4 ‘

N4 - Nk
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Since /*(N) is an /*(N)-submodule of CV, it follows that I*(N)/cy, is an [*(N)-
submodule of E. Let Q: E— E/(IY(N)/cyy) = CV/I*(N) be the quotient map. Then
QoD:[*(N)— CN/IY(N) is the desired derivation.

We now return to the second cohomology group H 2(A, [*(N)) for strongly regular
amenable Banach function algebras. Let 4 be such a Banach function algebra. It is
easy to find a set S = {x,e®,|neN} and a function f,€ 4 such that S is discrete in
the relative topology and f£,(S) is infinite. Let @: 4 — [°(N) be given by

(N (n) =flx,) forfed,neN.

Clearly @ is an algebra homomorphism and if /*(N) is a Banach A bimodule as in
Definition 2.3, then for fe 4 and fel*(N) we have

fB=0() . (12)
THEOREM 3.26 (CH). Let A be an infinite-dimensional amenable strongly regular

Banach function algebra. Then there exists a Banach A-bimodule E such that the
comparison map i,: #* A, E) — H*(4, E) is not surjective.

Proof. Let f, and S be as above. Then O(f,) is a bounded sequence such that .

the set {®(f,)(n)|neN} is infinite. By Theorem 3.25, there exists a derivation
D: I°(N) - CN/IYN) with D(O(f,)) # 0. Hence Do®: 4 — CV/I*(N) is a non-zero
derivation. By Proposition 2.5 we have H?*(4,! 1(I\I)) # 0. Since #°%(4,*(N)) = 0 by
amenability, the result follows.
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THE DUNFORD-PETTIS PROPERTY IN JB*-TRIPLES

C.-H. CHU axp P. MELLON

JB*-triples occur in the study of bounded symmetric domains in several complex

"variables and in the study of contractive projections on C*-algebras. These spaces are
equipped with a ternary product {-, -, *}, the Jordan triple product, and are essentially

geometric objects in that the linear isometries between them are exactly the linear
bijections preserving the Jordan triple product (cf. [23]).

A JB*-triple is a complex Banach space and its open unit ball admits many
biholomorphic automorphisms, which play a fundamental role in the theory of JB*-
triples and bounded symmetric domains. In fact, a Banach space is a JB*-triple if, and
only if, the biholomorphic automorphisms of its open unit ball act transitively [23].

Recently, Isidro and Kaup [22] studied the question of when these holomorphic -

automorphisms are weakly continuous, and a notion of weakly continuous JB*-
triples was introduced in [24]. The weak continuity of these automorphisms turns out
to be closely related to a well-known Banach property, namely the Dunford—Pettis
property (which will be recalled below). Indeed, using [22] one can show that a JB*-
triple with a unitary tripotent has the Dunford—Pettis property if, and only if, every
biholomorphic automorphism of its open unit ball is sequentially weakly continuous
in the sense that it preserves weak convergence of sequences (see Proposition &
below). It is therefore of interest to know which JB*-triples have the Dunford—Pettis
property.

In this paper, we characterise JB*-triples having the Dunford—Pettis property We
show that, among other results, a JB*-triple Z has the Dunford—Pettis property if,
and only if, for every weakly null sequence (z,) in Z, the sequence ({z,,z,, z}) is also
weakly null for all ze Z**. It follows that the Dunford—Pettis property is inherited by
subtriples and that a JBW*-triple ¥ has the Dunford—Pettis property if, and only if,
Wis an [_~-sum @ ,L>(Q,,u,, C,), where C, is a Cartan factor and sup,dim C, < o0.

We also show that the predual W, has the Dunford-Pettis property if, and only if,

W=1I[_-sum @, L°Q,,u,, C,) with dimC, < oo for all & These results subsume

‘those in [5, 9, 10].

1. Dunford—Pettis property and weak continuity of automorphisms

Let C(X) be the Banach space of continuous functions on a compact Hausdorff
space X. It is a celebrated result of Grothendieck [15] that every weakly compact
linear operator on C(X) is completely continuous. He called this property of C(X) the
Dunford-Pettis property (DPP for short) referring, of course, to an earlier result of
Dunford and Pettis [13] that L,-spaces enjoy the same property. Grothendieck [15]
has also shown that a Banach space E has DPP if, and only if, whenever (x,,) and
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(f,) are weakly null sequences in F and its dual E* respectively, thenlim,, , . f,(x,) = 0.
Therefore if E* has DPP so does E, but the converse is false. Note that DPP is not
inherited by subspaces or quotients. ’

The Dunford-Pettis property plays a useful role in Banach spaces and, as we have
mentioned, it also appears in JB*-triples in connection with a weak version of
continuity for biholomorphic automorphisms. We refer to [11] for an excellent survey
of the Dunford—Pettis property and the works of many authors on this subject. We
first introduce some background for JB*-triples.

