € Co(G,M,) by f = Zu,f, Then || f|| £ 1 and I‘Y e

I(ED)| = uil(Er) = uips(K;) + wips(EAK;)

=u; [ fidu—u; [ fidu+uu(E\K;).
Vi VAK; _

‘We have

(El - Tr(ffdu>] = 5| I - ro( futan)|

>

Tr(m E)| - [ufidu)|

ST

I—fufdu“

— U f du+uu(E\K;)
VAK; )

= n;.(nuz:u (VKD |1 (BAKD) < 26
which gives [|u(-)[| Z |u/1(G).
To show surjectivity, let ¢ € Co(G, M,)*. We note that Co(G, M) identiﬁes with

f]t};[e injective tensor product Co(G) ® M. Let {e; : i,j = 1,...,n} be the canonical basis in
»- Then each f € Co(G, M,) can be expressed as f = (f) = Zfij ® ¢é; with fir e Co(G).

By [24], Proposition 32, there is a Borel measure * ar
C, ¥
function g: G — M?* such that me 0( G)* and a Bochner m-integrable

o(f) = w@fzj ® e)

= [ /5(x) Tr(egg(x)) dm(x)

jG-

,—fo, x); dm(x).

jG

Define an M;'-valued measure x on G by

= [gdm (Ee3).
E

Then Tr(é[fd,u> = Zt: <gfg dm)ﬁ Xl:; gﬁjgﬁ dm = w(f)which shows ¢ = u()

—
:
,
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Finally, we show that x is positive if, and only if, u(-) is positive. Let x be positive.
Then for a positive simple function f= Z Aixg, with 4; 2 0, we have

1

) = 7r{ [ du) = £ () = £ Pu(E AtE) 20

Suppose, conversely, u(-) is positive. Let E € 2. Given any 4 € M, the function /= Axg
is positive and hence Tr (AW(E)) =T r< If d,u) > 0 using standard approximation of Ayg
G

by continuous functions. As 4 was arbitrary, we have ,u(E) =>0. O

For the space M (G, M,) of M,-valued measﬁres, we have the following identification.

Lemma 6. The map ji € M(G, My) — u(-) € Co(G, My;)" defined by
wn=1r(J7du) (oG M)
G

is a linear isometric order-isomorphism.

Proof. The arguments are similar to those in the proof of ‘Lemrne]lc 5, the only dif;
ference is that, in proving |lu(-)|| = |u/(G), we choose, for a partition {E;} <, of G, 9; € M},

g .
with ¢,(-) = Tr(u;-) and ||u;l|; < 1 such that (B < |o; (u(ED))] + and define, instead,
feColG,M;)by f =23 uifi which gives o

(a0

=)> Ti’(ui#(f"‘f)) - Tr(g“iﬁ_@)' ‘

| \;\m(uwml -

S nZ(iluill |l (VAK:) + fluill |l (B:\K7) < 2

1

and therefore > Wa(ED| < lw()ll +3e. O

Given u,0 € M(G, M), to define their convolution if G is a group, we first define the
product measure ju X ¢ on G X G. Let & be the g-algebra in G x G generated by the Borel
rectangles E x F with E, F € #. Given M,,-valued measures u = (u;) and 0 = (o) on G,
we define the product measure u X o: #B* — M, by

(nx 0)y =2 poae X O

‘ 1 - . and oy;. For
where uy % ox; is the product measure of the complex-valued measures i and .
0 € #* :nd y]e G, we define the y-section Q¥ ={x€G: (x,y) € Q}.. Then the function
y e G — u(Q”) € M, is o-integrable and (ux 0)(Q)= [ u(Q”)do(y) since
G
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(ux0)(Q)y = (ux0)z(Q) =§k:(ﬂik x a7)(Q)

S [ a(0) dog(9)
k G . .

- (M(Qy) da(y)) .
G i

For E, F € %, we have (u x 0)(E X F) = p(E)o(F). We note that 4 x o + 0 X pin general.

Let u = w* - |u| and o = w? - Jo] be the polar representations. Then entrywise calcu-
lation gives d(u x a)(x, y) = w*(¥)w?(x) d(|x| x |o|)(x, y). It follows that |u x o] < |u| X |o].
In contrast to the scalar case, we need not have equality. This is due to the fact that the
product of two nonzero matrix-valued measures could be zero. For instance, if x and o
are nonzero M,-valued measures with orthogonal ranges, then u x ¢ =0 but x x |g| % 0.
Hence u x o-integrability need not imply u x |o]-integrability while the latter implies the
former by entry-wise inspection. We have the following version of the Fubini Theorem for
matrix-valued integrals.

Proposition 7 Let f: G x G — M, be yu x |o|-integrable. Then
(i) the function x € G+ f(x, y) is u-integrable for |c|-almost every y € G;

(ii) the function y € G — | f(x, y) du(x), defined |o|-almost everywhere, is g-integrable;
G .

i) [ fdux)= ] ( [f05)dute) ) dotr)

GxG G

Proof.  Since f is u; x |o|-integrable, where u; X |o] = @j - (4| x |o]), the function
f(x, y)wj(x) is Bochner |u| x |o|-integrable and by [17], p. 190, ‘

Cf; S %, y) duy(x) = g f(x, y)ary(x) dlul(x)

exists for |gj-almost all ye G. So [ f(x,y)du(x) exists for |o|-almost all y € G which
: ,
proves (i). By [17], p. 193, the integral

I(J70e) i) ) i)

G

exists and equals | f d(uy x |g]). By boundedness of wf, for all k,Z, the integral
GxG ‘

f(gf(x, » duiJ-(x)) doi(y) = J(gf(x, » duz-j<x>) w2, dlol(»)

G G
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and the integral [ fd( u,] x ox) exist and are equal. Therefore the integral
GxG

J (f fx ) dﬂ(X)) do(y)exists and
G \G

(g (f f(x,) dﬂ(X)) do(y )j ( { f(x, ) du(x) >lk daoii(y)

(fo/(X ) A (x )) doyg(y)
G7

I
»M

a5 ( i) di)) dng)

S [ fed(ug % ka)
,/ GxG

S [ fedpxa),

G><G

=< | fd(ﬂXO'))ij. D

GxG

Let G be a locally compact group. We now define the convolution %o of two
M,-vlaued measures ¢ and 4 on G by

(e 9)E) = (a5, 7) € G X Gy < )

Clearly positivity is not preserved by product nor convolutlon since the product of two
positive matrices need not be positive unless they commute.

Lemma 8. - Let 1 and o be positive My-valued measures on G. T hen Tr(pu x 0)(Q) 20
and Tr(uxo)(E) 2 0 for all Q e #* and E € B. Further, if (% ) and o(%) commute, then
both ux o and ux o are posmve M,-valued.

Proof. The first assertion follows from Lemma 5 since (u x 0)(Q) = f,u (0”)da(y).
If 4 and o have commuting ranges, then (ux a)(f) =0 for every pos1t1ve simple func-
tion, and hence for every positive u X o-integrable function f. This gives the second
assertion. [

Let f € Co(G, M,,) and let 1,0 € M(G, M,). Since u o is the image measure ofuxo
under the continuous transformation ¥: G x G — G given by ¥(x,y) =xy and fo¥is
u X |o]-integrable, entry-wise change of variable implies that

[fd(uxo)= ffd((uxa)o‘l’“l) = [ fo¥d(pxo)

G G GxG

= (I; (g fxp) dﬂ(x)) da(y).
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We: also have (ux0); Z/,tlk * 0. Given that- G is an abelian group and

pe M(G, M, ), We deﬁne its Fourezr z‘ramform on the dual group G by -
= [7(=x)du(x) (e G)

which denotes the u-integral of the function x eGr y( x)I € M,. If G=(R,+), then
G =R and ji(y) fe"”‘d,u X). : :

We will refer to the following result in Section 6.’

