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In this paper we obtain a minimax inequality for generalized mixed concave—
convex functions which contain the corresponding results from the literature as
special cases and improves the corresponding result in (B. L. Lin and X. C. Quan,
J. Math. Anal. Appl. 161 (1991), 587-590). As applications, in Sections 3 and 4,
we utilize the results presented in this paper to study the abstract variational
inequality problem and the coincidence point problem for set-valued mappings
and for saddle problems. © 1994 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

The minimax problem is a very important problem in nonlinear analysis |

which plays a significant role in game theory and mathematical economics.
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Since 1928, when Von Neumann first gave a minimax theorem for mixed
concave—convex functions, the minimax problem has been extensively
studied by many authors (see [1-9]). The purpose of this paper is to obtain

- a minimax inequality theorem for generalized mixed concave—convex

functions which generalizés the minimax theorem of Neumann type and
contains the corresponding minimax theorems for mixed concave—convex
functions in [1-4, 6-9] as its special cases. As applications, in Sections 3
and 4 we use the results presented in this paper to study abstract variational
inequalities, the coincidence point problem for set-valued mappings and
the saddle problem.

For the sake of convenience, we first give some definitions, notations,
and some propositions.

Throughout this paper, we denote R = (—, +). In this paper the
topological space means the Hausdorff topological space. We denote by
@(X, Y) the set of all continuous functions from X to ¥ and we denote by
F(X) the family of all finite subsets of X.

DerINITION 1.1. Let Z be a totally ordered space. Z is called a com-
plete totally ordered space if each subset has a least upper bound. If, in
addition, for any z;, 2, € Z, z; < z,, there eXists z; € Z such that z; <
73 < z,, then Z is called a complete dense totally ordered space.

DEerINITION 1.2 [7]. A topological space X is called an interval space
if there exists a mapping [, *]: X X X — C(X), where C(X) is the family
of all connected subsets of X, such that for any x, y € X,

x,y € [x, y]1 = [y, x].

DerFINITION 1.3 [7]. Let X be an interval space. A subset K of X is
called W-convex if for any x, y € K we have [x, y] C K. A mapping f:
X — Z, where Z is a totally ordered space, is called quasi-convex (or
quasi-concave), if for any z € Z, the set

{xe X.'f(x) =z} (or {x € X:f(x) =z}

is W-convex in X.

DErFINITION 1.4 [4]. Let X be a topological space and Z be a totally
ordered space. A mapping f> X — Z is called upper semi-continuous (or
lower semi-continuous) if the set {x € X: f(x) = z} (or {x € X: f(x) < z})
is a closed setin X for all z € Z.

ProrosITION 1.1{7]. If X is an interval space, then any W-convex set
in X is connected set.

'PROPOSITION 1.2 [71. Let X be an interval space and Z be a complete
dense totally ordered space dand f: X — Z be a mapping. Then
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() fis quasi-convex if and only if for any x, y € X and for any z €
[x, ¥] the following holds:

f(2) = max{f(x), f(»};
(i) fis quasi-concave if and only if for any x, y € X and for any z
€ [x, y] the following holds:

f@) = min{f(x), f(»)}

DerFINITION 1.5 [3]. A topological space X is called a strong interval
space, if there exists a mapping [+, ']: X X X — CP(X), where CP(X) is
the family of all path-connected subsets of X, such that for all x, y € X,
x, y € [x, ] = [y, x].

2. MINIMAX INEQUALITIES

THEOREM 2.1. Let X be an interval space, Y be a topological space,
and Z be a complete dense totally ordered space. If f: X X Y—> Z satisfies
the. following conditions:

@) f(x, *) is upper semi-continuous for all x € X;
(ii) forall A € F(X) and for all z € Z, the set

l |{y€Yf(x ¥) >z}
XEA L2y
is connected;

(i) fC,y)is quasi-convex for ally € Y and is lower semi-continuous
on any connected set of X;

- (iv) there exist xy € X, 7y < inf ey sup,cy f(x, ¥) and a compact
subset L C Y such that

fGo,y) <zy forally € Y\L.