A JB*-triple is a complex Banach space Z with a continuous triple product
{-,,"}: ZxZxZ— Z which is linear and symmetric in the outer variables, and
conjugate linear in the middle variable, and satisfies

(i) the operator a{z,z,a} on Z is Hermitian with non-negative spectrum for
all zeZ;

() |{z,z, 2} = |2]?;

(iii) the main identity

{a’ b’ {x5y7 Z}} = {{a7 b’ x}?.y’ Z}_{x’ {bi a’y}ﬂz}+{xiy3 {a9 b? Z}}‘

A JB*-triple which is a dual Banach space is called a JBW*-triple, in which case
the predual is unique and the triple product is separately weak* continuous. The second
dual of a JB*-triple is a JBW*-triple with a natural triple product [12].

A norm closed subspace of a C*-algebra which is also algebraically closed under
the triple product {x, y, z} = ¥(xy*z+zy*x) is a JB*-triple, called a J*-algebra [18].
Other examples of JB*-triples include the Carzan factors of types 1 to 6, where a type
4 Cartan factor is a complex spin factor, type 5 is the JB*-triple consisting of 1 x2
matrices over the complex Cayley algebra ©, and type 6 the Hermitian 3 x 3 matrices
over 0. The types 1, 2 and 3 are defined as follows for arbitrary complex Hilbert
spaces H and K: ? \

L(H,K)is type 1, where L(H, K) consists of all bounded linear operators from
Hto K;

{ze L(H): z = jz*j} is type 2;

{ze L(H): z = —jz*j} is type 3, where j: H— H is a conjugation.

An element e in a JB*-triple Z is called a tripotent if {e,e,e} = e; it is called
unitary if {e,e,z} = z for all ze Z. If Z has a unitary tripotent u then Z becomes a
Jordan algebra with product zow = {z,u, w} and involution z* = {u, z, 4} such that

{x,y,z2} =x0(y*oz)—y*o(zox)+zo(xoy*)

and we also have |xoy| < ||x] [|¥| and {|x*| = ||x|. In other words, Z becomes a
JB*-algebra with identity u.

The self-adjoint part {ze 4: z* = z} of a JB*-algebra 4 is a so-called JB-algebra
which is a real Jordan Banach algebra. A JB-algebra with a (unique) predual is called
a JBW-algebra. A JB-algebra which can be represented as a (real) Jordan algebra of
bounded self-adjoint operators on a (complex) Hilbert space is called a JC-algebra.
A JBW-algebra with similar representation is called a JW-algebra. We refer to [17] for
a detailed theory of JB-algebras. See also [14, 32, 33]. A recent survey of JB*-triples

can be found in [28].

e
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_ Let Z bev' a JB*-triple .With open unit ball D. Then the group Aut (D) of
(biholomorphic) automorphisms of D acts transitively on D. Indeed, given ae D the
map g,: D — D defined by

_ 8/2) =a+B(a,a)"*(I,+zoa)z
is a biholomorphic automorphism satisfying g,(0) = a and g;* = g__, where the box

operator zoa:Z—Z is defined by zga(w) = {z,q, w} and B(x,y): Z— Z is the
Bergman operator given by

B(x,y)(z) = Z—2{x,y,z}+{x, {J’:ZJ’}:x}-

Ip [22] Isidro and Kaup described the automorphisms of D which are o(Z, Z*)-
continuous and consequently, the weak continuity of all automorphisms of D, ina
unital C*-algebra 4 implies that 4 has the Dunford—Pettis property [22, Proposition
2.7]..Although this implication need not hold for JB*-triples, we shall clarify the
relationship between DPP and weak continuity of automorphisms in Corollary 7 and
Proposition 8 below.

For convenience, we shall call a mapping between Banach spaces sequentially
weakly continuous (s.w.c.) if it preserves weak convergence of sequences.