Pr0p0s1t10n 9. Let ¢ be a positive M, -valued measure on R such that a(R ) I Jf

there exists pe M(G, M,) with y(R) = I and px o = p, then ¢ =00l where 8¢ .is the unit
mass at 0. ' :

Proof. We have 46 = i and 4(0) = u( ) = I. By continuity, there is an interval
(—a,a) in R such that ||a(y) — I|| = ||2(y) — 4(0)|| < 1 for all y € (—a, a). This implies that
A(y) is invertible and &(y) = I for all 7€ (= a, a). Therefore we have

fe 2% doy( = Jc osyxda,, (i=1,...,n).
R

Since o; is a probability measure on R, we have % eZ for dii-ahnost all x m R.
So oy (2: > —l1forallye (-—d,_ a). Choose 7, ' € (—a, a) with ir'ratie»nal quotient. Then
2 2 )
%Z —7/T-Z = {0} and aﬁ<27"z> = cr,;(;}—?l) =1 give g = dy. Hence, for every Borel
set A not containing 0, we have o(4) = 0 and Ti 7(c(4)) = 0 which implies that'a,_»,-,‘(A)' =0
for all 7, j. It follows that o;; = t;d, for some #; € C and

1t -ty
By 1 ton

g = 50.
) . |

Finally I = o(R) gives 0 =dol. [

Remark. Clearly the condition u(R) = I in the above proposition can be replaced
by the condition that u(R) is invertible. : ~ '

3. Jordan structures in Banach spaces

In this- section, we give a brief introduction to Jordan algebras and Jordan triple
systems, and prove some structure results for the range of a contractive projection on a type I
finite Jordan triple system, for later application. References for J ordan theory and Banach -
manifolds can be found in [6], [39], [43].
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We will only consider algebras over the complex field. A Jordan algebra is a com-
mutative but not necessarily associative algebra whose elements satisfy the Jordan identity

a(baz) = (ab)a*.

A Jordan triple system is a complex vector space V with a Jordan triple product
{;-,-}: V' x ¥V x V-V which is symmetric and linear in the outer variables, conjugate
linear in the middle variable and satisfies the Jordan triple identity :

{a7 b) {x7 y7 Z}} = {{a7 b7 x}? y’ Z} - {x7 {b7 a’ y}}z} + {x7 y’ {a7 b7 Z}}'
A Jordan algebra with involution * is a Jordan triple system in the Jordan triple product
{a,b,c} = (ab*)c+ (b*c)a — (ca)b™.

- A complex Banach space Z is called a JB*-riple if it is a Jordan triple system such
that for each z € Z, the linear map

D(z,z):veZw— {z,z,0}eZ

is Hermitian, that is, [|e®?@?|| =1 for all e R, with non-negative spectrum and
|1 D(z,2)|| = llz||>. A JB*-triple Z is called a IJBW*-triple if it is a dual Banach space, in
which case its predual is unique, denoted by Z,, and the triple product is separately w*-
continuous. The second dual Z** of a J B*-triple is a JBW*-triple. A subspace of a JB*-
triple is called a subtriple if it is closed with respect to the triple product. '

The JB*-triples form a large class of Banach spaces. They include for instance,
C*-algebras, Hilbert spaces and spaces of rectangular matrices. The triple product in a

C*-algebra ./ is given by
1 * *
{02} =5 ("2 4+ 29"%).
In fact, < is a Jordan algebra in the product
-1
xoy =z (xy+yx)

and we have {x,y,z} = (xoy*)oz+ (y*oz)ox - (zox) o y*. A norm-closed subspace
of a C*-algebra is called a JC*-algebra if it is closed with respect to the involution * and the
Jordan product o given above. A J C*-algebra is called a JW*-algebraif itis a dual Banach

space.

Jordan structures occur in symmetric Banach manifolds and operator algebras. In
geometry, JB*-triples arise as tangent spaces to complex symmetric Banach manifolds, the
latter are infinite-dimensional generalization of the Hermitian symmetric spaces classified
by E. Cartan [3] using Lie groups. The non-compact Hermitian symmetric spaces are the

bounded symmetric domains in C" and the irreducible ones are, up to biholomorphic equi-
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valence, the open unit balls of one of.the following si ite-di :
’ . ing six types of finite-dimension ;
normed vector spaces. of matrices: - P . al complex

type 1: p x g complex matrices,

type 2: p x p skew symmetric cdmblex matrices,

type 3: p x p symmetric complex matﬁces,

type 4: spin factor,

type 51 M 1,2(0) = 1 x 2 matrices over the Cayley algebra 0,
type 6: Mg(@) = 3 x 3 hermitian matrices ovér 0.

Spin factor is defined below. The infinite-dimensional izati
defir . - generalization of the above spa
are the followmg six types of JBW*-triples, called the Cartan factors: ' P

type 1: B(H , K) With»triple product {x, y,z} = %(xy*z +zy*x),

g

type 2: {ze B(H,H): z! = -z},

type 3: {ze B(H,H): z' = z},
type 4: spin factor,

type 5: M »(0) with triple product {x, y,z} = % (x(y*z) + z(y*x)),

type 6: M3(0),

where B(H, K) is the Bane}ch space of bounded linear operators between complex Hilbert
;paces H and K, and z' is the‘transpose of z induced by a conjugation on H. Cartan
actors of type 2 and 3 are subtriples of B(H, H), the latter notation is shortened to B(H).

The type 3 and 4 are Jordan algebras with the usual Jordan product xoy = ! (xy + yx)

e e " 2T,
A spin fac;{or is a Banach space that is equipped with a complete inner product {-,-> and
a conjugation j on the resulting Hilbert space, with triple product | 7

{x,3,2) = 5(Cn 302+ G2 >x = G o)

Euch that the given norm and the Hilbert space norm are ‘equiva\lent. The Cartan
actors M,5(0) and M;3(0) are exceptional which means they can not be embedded as a
subtriple of B(H). A JBW*-triple is called a JTW*-triple if it can be embedded as a subtriple
of some B(H). If a JW*-triple Z admits a unitary element u, that is, an element « such t111)at ‘

{u, Uxpy = f : . A
involut%on;x or all x e Z, then Z is a JW*-algebra is the following Jordan product and

xoy={x,u, x},  x*={u,x",u}.
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~Cartan’s classification can be extended to the infinite-dimensional case in that the
irreducible bounded symmetric domains in complex Banach spaces are (biholomorphically
equivalent to) the open unit balls of the Cartan factors [29].

Let Z be a JB*-triple and let P: Z — Z be a contractive projection, that is, P is linear,
P? = Pand ||P|| £ 1. (For later application, we do not exclude the trivial case P = 0.) Kaup
[30] and Stacho [42] have shown that the range P(Z) is linearly isometric to a JB*-triple,
although P(Z) need not be a subtriple of Z. For closed subtriples Z of C*-algebras, this
result has also been proved by Friedman and Russo [21].

Let Z = B(H) and W < B(K) be JW *_triples. Then their algebraic tensor product
Z © W identifies naturally as a subtriple of B(H ® K), where H ® K is the usual Hilbert
space tensor product. The ultraweak closure Z @ W of ZO W in BH®K) is a JWH*-

triple.

A JBW*-triple Z is of type L if, and'only if, it is linearly isometric to an £®-sum
B L2 (Q,) ® C, where Cyisa Cartan factor, and if C, is exceptional, L(Qg) ® Cy denotes
o

the injective tensor product C(Sq) & C, where C(S,) is the space of complex continuous
functions on the spectrum of L (Qq) [25]. Such a type I JBW*-triple is called type I finite if
each Cartan factor C, is finite-dimensional. It has been shown in [12] thata J BW*-triple Z
is type I finite if, and only if, its predual Z, has the Dunford-Pettis property. We recall that
a Banach space W has the Dunford-Pettis property if every weakly compact operator on W,
is completely continuous. Such property is inherited by complemented subspaces.