Then
z, = sup inf f(x,y) = mf sup flx,y) =z*

yEY x€X

Proof. By the completeness of Z, both z* and z,, are defined and are
in Z. It is obvious that z* = z,. Now we prove that z, = z*.
In fact, for any z € Z with z < z* and for any x € X, let

F(x,2) ={y € Y:f(x,y) =z},
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By the definition of z*, G(x, z) # & for all x € X and z < z*. By condition

(i) we know that F(x, z) is closed, and it is obvious that G(x, z) C F(x, z).

Next we prove that the family {F(x, 2): x € X, z < z*} has the finite

- intersection property.

It is obvious that for all x € X and z < z*, F(x, z) # . Suppose that
for any n elements of {F(x, 2): x € X, z < z*}, n = 2, their intersection
is nonempty, now we prove that for any n + 1 elements of {F(x, 2):
x € X, z < z*} their intersection is also nonempty. Suppose the contrary,
then there exist subset {x;, ..., x,.,} C X and {z;, ..., 2,41} C Z satisfying
<z*i=1,2,..,n+ 1, such that NZ*F(x;, z) = . Because Z is
totally ordered space, without loss of generality, we can assume that

*F>z =z = ... = z,.,. Since Z is dense, there exists a 7 € Z such
that *F>7>2z.

Now we define two set-valued mappings T, U: X — 2Y by

Tx) = {y € Y: f(x, y) > z;} = G(x, z9), for all x € X,
Ux) ={y € ¥: f(x, y) =z} = F(x, z), forallx€X.

Letting H = ﬂ”“ T(x;), then for all x € X, by the assumption of induction
we know that

n+1
HNTk = <ﬂ G(x,,zl)) ﬂ Gx, z;)

n+1

> <ﬂ F(x,.,z)) ) Fe 2=
i=3

Hence, by condition (ii)) we know that H N T(x) is a nonempty con-
nected set.
Next by condition (i), we have

n+l

HENTE) NENTG) = ANTe) N 16 € ] Fogz) = @.

i=1

This implies that H N T(x;) and H N T(x,) are a pair of separating sets.

Now we prove that T([x,, x,]) C U, T(x). In fact, if y & U%L; T(x),
then f(x;, y) < z;, i = 1, 2, i.e., {x), 3} C {x € X: f(x, y) < z;}. Since
f(, y) is quasi-convex, we know that

[x1, %] C{x € X: f(x, y) < z}.

This 1rnp11es that y & T(x) for all x € [x;, x,]; therefore, the desired
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HNT(x, o) c | B0 1.
i=1

Thus for any x € [x;, x,], we have H N T(x) C U%, H N T(x). By the
connectedness of H N T(x) and the separating property of H N T(x;) and
H N T(x,), we know that H N T(x) C HN T(x;) or HN T(x) C HN T(xy)
for all x [x;, x,].

Letting

E, = {x € [x;, x,]: HN T(x) C H N T(xy)},
E, = {x € [x;, x,]: HN T(x) C HN T(xy)},

we know that E; # O, i = 1, 2 (because x; € E)) and [x;, ;] = E; U E,.
Since [x;, x,] is nonempty and connected, we know that E; N E2 orE, N
E, is nonempty. Without loss of generality, we can assume E; N E, # &.
Hence there exist u, € E; N E, (therefore H N T(ug) C H N T(x;)) and a
net {x_},e; C E, such that x, — u,. By the definition of E,, H N T(x,) C
H N T(x, for all « € J. Since H N T(uy) # O, taking yy € H N T(uy),
we know y, € H N T(x;). Thus y, € H N T(x,), and so y, & T(x,) for all
a€J,ie.,