Let Aut (D) = {ge Aut(D): g is s.w.c.}. Following [22], we let

CONT,(Z) = {ae Z: the map z—>{z, 4,2} is s.w.c. on Z}.

We begin with a description of Aut(D) analogous to that in Theorem 3.6 of [22].
Write Aut(Z) = {ge Aut(D): g(0) = 0.

" Lemua 1. Aut,(D) = {g, 4: ae D n CONT,(X), e Aut (Z)}.

‘ Proof. Every AeAut(Z) is the restriction of a norm continuous linear map and
is therefore o(Z, Z*)-continuous. Similarly, B(a, a)? is o(Z, Z *)-continuous for all

ae.D. Let.aeD N CONT,(Z). The mapping z+ (I,+zn a)'zis then s.w.c. asitis a
uniform limit

i::o(—zDa)"z

of s.w.c. mappings. Therefore 8, 18 sw.c. and g, 1 is s.w.c. for all AcAut ).

Conversely, let fgeAuts(D). Let a = g(0) and /. = g; g Aut(Z). Since g, =gAt it

follows that g, is s.w.c. Moreover, g,(—a) = 0 and by [22, Lemma 3.3], we have .
{z.a,w} = —g,(0)'g(0)(z,w) forz,weZ.

Clearly, the mapping 7+ {z, g, z} is s.w.c. if, and only if, the mapping z— 2.0 (z,2)

is s.w.c. Since g, is s.w.c. and 8,(0) is the local uniform limit of s.w.c. mappings, it
follows that zt—{z, a, z} is s.w.c. and ae CONT,(2).

. ReMARKS. (1) Lemma 1 proves that gis s.w.c. if, and only if, g(0)e
Smce CONT,(Z) is a characteristic ideal in Z, it follows that};g is i(w)c i"oilgwgfl)s;
if, g™ is s.w.c. and hence that Aut,(D) is a subgroup of Aut (D). ,
(2) By transitivity of Aut(D), we have Aut (D) = Aut(D) if, and only if;
CONT,(Z) = Z. Therefore, [22, Proposition 2.7] can be restated as follows. ,

PROPOSITION 2.  Let A be a unital C*-algebra with open unit ball D. The Sfollowing
conditions are equivalent :

(1) A has the Dunford—Pettis property ;
(ii) every geAut(D) is Sequentially weakly continuous.
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We shall show in Proposition 8 that the above result is true for JB*-algebras with
identity. However, the result is false for JB*-triples without unitary tripotent. Indeed,
the C*-algebra K(H) of compact operators on an infinite-dimensional Hilbert space
H does not have DPP, but every automorphism of its open unit ball is weakly
continuous [22, Corollary 3.9].

2. IB-triples with Dunford—Pettis property

The Dunford-Pettis property for C*-algebras has been characterized in [8, 10].
See also [5, 16]. We extend these characterizations to JB*-triples using more elaborate
arguments involving Grothendieck’s inequality and Jacobson’s coordinatization
theorem for Jordan algebras.

Let W be a JBW*-triple with predual W,. For fe W, with | f] =1, there is a
tripotent e, in W such that f{e;) = 1 and furthermore, given we W with flw) = 1, we
have f{z,z,e;} = f{z,z,w} for all ze W [2, Proposition 1.2]. Therefore the pre-Hilbert
spacenorm || - ||, = +/f{, -, e;} is well-defined on W. The topology s(W, W) generated
by these semi-norms | - ||,, where fe W, and || f|| = 1, is called the strong*-topology or
s*-topology on W (cf. [3, 27)).

LEMMA 3. Let Z be a JB*-triple and let T: Z — Z* be a bounded conjugate linear
operator. Then T is weakly compact.

Proof. Let Z, be the JB*-triple obtained from Z by changing only its scalar
multiplication to (ﬂ. z)+—Jz. Then T: Z,— Z* is a linear map and by [7, Lemma 5],
T is weakly compact.

Given a JB*-triple C, we shall denote by L*(Q,u,C) the JB*-triple of all
essentially bounded weakly measurable C-valued functions on a finite measure space

(Q, ) (cf. [20]).