Proposition10. LetP:Z — Z be a wealk*-continuous contractive projection on a type 1
finite JBW*-triple Z. Then its range P(Z) is (linearly isometric to) a type I finite JBW*-
triple. ’

Proof. We note that P(Z) is norm-closed. By weak*-continuity and the Krein-
Smulyan Theorem, P(Z) is also weak*-closed. Also, P induces a ‘contractive projection
P.feZ.,—foPeZ. on the predual Z,. As remarked above, the predual Z, has the
Dunford-Pettis property. The predual of P(Z) identifies with Z./ P;1(0) which is linearly
isometric to the complemented subspace P,(Z,) of Z., and therefore has the Dunford-
Pettis property. Hence P(Z) is linearly isometric to a type I finite JBW*-triple by the above
result from [12]. [ ' L - . :

Without weak*-continuity, we have the following result which will be used later to
determine the structure of the space of bounded matrix-valued harmonic functions.

Proposition 11. Let Z be a finite-dimensional TW*-triple and let
PL(Q)®Z—L°(Q)®Z '

be a contractive projection such that its range is weak*-closed. Then the range is either {0} or

. n
is (linearly isometric to) an ¢ ©_sum Y L®(Qi) ® Cr where Cris a finite-dimesional Cartan
fe=1

factor.
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Proof. By [21], the range P(L®(Q)Q® Z) ca i
(21, g n be regarded, vi li iS0-
nze}ory, as a subtriple of the second dual (L*(Q) ® Z)™ which is in tur?l : s&gterai;lelsgf
t(h f(Q) @2 o.illn), for some 7, by the finite-dimensionality of Z. But (L*(Q) ® M,)" is of
! ethorrnbt _ (1Q ) ® o_illn, by [27], which has the Dunford-Pettis property. By [12], Corollary
{b} zrsgf :;1163 ;P(L (!L!20® Z) also has the Dunford-Pettis property and is therefore either
orm Zd: (Q,) ® C, where C, is a Cartan factor and sup dim C, < co, by

. o

[12], Theorem 14. The latter implies that there are 6nly a finite number of distinct Cartan

factors. Rearranging terms, we can write P(L%®(Q n o |
: . - 2 Z = ] i .
a finite-dimesional Cartan factor. [] (=@ e2) kZ=:1 L*(Qr) ® Cr where Cy is

4. Bounded matrix-valued harmonic functions

~ Thl."oughout, we will denote by A the left invariant- Haar measure on G. Let
f=0):G-> M, be,‘ a Borel function, that is, each f; is a Borel function. Let
oe M(G, M,). We define the convolution f % ¢: G — M, if it exists, by o

(F o)) = [ 7o) do(y) (xeG)

Bl

e R::ll;llark 12. ‘ As in Sec_tllor} 1, the_ usual definition of the convolution f * ¢ includes
modular function Ag(y~") in the integral, here we omit it for convenience, but thi
would not affect the theory of harmonic functions for, considering o-harmonic ful,lctions is
terms of the usual convolution amongs to considering (Aal.a)-harmbnic functions in o'uIrl

Let f: G — M, be Bochner J-inte . S ' '
. grable and let u = f.1. g
tauon shows, as in the scalar case, that ,u f . Stmple entry-wise compu-

Cpxa=(fx(AG.0)).A

We also define the convolution ¢ * f: G — M, by

(oxf)(x) = gf(y"IX) do(y) (xe@).

})ﬁizlki? tg scalar case, o % (f.1) need got equal (o *f).A. In fact, they are equal if, and
2 O * fie = Y, 0i * fi7 for all 7, j. For this reason, we will mostly work with the

! k
convolution f * o.

E (8 6 ‘
xample 13. Leta_<0 ‘é)eM(R,Mz) andf:<

v

h 0 ‘
L0 be an M;-valued

Bochner A-integrable function on R. Then we have

(o'*f)-i% (Z ];l((y::)>>,1

i ‘
&
&
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and

o= () O

A complex-valued function / on G is called locally J-measurable if for every Borel
set B < C, the set /~1(B) N E is Borel for every Borel set E = G with A(E) < oo. A function
f1'G — M, is called weakly locally A-measurable if pof: G — Cislocally J-measurable for
every ¢ € M;;. We note that if (G, A) is o-finite, then local A-measurability is the same as’

Borel measurability.

Let L!(G, M) be the Banach space of all (equivalence classes of) My -valued Bochner
J-integrable functions on G. Then the dual of L'(G, M,;) is the Banach space L*(G, M,)
of all M,-valued essentially bounded weakly locally A-measurable functions on G (modulo

the locally null functions), and L*(G, M,,) is a von Neumann algebra under the pointwise

multiplication and involution (cf. [40], Theorem 1.22.13). The identity in L®(G, M) is

the function I: G — M, such that I(x) is the identity matrix for all x € G. We note that
LY(G, M) is the projective tensor product L'(G) ®, M; and that L*(G, My) is the tensor
product L® (G) ® M, defined before [40], p. 68. The w*-topology on L (G, M,) is the weak
topology w(L® (G, My), L' (G, M) with respect to the duality

(g, f>= g Tr(g(x)f(x) dA(x) (g€ LG, M), f € L™(G, Ms)).
For f = (fy) e L(G, My) and g = (95) € L'(G, M};), we have fyeL®(G)and gy € LY(G).

Let {f;} be a net in L*(G, M,,) w*-convergent to f e L®(G, My). Then (fy); is a net in
L°(G) and is w(L*(G), L' (G))-convergent to fy € L*(G). ‘ ‘ ‘

Given y1 € M(G, My,), we define
- dii(y) = Ae(y)du(y™).
Then for g € L(G, M;;), we have
(g, fur ) = CI; Tr(g(x) (o * 1) (x)) dA(%)
= 3 [ar(0) (i * () dA)

i,j,k G
= 5 f (g B 440
i7, . .
- Zk J(gik * ﬂji)(x)ﬁq(x) di(x) =<g,f *p> aso— 0.
i,j.k G
That is, (f; * ) is w*-convergent to f % p. Tt may be useful to note that, if G is abelian, the
above computation also yields

(g, fruw=Li*xg,f>

for g € L1(G, M) and f € L®(G, My).
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Let o € M(G, M,). A Borel function f: G — M, is called o-harmonic, or harmonic for

short, if it satisfies the convolution equation

fro=f.

Let (G, 1) be a—ﬁniﬁe. By a slight abuse of language, we call the functions in

—

Ho(G, My) = {f € L(G, My) : f 0 = [}

- the bounded o-harmonic functions on G. Evidently H,(G, M,,) is w*-closed. Our first task

111; t(h(i;s ;;ct)ic?n tllsl to show t?at H,(G, M,) is a JW*-triple, for ||o|| = 1. In fact, we show that
(G, M,) is the range of a contractive projecti © ore :
Tordan triple structure. projection on L*(G, M,,), and therefore admits a

Proposition 14. Let 0 € M (G, M,) wi _1 A
‘ (G, M) with ||| = 1. Then there is a contracti jec-
tion P: L*(G, M) — L*(G, My) with range Hy(G, M,). : P proree

Proof. Form=1,2,..., we define a map A,,: L*(G, M) — L*(G, M,) by

m~times

. An(f)=fxGx - %0.

]Ey Lem?a _4, |Am|| < 1since ||o]| = 1, and by the above remarks, A,, is w*-continuous
et y/—co{Am:mz 1,2,...} be the closed convex hull of {A,:m=1,2,...} W'tﬁ
respect to the product topology 7~ of L*(G, M,)*" () where L‘ZI&G M, ), is7 e i 1d
with the w*-topology. Then " is compact. Define ®: " — A~ by . R

QNN =Af)xo (Aed, fel™(GM,)).

It is straightforWard to verifs i
y that ® is well-defined, affine and J -conti
éh}eoref_ore, by the Markov-Kakutani fixed-point theorem, there exists P e A sucrfluf[)}?;
vae)n_fP' L\?é/'oe have clearly P(f) = f for f e H,(G, M,) since Ap(f)=f for all m.
e L®(G, M,), we have P(f) = ®(P)(f) = P(f) * o, that is, P(f) € H,(G, M,).