{xa}aej CX\T Uy = {x € X: f(x, y) = 24} o

However, since {x,},e; C E, C [x;, x,], we have

{Xodaer C {x € [x1, 1): £x, ¥o) = 24}

In view of x, — u, € [x;, x,] and condition (iii), we have f(u,, yo) < z;,
1.e., ¥y € T(uy). This contradicts the choice of y;. Therefore the family
{F (x, 2): x € X, 7 < z*} of sets has the finite intersection property. By
condition (iv), there exist z, < z*, x, € X and a compact subset L in ¥
such that F(xy, z5) C L. Since F(x,, z;) is closed, F(x,, z;) is compact.
Therefore N, ey ,<~F(x, 2) # <, and so there exists y € Y such that

y € F(x, 2) for all x € X and for all z < z*;

i.e., f(x, y) = z for all x € X and for all z < z*. Hence we have

c<inf f(r,5) forallz<z*.
x€X

o 9~ —— - ———@
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Thus we have sup,ey 1nfxeX fx, y) z for all z < z*. By the density of
Z we have

sup inf f(x, y) = z*.
YEY x€X

This completes the proof.

Remark. Since strong interval space must be a interval space, Theo-
rem 2.1 contains the main results in [3] as a special case, and so it also
contains the main results in Brezis et al. [11, Komornik [4], and Geraghty
and Lin [6] as special cases.

COROLLARY 2.2. Let X be an interval space, Y a topological space
and f: X X Y — R satisfy the following conditions:
(1) f(x, *) is upper semi-continuous for any given x € X;
(i) for any A € F(X) and for all r € R, the set N,ey {1y € Y: flx,
y) = r} is connected;

(iii) for any giveny € Y, f(-, ) is quasi-convex, and is lower semi-
continuous on any connected set of X;

(iv) there exist xy € X, zy < inf ey Sup,ey f(x, ¥) and a compact set
L of Y such that f(xy, y) < zofor ally € Y\L.

Then

sup inf f(x,y) = mf sup f(x, y).
ye€Y

yEY x€X

Proof. 1t is sufficient to prove that for all A € %(X) and for all « €
R the set N {y € Y: f(x, y) > a} is connected. In fact, because

ﬂ {YEY:flx,y)>a} = U N erfay=ax+s,

XEA" 0 x€A |

ifforalle >0, N, {y EY:fx,y) = a + & =, then

(Nerfey>a=0

XEA

is connected. Therefore without loss of generality we can assume that
there exists g, > 0 such that N . {y € Y:f(x, y) = a + g} # . Noting
that when ¢ > ¢,

m {YEY:f(x,y)=a + g} D m {yEY:flx,y)=a + &},

xEA CXEA
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we have
N yerfxy>a= U (N iyerfan=a+e
XEA 0<e<gy, xEA

Besides, because

N <m DEY:fx, =0+ s}>

O<e=gy \ x€A

= ﬂ DEYfx,)=a + e} #D,

XEA

Nees {y € Y: f(x, y) > o} is connected.

COROLLARY 2.3. Let X and Y be two topological spaces, and f, g:
X X Y — R be two functions satisfying the following conditions:
@D fCx, y) <gl, y)forallx € X and forally € Y:

() g(x, *) is lower semi-continuous and g(-, y) is upper semi-con-
tinuous;

(iii) (@) for all B € F(Y) and for all r € R, Nyep {x € X: glx, y) =
r} is connected;

(b) forally,, y, €Y, there exists a connected subset Clypy CON-
taining y, and y, such that

. gy

8l y) < max{f(x, y), g(x, y)},  forally € Cy,,,, and all x € X;
(iv) there exist yy € Y, ry < inf,cy sup,cy g(x, ¥) and a compact

subset L of X such that g(x, y,) < r, for all x € X\L.
Then

sup inf g(x, y) = mf sup flx, p).

x€X yeY

Proof. Foranyy,,y, €Y, taking [y;, y,] = Ciypys }then Yis an interval

space. By condition (iii), we know that g(x, -) is quasi-convex. Therefore

the conclusion can be obtained from Theorem 2.1.

Remark. Corollary 2.3 generalizes and improves Theorem 1 in Lin
and Quan [5].