LemMa 4. Let W be a IBW*-triple without summands L*(Q,u, C®) and
Lo, w1, C®), where C® and C® are the type 5 and type 6 Cartan factors respectively.
Let (f,) be a o(Wy, W)-null sequence in W, and let (w,) be an s(W, Wy)-null
sequence in W. Then we have N
lim sup{| f,(w): k=1,2,...} =0.

n—00

Proof. By [7, Corollary 3], W embeds as a subtriple in a von Neumann algebra
M with W, complemented in M,. We first show that w¥fw,+w,w} —0 in the
o(M, M,)-topology. Let fe M, and let
N={weW: fiw*w+ww*) = 0}.
Define an inner product on the quotient W/N by <w+N,z+N) = f(z*w+wz*).The
natural quotient map T from W to the completion of W/N is w*-w*-continuous as

' fe M, and by the ‘little Grothendieck Theorem’ [2; 9, Proposition 4]) there exists

¢ W, such that
VAW ww*) = | TN < 220 T ||/ $iw, w, e},
where e, € W is a tripotent such that @[ = ¢(e,) = 1.
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Since w,, — 0 in s(W, W,,), the above inequality implies that Aw} w, +w, w*) — 0.
Thus we have shown that the sequence (W} w,+w, w) is o(M, M,)-null in M and
now we can apply [29, Lemma III 5.5] to conclude that

lim sup{|f,(w): k=1,2,..}=0.

n—=0

We are now ready to derive the criteria for DPP in JB*-triples. We usually embed
Z into Z** and the topology s(Z**, Z*) restricted to Z will be denoted by s(Z, Z*).

THEOREM 5. Let Z be a JB*-triple. The following conditions are equivalent :
(i) Z has the Dunford-Pettis property;
(i) for any weakly null sequence (z,) in Z, the sequence ({z,,z,,z}) tends to 0
weakly for all ze Z**,;
(iii) every weakly null sequence in Z is s(Z, Z*)-null.

Proof. (i) =(ii). Letz, —0weakly and let ze Z** Let fe Z*. Define T: Z —» Z*
by T(w)(¥) = fly,w,z} for w,yeZ. Then T is conjugate linear and hence is weakly
compact by Lemma 3. By DPP of Z, we have |T(z,)| =0 which gives
Az, 2,,2} =0, as (z,) is norm bounded.

(i) = (iii). Let z, — 0 weakly. For any fe Z* with || f|| = 1 = fle,) and e,e Z**,
we have |z, = j{zn, z,, e, — 0 by (ii). So z, — 0 in the s(Z, Z*)-topology.

(iii) = (). Let z, —» 0 in o(Z,Z*) and let f =0 in o(Z*,Z**). We show that
J.(z,) = 0 which wﬂl yield the DPP for Z. We have

Z¥* =] -sum (W@ L, ® L), @)
‘where L, = L*(Q,, u,;, C?) or 0 (for j = 5, 6), and W is a JBW*-triple without summand

LRQ,, 1y, C) for J=15or6. Also Z* is the /;-sum of the corresponding preduals. By

decomposmg (z,) and (f,) according to (}) and by noting the preduals LQ,, »,, C%)
(for j = 5, 6) have DPP, we can reduce our arguments to the case f, € W, and z, EW.
By (i), z,—0 in s(W,W*) and by Lemma 4, we have f,(z,) >0 as n— oo,
completing the proof.

REMARK. Let Z be a JB*-triple and let C(X,Z) be the JB*-triple of Z-valued
continuous functions on a compact Hausdorff space X. A simple application of
Theorem 5 shows that C(X, Z) has DPP if, and only if, Z has DPP. The structure of
compact type symmetric manifolds associated to C(X, Z) has been studied in [25, 26].
It may be of interest to investigate how DPP is related to the geometric structure of
these manifolds.

COROLLARY 6. Let Z be a JB*-triple with DPP and let Z, be a subtriple of Z. Then
Z, has DPP.,

CoROLLARY 7. Let Z be a JB*-triple with DPP and open unit ball D. Then every
geAut (D) is sequentially weakly continuous.

Proof. By the remark following Lemma 1, it is equivalent to show that
CONT(Z) = Z. Fix ze Z and let z, — 0 weakly. As in the proof of Theorem 5, given
feZ*, the weak compactness of the linear map 7: Z — Z* defined by T(w)(y) =
Aw,z,y} yields fiz,,z,z,} - 0 as n— 0. So ze CONT,(Z).
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We have the following converse.