This proves that P(L* (G, M,)) = H,(G, M,) and P? = P. Since each A,, is contractive, so

isP. O

FurthCor'ollary 15. Let agM(G, M,) with ||l = 1. Then H,(G,M,) is a JW*-zrzpje.
er, if Hy(G, My) contains a unitary element in L*(G, My), then it is a TW*-algebra

Proof. Let P: L*(G, M,) — L*(G M ) bé th i jection i
: % , M, e contractive projection in Propositi
~ 14. By [21], [30], H,(G, M) is a JB*-triple with the triple product e

1

{/,9:1} =5 P(fg"h + hg'f)

where g*(x) =: * ' . . ‘
Then we ](aa)ve g(x)" € M, for each x € G. Let u e H,(G, M,,) be unitary in L*(G, M,).

{u,u,h} = P(h) =h
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for h € H,(G, My). Hence, by the remarks in Section 3, H,(G, M,) is a JW*-algebra with
respect to the following J ordan product and involution: . :

fog=1fime) = sPUfcg+arf), f*={uf"up=Pufw. O

Example 16. Let G = {¢} and o(G) be any proper projection p in M. Then
H,(G, M,) identifies with {4 e M, : 4 = Ap} = M,p which is a left ideal of M,, but
not a JW*-algebra. The projection P: L*(G, M,) — H,(G, M,) is given by P(A) = Ap.
If p= <(1) 8> e M, say, then H,(G,M>) identifies with the 2 x 1 complex matrices.
This is a special case of the fbllowing resulf.

We can now describe the structure of Ho(G, M,).

Corollary 17. Let G be a locally compact group and let € M(G, My) with llol| = 1.
Then H,(G, M,) is either {0} or linearly isometric to a finite £%-sum @ L®(Qr) ® Ci where
Cy is a finite-dimensional Cartan factor of the following type:

(i) My, the space of complex p X g-matrices;
(i) Sp, the space of complex p X p symmetric matrices;
(iii) Ap, the space of complex p x p skew symmetric matrices;

(V) Vp, the spin factor of dimension at least 3, consisting of complex p x p matrices
such that a € Vy, implies a* € V} and a? is a scalar multiple of the identity matrix.

Proof. By Proposition 14, Hy(G, M,) = P(L*(Q)® M,) which is either {0} or an
/% -sum as in Proposition 11, in which the Cartan factors can not be exceptional. [

' A positive measure o € M( G, M,,) is called adapted if the support of p o o generates a
dense subgroup of G for every pure state p € M. Given the polar representation ¢ = @ - |a},
we have poo = (pow)|o| and so suppp oo < supp|o|. It follows that if o is adapted, then
|| is adapted in the usual sense. . '

Example 18. Let G be an abelian group and let o€ M(G,M,) be a positive
measure such that (G) is the identity matrix J. Then by a recent generalization in [8] of
the Choquet-Deny Theorem [4], every bounded o-harmonic M,-valued function on G is
constant if, and only if, o is adapted. For any group G, we show below that the absence of
non-constant bounded M,-valued harmonic functions on G implies that G is amenable.
This result is known for n =1 (cf. [28], [37]) with a different proof.

Corollary 19. If there is a positive o € M(G, Mn) with ||a|| = 1 such that all bounded
o-harmonic M,-valued functions on G are constant, not all 0, then G is amenable.

Proof. We have H,(G, M,) = LI where L={AeM,: Ao(G) = A} is a nonzero
closed left ideal of M,,. So there is a nonzero projection ¢ € My such that L = Mg (cf. [40],
1.10.1). In particular, go(G) = ¢. Let P: L®(G, M,) — H,(G, M,) be the contractive pro-
jection in Proposition 14 where Am(D) = o(G)™1 implies gA»(1) = g1 for all m and-there-
fore gP(l) = ¢l. On the other hand, P(1) = A1 for some positive A € Myq. It follows that

A=Ag=q4d =4
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Given an M,-valued function f.on G, we denote by f;(-) = f(z7!-) the left translate

of f by ze G. Since f, g = (f x 0), for f € L*(G, M,,), we h
. z y Mp), ave P(f;) =P =
the latter equality holds because P(f) is a constant func?cion. o) =P = (L)

Since ¢l is a projection in L®(G,M,), we can find a
. ( M), find a state ¢ of L*®(G
p(ql) = 1. It follows that ¢ o P is a state of L®(G, M,,) since ’ (G M) such that

(00 P)1) = p(P(1)) = p(gl) = 1 = 9 P|.

Given a positive function 4 € L®(G), the function 2 ® [ € - . o
. ) - 3 L*(G,M,) is M-
and it is now readily seen that the map m: L®(G) — C defined by ( )i My -valued

m(h) =o(P(h®I))

is a left-invariant mean on L*(G). [J

We next show that the continuous ¢-harmonic M,-valued functions are constant on
compact groups'for adapted positive M,-valued measures o with ||o|| = 1, as in the scalar
case [32]. For this, we will apply the Peter-Weyl Theorem and we need to ezctend the notion
of Fourler. transform to the matrix-valued case, for compact groups. Given o € M, (G, M,)
we define its amplification o ® 1,, to be the measure in M(G, M,,,) given by no

>

-a(E:)

OB —aB O L= | . (Ee2)

o(E)
where the tensor prod'uct M, ® M,, is naturally identified with M,,,. We note that if
g is idapted, then 50 is ¢ ® 1,. Indeed, given a pure state p(-) = {-{,¢> of M, where
¢ = ; (i ®e; e C"®C™ is a unit vector and {ey,. .., e} is the standard basis in C”, "vve
have po (¢ ® 1,,) = Z {o(-)¢;, &> which implies that supp{a(-)&;, &> < supp po (6 ® 1,,).

~ 1
Let G be the dual space of G, consisting of the equivalence classes of continuous unitary

{rrf\ld}lciblle repr'esentations of G. Let G be compact. Then G is unimodular and every z € G
1\;} mte-dm‘aensmngl and so 7 = (n;): G — M, is a continuous function, where m = dim=
e define its amplification 1, ® n: G — My, by ’ | .

nl.,l(X) 7Z1n(x)
m(x) ()

(1:®7)(x) = I, @ n(x) = (ny(x)]) =

1 (X) o ()

T (x) - ()
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For ¢ € M(G, M,), we define its Fourier transform by
§(n) = [ (1n ® 7)(x) d(0 ® Laim=)(x)
G

for e G. Given f = (f;) € L1(G, My), we define its Fourier transform by
= g f(;c) ® n(x) dA(x) € Mm
where m = dimz. We have
from=[(f*a)x)® (x) 1)
FoorY) do() ® n(x) dA(x)
fly™) @ n(x) d(o(y) @ L) dA(x)
f(2) ®n(z)d(6(3) ® Ln) A=)
() @ 2()n(y) d(o(3) ® 1n) dA(2)

)
G
g(f () ®n z))g( » ®7(y)) d(0(y) ® 1) dA(2)
g (f(2) ® n(z))(m) diz) = [ ()& (m)-

Lemma 20. Let o be a positive My,-valued measure on a compact group G such that
lol| = 1. If o is adapted, then Iu, — 6(r) is invertible for every m e G with  + 1 where 1 is

the trivial one- -dimensional representation and m = dim 7.

Proof. We show that 1 is not an eigenvalue of ¢(r). Suppose otherwise, there

exists a unit vector { = Z e;®¢ € C” ® C™ such that a( )¢ = ¢, where {ey, ..., en} is the

z—l

standard basis in C" and Z |&:]|1> = 1. Let 0 = w - |g] be the polar decomposition. Then we

have |6 ® 1| = |o| and a@ ln = (@® ly) - ol Also,

— o0 = ([ @M e ® 1)

-((ju-en@e, )diol)e.€)
- [ @@ LD

where
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N

Re((1, ® ) (59 @ Ln)0,) 5 | ((00) @ 1) (1 © 709 (0 © 1) 20.0)|
COLINSEN |

;Fil‘lzzzefore((w(x) ® 1), ¢) = 1 and hence (w(x) @ 1,,){ = { for |o]-almost all x € G. This

I ® )L, dlo] = [ @) (©® 1) dlo] = 1

where |o] is an adapted probability measure on G.