PROPOSITION 8. Let A be a IJB*-algebra with identity e and open unit ball D. The
following conditions are equivalent :
(1) A has the Dunford-Pettis property;
Gi) if (z,) is a weakly null sequence in A then the sequence ({z,,2,,€}) = (zy0z,) is
weakly null;
(iii) every ge Aut(D) is sequentially weakly continuous.

Proof. (ii) = (iii). We show that CONT,(4) = 4. It suffices to show that
ec CONT,(4), since CONT,(4) is an ideal in 4 by [22, Proposition 2.6]. Let z, -0
weakly and write z, = u, +iv, with u, and v, self-adjoint. Then (x,) and (v,) are
weakly null and (ii) implies that ({u,, u,, €}), ({v,,v,, €}) and ({u, +v,, u,+v,, e}) are all
weakly null which gives {z,, e, z,} — 0 weakly; that is, e CONT (4).

(iii) = (). Let I = {ze A: the map a+>{a,a,z} is s.w.c.}. Using the identity

{{Zn: Zys (1}, z, Z} —{Cl, {Zm Zps Z}9 Z} = {Zna {Za a, Zn}a Z} _{{ao z, Zn}: Zps Z}

and the main identity, together with polarization, one can show that {a,z,z}el
whenever ze I and ae 4. Hence [ is an ideal in 4 by [6, Proposition 1.3]. By Theorem
5, DPP will follow from I = 4. We complete the proof by showing that ee . Indeed,
let z, — 0 weakly with z, = u, +iv, where u, and v, are self-adjoint. Then (u,) and (v,)
are weakly null. Hence ({u,e,u,}) and ({v,,e,v,}) are weakly null, since
ee CONT,(4). It follows that {z,, z,, e} = u%+v% — 0 weakly. This shows that eel.

3. JBW*-triples with Dunford—Pettis property

We now characterize JBW*-triples having the Dunford—Pettis property. Given a
tripotent e in a JB*-triple Z, there corresponds to a Peirce decomposition.:

Z = Z,(e) ® Zy(e) ® Z(o),

where Z,(e) = {zeZ: {e,e,z} = kz} is the k-eigenspace of eme. The tripotent e is
" minimal if the Peirce 1-space Z,(e) is one-dimensional, in which case the Peirce 3-space
Zy(e) has rank at most 2. Every Cartan factor has a minimal tripotent. The following
crisp proof suggested by the referee is shorter than our onglnal arguments.

LemMa 9. Let C be a Cartan factor whose predual has the Dunford—Pettis
property. Then dim C < oo.

Proof. If C is infinite-dimensional and ecC is a minimal tripotent, then the
complemented Peirce 3-space Ciy(e) does not have the DPP as it is reflexive and
infinite-dimensional.

By [20, 21], every JBW*-triple ¥ can be decomposed into the following / _-sum:

W = C_B LOO(Q“,,U‘Z, Cd) @ R @ H(Myﬂ):

where C, is a Cartan factor, R is a w¥*-closed right ideal of a continuous von Neumann
algebra N, and f: M — M is a linear period 2 *-antiautomorphism of a continuous
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von Neumann algebra M with H(M, ) = {ae M: f(a) = a}. Furthermore, the self-
adjoint part 4 = H(M, f),, = {ac H(M, f): a* = a} is a continuous (real) JW-algebra
under the Jordan product ao b = ¥(ab + ba). Recall that a continuous TW-algebra is
one without type I summand. We need some structure theory of continuous JW-
algebras 4. The first is the following ‘Halving Lemma’. A symmetry is an element
se A such that s> = 1 where 1 is the identity of 4. :

Lemma 10.  Let A be a continuous YW-algebra and let pe A be a projection (that
is, p* = p). Then there are orthogonal projections q, r € A such that p = q+r, and q and
r are exchanged by a symmetry s which means that r = {s, q,s} = sgs.

Proof. See [30, Theorem 17] or [17, 5.2.14].

Lemma 11.  Let A be a continuous TW-algebra and let pe A be a projection. Then
Jor each n, one can write p as the sum of 2" orthogonal projections, any two of which
are exchanged by a symmetry.

Proof. We use induction. Suppose that we have p = p, +p,+ -+ p,s, where
p; = 8;p, 5; with 5; a symmetry. Write p, = ¢, +¢, where ¢, and g, are orthogonal
projections exchanged by a symmetry. Let g,; ; = 5,9, 5, and g,, = 5,4, ;. Then ¢, ;
and g¢,; are orthogonal with g,,_, +¢,, = 5,(9,+¢,) s, = p;- SO p =g, +go+** +ggnn

.and each g, is exchanged by a symmetry with either ¢, or ¢,. By [30, Theorem 7 and

Proposition 10], every pair of the g, are exchanged by a symmetry.

Gi\}en a =-algebra B (as defined in [17, 2.1.1]), we let H,(B) denote the algebra of
nxn Hermitian matrices with entries from B, where a matrix (b,) is Hermitian if
(b;) = (b}), and the algebra product is the usual Jordan product of matrices. If p, g are

- orthogonal projections in a JW-algebra 4 exchanged by a symmetry, then they are

strongly connected, that is, there exists ae{p, 4, g} such that a> = p+q [1, 6.6]. Let
peA be a projection which is the sum of 2» orthogonal projections exchanged by
symmetries. Then by Jacobson’s coordinatization theorem [17, 2.8.9], {p, 4, p} = pAp
is Jordan isomorphic to the JB-algebra H,«(B) of 2" x 2" Hermitian matrices over a
unital =-algebra B for n > 2. :

ProposITION 12. Let A be a continuous IW-algebra. Then the [ -sum
D, 52 H;(R) embeds as a Jordan subalgebra of A.

Proof. Write the orthogonal sum 1 = p, +p,+---+p,+---, where each p, is the
sum of 2" orthogonal projections exchanged by symmetries. By the above remark, we
have the following natural embeddings of / -sums:

nz2 nz2 nz2

CoRrOLLARY 13. Let A be a continuous YW-algebra. Then A does not have the
Dunford—Pettis property.

Proof. Suppose otherwise. Then the JB*-algebra A4+id has DPP and, by
Corollary 6 and Proposition 12, @, Hy=(R) would have DPP. This is impossible since
P, Hzn(R) contains as a complemented subspace the [ -sum @, /2" ~* of the Hilbert
spaces /2"~ and @,,/2"* does not have DPP [11, p. 22]
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THEOREM 14. Let W be a IBW*-triple. The following conditions are equivalent :

(1) W has the Dunford—Pettis property;

i) W=l -~sum P, L°Q,, u, C, with sup,dimC, < oo, where each C, is a
Cartan factor.

Proof. (ii)=(i). Since n,:=dim C, < o0, each L*(Q,, 4, C,) is linearly isomor-
phic to the /_-sum of n, copies of L®(Q, 4, C) and hence has DPP. Since
sup,dim C, < oo, it follows that

D L@ s C) = T (X L 1 CL)

has DPP, where C/, is a Cartan factor of type j.
() = (ii). As remarked after Lemma 9, we can write

W= @ LQ,u, C) ®R® H(M,P).

By Corollary 13, H(M,) = 0. If R # 0, then R = pN for some continuous von
Neumann algebra N and non-zero projection p € N. By Corollary 6, the von Neumann
algebra pNp has DPP since R has DPP. By [8, Theorem 3], pNp is type L. But pNp is
continuous (see for example [31, Corollary 11]) which is a contradiction. So R = 0.

It remains to show that sup,dim C, < co. By Lemma 9, we have dim C, < oo for
all o. We need to consider only the supremum over the first 4 types of Cartan factors.

We first show that every such C, contains a complemented subspace linearly
isomorphic to a Hilbert space /5= where (n,+ 1)* > dim C, and the isomorphism ¢ has
bound |4 ¢ < 2. .

If C, is type 1, say the factor M,,, of all complex m x n matrices, then the Hilbert
spaces [T and I? embed as complemented subspaces of M,,, by a norm-1 projection.
If C, is of type 2 consisting of symmetric complex nXxn matrices, then
dim C, = n(n+ 1) and /2~  embedsin C, as a complemented subspace by the projection
p: C,— C,, given by p(aw) (b,;), where

b, — 1% ifmin(i,j) = 1and i #J,
7710 otherwise,

and | p|| < 2. Likewise /77 complements in the type 3 Cartan factor of n xn skew-
symmetric matrices Wthh has dimension 3n(n—1).