- Let x € supplo]. If Re{(1, ® 7)(x){,{> < 1, then there is an open set ¥ = G con-
taining x such that Re{(1, ® )(y){,{> < 1 for all y € V. Therefore we have

1< jd|a|+ ] Re{(1, @ m)¢, &> dlo|
G\V

< [o|(V) +1ol(G\V) =1
which is impossible. Hence (1, ® 7)(x){, (> =1 and so (1, ® x)(x){ = { for all x € supp|a].

tSlilncef supplo| generates a dense subgroup of G, we have (1, @ n)(x){ = for all xe G
at 1s, ’

N (L @D ®E) = Ve @nx)E = Dea®

i

Hence we have zn(x)¢; =¢&;, and in partlcular for some ¢; # 0, whlch gives m =1 by
irreducibility of 7, a contradiction. [] :

‘ Proposition 21.  Let ¢ be an adapted positive My-valued measure on a compact group
G with ||o|| = 1. Then every continuous o-harmonic M,-valued function on G is constant.

) Prog_f.\ Let f=(f;) be continuous and o-harmonic on G. Then we have

f(z) = fxo(n) = f(n)6(n) for all m € G. B () - ' -
( . By Lemma 20, we have =0

with 7 & 1 which implies 1) forallmeG

ff] X)mee(x)dA(x) =0 (G,j=1,...,mk,Z/=1,...,dimn=).

By the Peter-Weyl Theorem, we have in L2(G), for f;(x) = f3(x™"),

= Y (dmn)fimume

rneG 1=k, ¢<dimn

where f ) g = f S (o) (x ~1)dA(x) is the ordinary Fourier transform and is zero for

7 = 1. It follows that Jfi is a constant function by continuity. Hence f is constant. [J
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5. Continuous matrix-valued harmonic functions

In this section, we study continuous, but not necessary bounded, matrix-valued har-
monic functions. We describe the M,-valued continuous g-harmonic functions on abelian
groups, for an M,-valued measure o with compact support. The complex valued harmonic
functions on R were first characterized by Schwartz [41], and on R™ by Malgrange [35] and
Ehrenpreis [18].. Lefranc [34] has proved similar results for Z™. Their results have been
extended to discrete abelian groups by Elliott [19], and to locally compact abelian groups
by Gilbert [24]. We extend Gilbert’s result to the matrix-valued case.

Given an M,-valued measure ¢ = (o) on a group G, with polar representation
o= w-|o], we define the support of g, suppo, to be the support of the positive measure
|o|. Since o7 = wy - |o], we have o] = |yl - |o] (cf. [38], p. 126) and so supp o = SUppo.
In particular, if supp o is compact, then supp oy is also compact.

We will show that the continuous matrix-valued harmonic functions on abelian

groups are ‘synthesized’ from the exponential polynomials which we now define. First, a
real character on any group G is a continuous homomorphism from G to the additive group
R. For an abelian group G, an exponential polynomial on G is a complex-valued function of

the form
p(n (), g(0))n(x) (xeG)

where p(-) is a polynomial with a finite number of variables and complex coefficients,

X1s- -+ X r€ real characters on G and 7 is a generalized character on G, that is, a contin-

uous homomorphism from G to the multiplicative group C\{0}. Abusing the notation
slightly, we write p(x) = p(x1(x), - %;(x)) ()

Let C(G) be the linear space of complex-valued continuous functions on G, equipped
with the topology of uniform convergence on compact sets in G. Then C(G)is a complete
locally convex space. If G is a countable union of compact sets, then C(G) is metrizable,
that is, C(G) is a Fréchet space (cf. [31], p. 81). A separable and metrizable locally compact
group is a countable union of compact sets. ’ '

Given a complex-valued measure x on G, we let
P(G)={p:p*p=0}
where p is an exponential polynomial on G. Let H,(G)={feC(G): fxu= 0}. If Gis
abelian and x has compact support, then, by [23], Theorem 3.2 and [19], spectral synthesis
holds for the left-invariant space H, ,(G) in that the linear span of P, (G) is dense in H,(G).

Now we consider the matrix-valued harmonic functions on G.

Given v e M(G, M,), we define its determinant detv, which is a complex-valued
measure, by convolution

detv = E sgn(t)vlr(l) ¥ ok Vpe(n)
T

* which is a directed partially ordered set under entry-wise ordering. Given nets {fos Yayen
: g 5o
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where 7 is a permutation of {1 n}. Let o € M(G, M,) and let 6.1
> ; RN S , , My =9 'IGMG,M,,
where J, is the unit mass at the identity e of G. We define the compelex-vaelfle):d meaime )

¢ = det(o — 0.1) = det(oy — 0;5.)

whg;e Oy 18 the Kronecker delta. Let {e;:7,7=1,...,n} denote the canonical matrix
unit in M,. Given a complex-valued function / on G, we denote by 4 ® e; the M,-valued

function whose ij-th entry is %, and 0 elsewhere. Thus we ca i
) . n write f = i i
M,-valued function f = (f3). ‘ et §fy ®ey foran

Let Dj be a directed partially ordered set, for i, j = 1 W
the following set of n x n matrices: ’ J=1,...,n. We define M;(D) to be

M, (D) = {(ay) : €Dy}

ij2

i,j=1,...,n, in a vector space V, the net

Jo= izj:fa,,,‘ o« = (ay) € M,(D)

is well-defined in V.

Proposition 22. Let ¢ be an My,-valued measure on an abelian group G, with corﬁpacz‘

L;;ltpplc.)rt, and let f f ({} — M, be a continuous g-harmonic function. Then there is a net { p,} in
e linear span of {p ®e;: pe P5(G),i,j=1,...,n} such that f is th 3 imi

{pa} on compact sets in G. ‘ ' } d ’ ”mff?rm o

Proof. Let f= Z fi ®e; be continuous ‘and’ o-harmonic. Then we have

ij
Sox (g—&el ) =0. Let v=(v;) be the M,-valued measure on G defined as the adjoint
matrix of ¢ — 6.1 = (o — J;0,), using convolution, so that ' - ‘

det(o — d.1) 0
(6=0.1)xv=
0 det(o — d.1)
Then we have
G 0
S o =fHe=8D)xv=0
0 g
which gives
ﬁj*5'=0

for all 7, ;.
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Given two complex-valued measures y; and y, on a group G, we have

supp(y1 + 72) < SUPPy; Y SUPP ¥,

supp(y; * y2) < (supp y;)(supp }’2)~

Since each oy — ;0. has compact support, it follows that & = det(g — 1) also has
compact support. By the spectral synthesis for H;(G) stated before, there is a net (ho;) in
the linear span of Pz(G) such that f; = lim hy, in the topology of uniform convergence on

compact sets in G. Define

L]

for o = (a;). Then p, is in the linear span of {p®ey:pePs(G)i,j=1,... ,n} and
f = lim p,, uniformly on compact setsin G. [ '
o

6. Positive matrix-valued harmonic functions

Throughout this section, we assume that G is separable and metrizable so that G is
a union of compact sets Gx (k =1,2,...) and Gy is contained in the interior of Gj1.

We will apply Choquet’s integral representation theory to characterize the
positive (unbounded) matrix-valued harmonic functions on abelian groups. For this we
need to introduce the concept of an extended matrix-valued measure. Let K (G, M) be the
linear space of continuous M, -valued functions on G, with compact support. The notation
K(G,C) is used for n=1. We recall that M is identified with M, with the trace norm
Il - |l1. Let K(Gx, M) be the subspace of K (G, M), consisting of functions with support
in Gy. With the supremum norm, K(Gx, M,;) is a Banach space, and its dual K(Gy, M;)"
identifies with M (Gy, M) by Lemma 6. With the inductive topology, K(G, M) is the strict
inductive limit lim K (Gr, M) of the increasing sequence {K (Gr, M)}, (cf. [5], 20.11)
and the dual K(Ck?, M?¥)* is the projective limit lim K(Gy, M) =lim M(Gy, My), in the

—r —p
weak*-topology [31], p. 151. Elements in K(G, M})" are regarded as ‘the extended matrix-

valued measures on G.