If C, is type 4 of dimension n, then it admits an inner product <, ) such that
Yal® < <a a) < |lal|® for all aeC,. It follows that there is a linear isomorphism
$: C,— 17 with [ g] |5™] < v/2. |

Now the [ -sum @, C, is a subtriple of @ ,L2(Q,, ,, C,) and therefore has DPP.

If sup,dim C, = oo, then by the above remarks the /_-sum @,/3= is linearly
isomorphic to a complemented subspace in @, C,. Hence @, /3« has DPP, which is

impossible since 7,1 oo [11, p. 22]. So sup,dim C, < co.

REMARK. It is interesting to compare Theorem 14 with a recent result in [19]
that, given a type I JBW*-triple W, then every (bounded) derivation on W is inner if,
and only if, W= @,L>(Q,, 4,, C,) with sup,.,dimC, < oo, where K = {«: C, is
type 1 non-square or type 4}.
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We now consider the predual W, of a JBW*-triple W. The w*- -topology on W
refers to the topology (W, W,,).

LEMMA 15.  Let W be a JIBW*-triple. The following conditions are equivalent:

(i) W, has the Dunford—Pettis property;

(i) Given a o(W, W*)-null sequence (w,) in W, the sequence ({W,, w,, w}) is w*-null
Jor all we W.

Proof. (i)=(ii). Let (w,) be a weakly null sequence in W. Fix we W and fe W,.
Define the linear functional g, on Wby g,(-) = f{-, w,, w}. Then (g,,) is 6(W,,, W)-null
in W,, since the triple product {-, -, -} is separately w*-continuous [2]. By DPP, we
have f({w,, w,, w}) = g,(w,) = 0 as n— co.

(i) = (). Let(f,)beaa(W,, W)-null sequence in W, and let (w,) be a a(W, W*)-
null sequence in W. By (ii), (w,) is s(W, W,)-null. Separating out the possible
summands L®(Q, u, C®) and L*(XY, i, C®) of W as in the proof of Theorem 5, we get
J.(w,) =0 as n— o0 by Lemma 4. So W, has DPP.

COROLLARY 16.  Let W be a JBW*-triple whose predual W, has the Dunford—Pettis
property. Let U be any JBW*-subtriple of W. Then U, has the Dunford—Pettis property.

Bunce [5] has shown that the predual of a type II, von Neumann algebra M does
not have DPP, by noting that M contains an infinite spin system. For JB*-triples, we
shall use the fact that every continuous JW-algebra contains an infinite spin system
which is shown below.

Given ae H,(R) and be H,(R), we define, as in [17, p. 139], elements a® 1,
1,®band a® b in H,,(R) by the following:

a 0
a®l, = )
0 a
b, 0 bim 0
7 0 by, ... 0 bim
bml 0 bmm O v
0 By - O Bom )

a®b=@®1){1, ®b).

The inclusion H,(R) = H,,(R) means that H,(R) is identified as a JB-subalgebra
of H,,(R) via the embedding a€ H,(R)—~a ® 1,€ H,,,(R). We also identify H,(H,(R))
with H,,(R) by deleting additional parentheses.

Lemma 17. Let A be a continuous JW-algebra containing H,(R) as a Jordan
subalgebra, where n > 2. Then we have A > H,,(R) > H,(R).
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Proof. We may assume that the identity e in H,(R) coincides with the identity
1 of A, for otherwise, we can consider H,(R) < ede. There are mutually orthogonal
projections p, ..., p, € H,(R), any two of which are exchanged by a symmetry, such
that 1 =p,+ - +p,. :

By coordinatization [17, 2.8.9], 4 is Jordan isomorphic to H,(R), for some unital
x-algebra R, with matrix unit (e,), such that the Peirce component {xe;;: x€ R} of
the self-adjoint part R, = {xe R: x* = x} is Jordan isomorphic to p, 4p, [17, 2.8.17
and 2.8.19]. Since p, Ap, does not contain a type I summand, using Lemma 11 and
coordinatization again, we have p; Ap, = H,(R’) > H,(R) for some unital x-algebra
R’. Therefore we have

A= H,R) > HHR) = H,(R) > H,(R).

Let (4, 0) be a unital real Jordan algebra. A spin system in A is a set P of at least
two symmetries not equal to %1 such that so¢ =0 for s # ¢ in P.

PROPOSITION 18.  Every continuous YW-algebra A contains an infinite spin system.

Proof. By Lemma 17, 4 contains the following JW-factors
H4(R) < HIG(R) ot H4n(R) c-c A.

We construct an infinite spin system in 4 as follows.

Let g, = ((1) é) and g, = ((1) _01>eH2(IR). Define

5, =0,80,85=0,00,80,0y,...,5, =0, " ®0,Q0;.
(2n-—i) -times

Then P = {s,: n=1,2,...} is an infinite spin system in 4.

COROLLARY 19. Let A be a continuous YW-algebra. Then its predual A, does not
have the Dunford—Pettis property.

Proof. Let P be an infinite spin system in 4. Then P generates an infinite-
dimensional (real) spin factor ¥ in 4. Since V, does not have DPP, Corollary 16
implies that A4, does not have DPP.

We conclude with the following result.

THEOREM 20. Let W be a IBW*-triple. The following conditions are equivalent :

(i) W, has the Dunford—Pettis property;

@) W=1,-sum D,L*(Q,, u,C,) where each C, is a Cartan factor and
dim C, < .

Proof. (i)=(ii). Write W= @,L%(Q,, #,, C,) ® R® H(M, p) as before, where
R =pN for some continuous von Neumann algebra N with projection p, and
H(M, B) is a continuous JW*-algebra. If R # 0, then pNp # 0, and R, has DPP which
implies that (pNp), also has DPP by Corollary 16. By [5] and [8, Proposition 6], pNp
is a type I finite von Neumann algebra, contradicting the fact that N is continuous. So
R = 0. The self-adjoint part H(M, f),, is a continuous TW-algebra whose predual does
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not have DPP by Corollary 19. Hence H(M, §) = 0. Finally, C, is identified as a JBW*-
subtriple of L®(Q,, 4,, C,) and the DPP of the predual L®(Q,, u,, C,)4 is passed onto
the predual of C,, by Corollary 16. So dim C, < c by Lemma 9.

(i) = (i). Since dim C, < oo, the predual L2(Q,, u4,, C,)sx = LNQ,, 4,, (C,)4) has
DPP. Hence W, =1, —sum ), L*Q,, 1, (C,)s) has DPP, by arguments similar to
those in [9, p. 62].
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Note added in proof. In condition (ii) of Theorem 5, Z** can be replaced by Z.
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COORDINATES FOR THE REGULAR COMPLEX
_ POLYGONS

H. S. M. COXETER, J. CHRIS FISHER axp J. B. WILKER

ABSTRACT

Certain projections of the real polytopes {3, 3,4}, {3,4, 3}, {3, 3, 5} suggest highly symmetric coordinates
for the self-reciprocal complex polygons 3{3}3, 4{3}4, 3{4}3, 5{3}5 and 3{5}3. Although there are a number
of interesting complications, this suggestion is essentially correct and leads to elegant coordinates for all
the sporadic complex polygons. Among the by-products of producing these coordinates we count most
significant our new insights about 2{6}3 and our simple proof that the 600 vertices of the real polytope
{5,3, 3} are quite unrelated to the 600 vertices of either 5{6}2 or 5{4}3.

1. Introduction

The unitary transformation
27i/p
(us U) — (u3 U) (e 0 ?)

of period p > 2 which fixes the points of the line u = 0, affords a natural generalization
of the real reflection ‘

(4, v) —> (u, v)(—(l) (1))

which has this line for its mirror. By allowing complex reflections of period p > 2 we
can extend the notion of a regular real polygon to that of a regular complex polygon.
The specimen denoted p,{g}p, has p, collinear vertices on each edge and p, edges
through each vertex. Its symmetry group is generated by complex reflections R, and
R, where R, fixes the centroid of an edge and cycles the vertices on it, while R, fixes
a vertex of this edge and cycles the edges through it. '

The middle number ¢ in the symbol p,{g} p, appears in the defining relations

R»=R»=1 R R,R=R,R R, (qfactors on each side)

for the symmetry group p,[g] p, = p,lg]p, of our polygon. (If g is odd, it follows that
R, and R, are conjugate, p, = p, = p, and the relation Rf =1 is superfluous.) The
number g also has a direct geometrical interpretation explained in [9]. It is the length
of a minimal cycle of vertices in which successive members belong to an edge and
successive edges so determined, are distinct. If the polygon is real, DPi=p,=2andgq
is equal to the total number of vertices. :
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