Let ueK(G,M;)". Then u = (ur) € lim M(Gy, M,) where, in the ‘notation of
Lemma 6, x4, (-) € K(Gx, M;;)" is the restriction of the functional u to the space K(Gr, M,).

Given f € K(G, M}) with supp f < G, we define

[fdu= [Fdu, M,
G G

which is well-defined since y; = i on Gy for j = k. Likewise, given any compact set F < G,
we have F < Gy for some k, and we can define u(F) = u(F). Also, for any positive func-
tional ¢ € M}, pu denotes the measure pu = (9o u) € lim M(G,C) = K(G, o)".

~k
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7

Now given g € M(G, M,) and ue K(G, M*)* i 0
25 a0 clomet o (6, s by) U (G, M))", we can define th§1r ;onvolutzon U*C

-

(e )(7) = 1r( (1 70) ) o))
- G ' '
for f e K(G, M}). |
. Give;n a positive o € M(G, M,,) with ¢(G) = I, we have seen in Proposifion 9 that
the equa‘ion ,u>t_<,o*=d,u may have few ‘bounded’ solutions u in M(G,M,). This is the
reason why we introduce K(G, M*)* and ¢ ’ i e K| )
o ( 2" and seek ‘umbounded’ solutions ue K (G, M) for

off( ET]I;? Gse%}ﬁgij:&g}tl I;TII ]If( ( ?7'M:)5Tf0f K(G, My) is the real linear subspace consisting
: K(G, M; at f(x) is a self-adjoint matrix for all : -
is partially ordered by the cone o riorallre @ The space (G Mike

K(G,M;)* = {f € K(G,M}) : f(x) € M;f ¥xe G}.

A linear functional u € K(G, M;)" is called positive if u(f) = Tr< [f dﬂ) > 0 for
) 2

all feK(G, Mn*_‘)"*'. As shown in [10], the positive linear functionals on K(G, M?*) can be
r.egarded as positive eJ.cz.ended M,-valued measures on G. If u = (u;,) € K(G, M, *Sl*vis posi-
tive anc%E lif g is a(po)src(lve M,-valued measure on G such that 4 and o hc;ve r;:ommuling
ranges, that is, u (E)o(F) = o(F)u,(E) for each k and E i iti
functional on K(G, M) (cf. Lemm: (8).) ' e, th¢n #3715 % posie
Example 23. Let he K(G,M)" and A be th '

e 23, M, _ e Haar measure on G. We defing

hie K(G,M;)" by hi= () € lim M(Gy, M;,) where ¢ define
K

wf) =T (Gfkfh 1)

for f e K(Gy,M?). Then h.) is a positive li ctional ¢
M), . positive linear functional on K(G,M*) and f
0 € M(G, M,), we have (h.A) x o = (h* Ag'o).A since, for f € K(G, M;)( ) and for

2.

() walf) = ({1500 an2)) do())

G \G

oy PG 41(3) ) do(y))

(supp f)y!
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Given an adapted positive M,-valued measure on G, we will use Choquet’s integral
representation theory to describe the positive My-valued o-harmonic functions on abelian
groups. Extending Choquet and Deny’s method [4], [14] for positive real harmonic func-
tions on abelian groups, we will show that, given any adapted positive M,-valued measure
o on an abelian group G, the positive continuous o-harmonic M,-valued functions on G,
with range commuting with that of o, are integrals of M,-valued exponential functions.
The results in this section improve considerably some results in [10] where o is assumed to
take values in the centre of a C*-algebra which is too restrictive in the setting of M,,.

Henceforth we fix an adapted positive M,-valued measure ¢ on an abelian group G

which is separable and metrizable. By [10], Lemma 5.3, the cone K(G, M)’ of positive
linear functionals on K (G, M) is weak™ complete.

Lemma 24. The cone K(G, M;). is weak* metrizable.

Proof. Since K(Gr, M) is separable, the cone K(Gk,M;)+ is also separable.
Let {fx,m}.; be dense in K(Gy, M*)". By similar arguments as in [5], 12.10, one can
show that K(G, M)’ is homeomorphic to a subspace of RN*N via the homeomorphism

IMEK(G: M;):— Hﬁe RNXN WhCI'¢ ﬂ(k7m> =ﬂ(fic7m) O

Let K, (G, M,j‘)i:{ueK(G,M,j)i:ﬂ and ¢ have commuting ranges}. Then “
K, (G, M})" is also a weak™ complete metrizable cone. Indeed, it is weak® closed in

K(G, M), which follows from the lemma below.

Lemma 25. Let (u,) be a net of positive measures in M(Gk,Mn) = K(Gr, M),
weak* converging to p € M(Gyx, My). If each p, and o have commuting ranges, then u and
o have commuting ranges.

Proof. For- ¢e M? and any real continuous function f on Gy, we have -

J rapony=o( §Fau)=7( Aot ) 7o | Aof du) = | Fdloo ), thatis,
G Gx Gr Gx Gy,
the complex measures (¢ o 4,) converge weakly to ¢ o 4. Hence, given any ¢ € C" and Borel

set E = G, the net (o u,) converges weakly to i o u where U(-) =< a(E),EeM,.
By commuting ranges, each ¥ o 4, is positive which implies that o is also positive.

In particular, for any Borel set F = Gy, we have

(UF)(E)E, &) = (Yo p)(F) 2 0.
Therefore u(F)o(E) € M, and so u(F)o(E) = c(E)u(F). O
We let '

C,={ueKk,(G,M;), : uxa = u},
Hy={peKs(G M), 1 px0=p}

which are subcones of Ko (G, M;)}.
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Lemma 26. The cone C, is weak™ complete.

closed])i;;f(}é( GLAelt a)*z C]i . la(l be) tll‘jle polar decomposition. It suffices to show that Cois Wea‘l'q*
, M), Let (u;) be a sequence in C, * i .
Let € K(G, M Than - Seauenee in Co weald” converging to < K(G, 1)

*
4=

o)) =1r(1(1509) () do(y) )

where, for fixed y ¢ G, we have

{000 1)) ) = 1 [t ) = fim 7 T 6 i)

G

since () f(-y) € K(G, M;.). By Fatou’s Lemma, we have“

(e 0)(1) 5 limint [ 17( [ f9) ds)0() ) o)

= liﬂgf Tr(g (é[f(xy_) d,uk(x)> dU(J’))

= Hminf (s, % 0)(/) £ liminf y(f) = (7).
Therefore € C, and C, is weak* closed. []

caps Vl?]iflglO], Propos1thn 3.5, the*cone C; is well-capped which means that C, is a union of-

com;ex Vi/e a cap1 1of Crisa Wegk compact convex subset C containing 0 such that C,\C is

o v/.— (xe rfeca that v >e Cs is called extremal if whenever v/ € C, satisfies v—1' € C,,

- = av for some o = 0. We denote by 6C,, the set of extremal elements in C,. The
remal elements of any other cone are defined and denoted likewise.

Since C, is weak™ complete and metrizable, b i
: , by Choquet’s representation th
[5], 36), every 4 € C, has an integral representation i eory (e

u= [ vdP(v)
aC,
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which means that u(f) = [ v(f)dP(v) for all f e K(G, M), where P is a probability
aC,

measure on 0C, which is a Borel set.

We have 0H, = 0C, 0 H, as in [10], Lemma 5.2. Since
= A {ue G (ux o)) = ufm)}
m=1

it is a Borel set, where {f,,} is a countable dense subset of K (G, M}). For pe H, with

representation = [ vdP(v), we have P(8C,\H,) = 0 since
‘ aC,

(uxo)(f) = [ vxa)(f)dP() £ [¥(f)dPO) = ulf)

0C, - 0Gs

for all f € K(G, M;). Hence we have

pu= [vdP®).
oH,

Therefore, to describe the cone H, it suffices to describe 8H,. We prove some lemmas first.

Lemma 27. Let G be abelian, i€ K(G, M;})’, and o € M(G, M,) be positive:‘ Then we
have (uxo)(f) = (o *u)(f) for all f € K(G,M)*. In particular, if ux o is positive, then
Ux T =0*[ :

Proof. Leto = w - |o| be the poiar decomposition. Then

(ux0)() = Tr(Hf ) dut) o)) = [ v( {709) dut)a() ) il )

GG

- | (éo<y>ff<xy> dﬂ(x)> dlo|(3) = ér:rr(g () f () du(X)) dia|(7)

G

= 17([ 70 ) a6i9) =D (J {761 dot) ()

Given any measure g € M (G, M) and 4 e Mn,,fhe measure v € M (G, M,) defined by
v(-) = Ao(-)4 satisfies

W) =Tr (ér AfAdo())

for f € K(G, M;). For ue K(G,M})*, the measure Au(-)4 can be defined by the above

Chu, Matrix-valued harmonic functions on groups 45

identity. For each x e G, we will write Jy, if no confusion is likely, for the measure
0x() e M(G, M,):

I ifxekE,
ME)‘{O if x ¢ E.

Given u e K(G, M)’ we have (u*dx)(f) = u(fy) where f; denotes the right-translation
of f by x: fx(-) = f(-x). Therefore we have (y % dx) x J, = p1 * bx,. We denote by Vi(x) the

. . .1
open sphere in G, centred at x with rad1us Z fork=1,2,....

Since c(x) may not be 1nvert1b1e in the next lemma, we consider instead the inverse of
w(x) + ¢l fore > 0.

Lemma 28. Let G be any Sepamble and metrizable group. Let oe M (G, M) be
positive with polar representation ¢ = w - |a|. Let ¢ > 0. Then, for |o|-almost all x € suppa
the sequence of measures {v{}2, in M(G, M,) defined by

() = o] (V) (@(x) + &)™ dog () (0(x) + &)™

| - -1 I L
weak*-converges to the measure (w(x) + &) w(x)dx, where o} is the restriction.of o to Vi(x)
and el is shortened to ¢.

Proof.  Let {/,} be a countable dense set in Co(G, M;’). Then for each f,,, we have,
for |o{-almost all x € supp g,

Vi (fon) = Tr( g fm dv;;)

=Tr( [ 161(760) ™ (@(x) + &) " fu() (e0(x) + &)V do(y >>

Vi(x)

=lo|(Vi(x)™" | Tr{(w(x) + )“2fm< )((x) + &) ow(y)) diol ()

Vk (X)

= Tr{(@(9) + &) ful) (0(0) + ) 0(0) = (0() +0) ()

as k—oo. Hence there is a Borel |ol-null set E <= G such that for all m,

Ve (fm) = (o0(x x)+e)” 1co( 105 ( fm) for all xe G\E The density of {f,} concludes the
proof. [ ‘

Given 4 € M, and u € K(G, M;)" with u = (u;,) and y;, € M(Gy, M,,), we say that 4
commutes with the range of u if A commutes with the range of each y,. We note that, for
4, B e My, we have Tr(B*AB) < || 4| Tr(B*B) which is used i in the following proof.

Lemma 29. Letoe M(G M,) be positive and let pe 0H,. Let A € M, be posznve
and commute with the range of u. Then Ap = o for some number o = 0.




46 Chu, Matrix-valued harmonic functions on groups

Proof.” Wehave 0 < A < [|4||I and we may assume 4 + 0. Let
v() = Au=A"p()4.

Then, for f € K(G, M})", we have

0£(f) = Tr(gAl/ZfAW i) - Tr((gfdﬂ)A) < |4l Tr<£fdﬂ> — 1),

where the last inequality follows by considering simple functions and the fact that A
commutes with the range of x. So 0 < v < || 4]lu. We also have v o =v. It follows that
v is a scalar multiple of u since x is extremal in H;,. [

We recall that the self-adjoint part M2 of M, is isometrically order-isomorphic to the
partially ordered Banach space A(S) of real continuous affine functions on the state space
S={peM;: o) =gl =1} of My, via the evaluation map 4 € M;* — A € A(S) where
A(p) = p(4) for p e S. We also recall that a projection p € M, is minimal if pM,p = Cp.
We are now ready to characterize 0Hy. A function g: G — (0, co) is called exponential if
g(xy) = g(x)9(»)-

Proposition 30.  Let G be a metrizable and separdble abelian group and let  be an
adapted positive My-valued measure on G. Let pe K, (G, M;)... Then the following con-
ditions are equivalent: o _

(i) pedHs;

(i) u = cgp-A where ¢ >0, pe M, is a minimal projection and g: G — (0,00) is a

continuous exponential function such that (jg(x'l) da(x)> p =D
G

Proof. (i) = (ii) Let 0 = - |o] be the polar representation and let ue 0H,\{0}.
Since ¢ and x have commuting ranges, by Lemma 29, we have o(x)u = &(x)u for some
number @(x) = 0. Let & = & - |o|. Then supp & < supp|o]. Since = p g, We can find a
compact set F = G such that u(F)o + 0 and {u(F)&, &) > 0 for some & € C*. We note that

u(F)o = p(F)é. Let p(-) = <-,u(F)1/26, w(F)'/2&. Then supp p o o = suppd since for any
open set V< G, we have (p 0 0) (V) = (u(F)a(V)E, & = Cu(F)3(V)&, & =3(V)uF)&, &-
Therefore & is adapted. Let

U={xesuppd: o(x)u* 0} = {xesupps: @(x) =+ 0}.
Then &(G\U) £ &(G\U) =0 implies suppo < U and it follows that U and hence
{x e suppo : w(x)u #+ 0} generates a dense subgroup of G. By considering the latter set, we

may therefore, without loss of generality, assume that w(x)u % 0 for x € suppo.

For x e suppo and m,k =1,2,..., welet

dvi™ () = ol (V@)™ (%o +%)—1/2 dof () <w<.x ) +;1,;>—1/2

be the measure defined in Lemma 28.
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. We have 0 < of g o. Since the range of ¢ commutes with that of u, the range of
oi also does so and it follows that 0 £ u*of < u*o=p By Lemma 27, we have
X . = 2 N
éﬂ* o%) * g =0 (ux0f)= (0% p)*xof = pu* . So ux o} € Hy. By extremality of 4, we
ave p * of = ogu for some oy = 0. By commuting ranges again, we have

px v =lol (Vk(.x))_l (a)(x) + %)71/2(# o) (w(x> N %>—1/z

-1
= og|o] (Vk(x))ml (a)(x) +%> U

— x7m

Hence p* vy'™ = 7" u for some " = 0, by Lemma 29. By Lemma 28, u* vy?™ weak*-

1Y\ ,
converges to u (CO(X) +%> w(x)d, for |o|-almost all x € suppo. So gi(x) = lim g™
. . . k—oo

-1
exists and we have u (co(x) + —m-> ®(x)0x = gm(x)u for |o|-almost all x € supp o. Hence
there is a Borel set £ = supp o with [o[(G\E) = 0 such that for all m and x € E,

13!

e (co(x) + E) @(x)0x = gm(x)u.

: -1

It is well-known that p, = lim (co x +l> is th jecti

(henctore e Jim ( ) ~ w(x) is the range projection of w(x). We
1* PxOx = g(x)u

for all x € E, where g(x) = mlglg.o gm(x) and u * pxx = pxpt* x. We note that g(x) # 0 for
otherwise the above would imply that w(x)u = co(x) pxit = 0. We have

9(x)pxtt = px(9()te) = Pl % pxds) = px paby = g(X)
which gives pyu = u and hence x5, = g(x)u. It follows fhat, for any y € E with xy € E,
we have g(xy)u = p*0xy = (u* dy) * Sy = g(x)g(y)u which gives g(xy) = g(x)g(y). Since
lo|(G\E) = 0, we have suppo = E and therefore E generates a dense subgroup of G. So we

can extend ¢ to a continuous function, still denoted b
; y g, on G such that g(xy) = g(x
and u*d, = g(x)u for all x,y € G. Define v e K(G, M) by () = 4x)g7)

dv(y) = g(y™") du(y).
Then dv,(y) =: dv(yx) = g(x~ 1y~ du(yx) = dv(y).
For every state ¢ of M, we have a translation invariant scalar measure -
Pvx = Qv
which implies that ¢gv = a(p)A for some a(p) = 0. It is evident that a(gp) is a positive

con‘uggous aﬁﬁnq tiunction of the states ¢ of M, and therefore it identifies uniquely with
a positive self-adjoint element A € M,,. v
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We have thus established that
gy du(y) = dv(y) = 4dA(y)

which gives du(y) = g(») dv(y) = 9(»)4 dA(y). Since A commutes with the range of g,
Lemma 29 implies that 4u = au for some o > 0 which gives

adu(y) = g()A* dA(y) = 2g() A dA(y)-

In particular, A? = 0d, that is, &A is a projection. We show further that 4 is in fact a scalar
g .

multiple of a minimal projection.‘ By [10], Propositicm ‘4.2, this is equivalent to showing
that A is an extremal element in the cone M. Let b € M, and b < 4. By [10], Lemma 4.1,
we have ob = bA = Ab and so bdu(y) = du(y)b. By Lemma 29, bu = fu for some =0

which gives
bg(y)AdA(y) = bdp(y) = Bg(y)Adi(y)

and hence ab = bA = BA, showing that 4 is extremal and so A = ¢p for some minimal
projection p € M, and ¢ > 0. Therefore we have

du(y) = cg(y)pdi(y).

Finally, we show that (jg( y 1 do( y)> p = p. We first note that p commutes with the
2 ,

range of ¢ because u does. Let f € K(G, M,;). Then

u(f) = (ux o) (f) = Tr(f] of (xp)g(x)p dA(x) da(y))
= T([f o (g oy )P dA(2) dol)
= ([ 7)) ([ 9P de(2))

which gives du = < [g(y™h) dcr(y))p dy, that is,
G

g pdi(y) = ([a(r")pdo(»))ea(»)pdi(y),

giving p = Q g(y™) da(y)>p-

(if) = (i) Let du = cgp.d’ be as given. We show that u € 6H,. Let v e H, be such
that 0 < v(-) < (). We show that v is a scalar multiple of u. ' '

Define d(x) = g(x~) dv(x) and d&(x) = g(x71) do(x). Then it is straightforwezrd to
verify that 7 & = ¥ as ¢ is exponential. :
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Consider v = () € 1<i_r£1 K(Gr, M})". We have, as functionals,

Vie() = 10)|x(Geaaz) = €9 () p AA(X) k(G p1r)-

So, by Lemma 6, for every Borel set E = Gy, we have

0 < w(E) < ( [eats) de))p

and theref(?re, by [IQ], Lemma 4.1, v (E) = w(E)p = pv(E) which is a nonnegative
§calar m_u_ltlple of p since p is a minimal projection. It follows that vi(-) = v.(-) p where v}
is a positive extended real-valued measure on G. Hence v(-) = v/(:)p and f’ is a positi c
extended real-valued measure on G. PO

Let ¢ be a pure state of | i —
LA e Mf pure state of M, supported by p, that is, ¢(p) = 1 Then ¢(4) = ¢(4p) for

We have gv = ' and doi(x) = g(x~1) dv/(x). We next t oV i "
. ) - . show that ¢7 is translation
invariant. Let x € G' and let ¢V, be the translation of ¢ b i i

and define F: G — C by n of ¢V by x. Fix an arbitrary f e‘K(G, C)

Then we have




50 Chu, Matrix-valued harmonic functions on groups

Therefore the function F is pg-harmonic where
03(6) = o(a(6)p) =o( [ 00 delo)p ) = o(p) =1
G

and @& is adapted. Moreover Fis bounded since, given v < cgp.4 and supp f < G, we have

)l = | [ F@at 2 doviz)

< ¢ [1f(2)] d(zx) < el FIHGR).
Gr G

Hence, by the Choquet-Deny Theorem [4], Fis constant and in particular,

[ fdg¥x=F(x)=F(e) = | fdob.
G _ G

As f € K(G,C) wé‘s arbitrary, we have ¢V, = ¢V. Hence invariance gives ¢ = fA for some
B =0, and

() = d(pn)(x) = g(x) dgi) = falx) dAL).

Therefore we have dv(x) =d

v (x)p = Bg(x)p dA(x) which is a scalar multiple of du(x).
This proves that u e 0H,. [] : o :

Now let f: G — M, be a positive s-harmonic function with range commuting Witl;
that of ¢. The measure u= f.A€ Ks(G, M), satisfies puxo = u gcf. Exampl_e 233))0ane
therefore u = | vdP(v) for some probability measure P on 0H,. Using Proposition 30, w

oH,
can now describe f as follows.

otri ble abelian group and let o be an
Theorem 31. Ler G be a metrizable and separa X : '
adapted positive M,,-valued measure on G. Let f:G— M,bea p.c).sztzve o-harmonic function
with range commuting with that of o. Then there exists a probability measure P on

&= {cgp eZ 0, (a[g(y‘l) da(y))P = P}

. - - - h
where p is a minimal projection in My and g: G — (0, 00) is continuous and exponential, suc

that

f(x) = [h(x)dP(h) (J-ae.). )
&

Note added in proof. A Liouville theorem for matrix-valued harmonic functiois on
nilpotent groups has been proved recently by the author. It has also been shown that a

normal contractive projection on a JBW* h
“ Normal contractive projections preserve types by C.

-triple preserves types, in a recent paper entitled
-H. Chu, M. Neal and B. Russo.
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Surgery and the speetrum of the Dirac operator

By Christian Bér and Mattias Dahl at Hamburg

Abstract. We show that for generic Riemannian metrics on a simply-connected
closed spin manifold of dimension =5 the dimension of the space of harmonic spinors is
not larger than it must be by the index theorem. The same result holds for periodic funda-
mental groups of odd order. :

- The proof issbased on a surgery theorem for the Dirac spectrum which says that if
one performs surgery of codimension =3 on a closed Riemannian spin manifold, then the
Dirac spectrum changes arbitrarily little provided the metric on the manifold after surgery
1s chosen properly. . : ‘ :

0. Introduction

Classical Hodge-deRham theory establishes a tight link between the analysis of the
Laplace operator acting on differential forms of a compact Riemannian manifold and its
topology. Specifically, the dimension of the space of harmonic k- forms is a topologrcal n-
variant, the k'™ Betti number.

The question arises whether a similar relation holds for other elliptic geometric dif-

ferential operators such as the Dirac operator on a compact Riemannian spin manifold. It-

is not hard to see that the dimension 4, of the space of harmonic spinors is a conformal
invariant, it does not change when one replaces the Riemannian metric g by a conformally
equivalent one ([10], Prop. 1.3). Moreover, the Atiyah- Srnger 1ndex theorem implies a to-
pological lower bound on 4,.

Berger metrics on spheres of dimension 4k + 3 provide examples showing that in gen-
eral h; depends on the metric and is not topological, see [10], Prop. 3.2 and [3], Thm. 3.1.
Also for surfaces of genus at least 3 the number 4, varies with the choice of metric ([10],
Thm. 2.6). All known examples indicate that the’ followrng two conjectures should be true.
On the one hand, we should have

Conjecture A.  Harmonic spinors are not topologically obstructed, i.e. on any compact
spin manifold of dimension at least three there is a metric g such that hy > 0.