COROLLARY 2.4. Let X and Y be two interval spaces, Z be a complete
dense totally ordered space and f: X X Y— Z be a mapping satisfying
the following conditions:
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@) f(, y) is.quasi-convex and is lower semi-continuous on any
connected set of X, _

(i) there exist xy € X, zy < inf,cy sup,cy f(x, y) and a compact
subset L C Y such that f(xy, y) < zofor ally € Y\L.

Then -

sup inf f(x,y) = mf sup f(x, y).
YEY x€X €X yeEY

Remark. Corollary 2.4 contains the main results in Sion [8] and Staché
[7] as its special cases and weakens the constraint conditions on space Y.

- COROLLARY 2.5. Let X be a compact topological space, Y a path-
connected space and f: X X Y — R be a function satisfying the follow-
ing conditions:

@ fC, y) is lower semi-continuous and f(x, *) is upper semi-con-
tinuous;

(i) for any yy, ¥y, € Y, there exists a continuous mapping h:
[0, 1] = I — Y such that h(0) = y,, h(1) = y, and {t € [0, 1]: f(x,
h(D) = a} is connected for all x € X and for all o € R;

(tii) for all B € F(Y) and for all « € R, the set

() xex:fix,y)<a}

yEB

is connected.

Then

sup inf f(x,y = mfsupf(x ¥)-

YEY x€X

Proof. Let g(y, x) = —f(x, y),forx € Xandy € Y. Then g(y, -) is
upper semi-continuous and g(-, x) is lower semi-continuous. By condition
(iii), for all B € %(Y) and for all r € R the set N, {x € X: g(y, x) > r}
is connected. By condition (ii), for all y,, y; € Y, there exists a continuous
mapping k: I — Y such that #(0) = y,, k(1) = y,, and {t € I: f(x, h(®)) =
r} is connected for all x € X and for r € R. Letting [y,, y;] = h(I), then
we know Y is an interval space.

Besides, for any y,, y; € Y and for any y € [y,, y;] and any x € X,
there exists ¢, € I such that y = h(z;). Now we take

r = —max{g(yo,x),g(yl,x)} = _maX{—f(x, yO): _f(xr yl)}

i £+ v Y £+ YL
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Since {t € I f(x, h()) = r} is connected and it is obvious that {0, 1} C

{t € I: f(x, () = r}, thus I = {t € I: f(x, h(t)) = r}, and so f(x, A(t,) =
r. Hence

gy, x) < — r = max{g(,, x), g(y1, )}-
This implies that g(-, x) is quasi-convex. By Theorem 2.1, we have

sup inf g(y, x) = inf sup g(y, x).

x€X yeY yEY x€X

Therefore, we have

sup inf f{x,y) = inf sup f(x, y).

yEY x€X x€EX yEY

Remark. Corollary 2.5 contains the main results of Wu [9] as its spe-
cial case.

COROLLARY 2.6. Let X be a compact interval space, Y be a compact
topological space and f: X X Y — R be a function satisfying the follow-
ing conditions:

(i) f(x, -) is upper semi-continuous for all x € X;
(ii) for all A € F(X) and for all r € R, the set

() {yerfay>n
XEA
is connected;
(iii) f(, y) is quasi-convex and is lower semi-continuous on X.

Then there exists saddle point (x,y) € X X Y of f.

Proof. Using our Theorem 2.1 along with Proposition 1.4.6 and Theo-
rem 3.10.4 in [2], we can obtain the conclusion of Corollary 2.6 immedi-
ately.

Remark. Corollary 2.6 contains the famous Neumann Theorem as its
special case. As is known to all, the Neumann Theorem plays an impor-
tant role in the theory of mathematical economics and game theory.

3. APPLICATIONS TO VARIATIONAL INEQUALITIES

In this section we shall use the results presented in Section 2 to study
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THEOREM 3.1. Let X be a compact interval space and ¢: X X X— R
a function satisfying ¢(x, x) =< 0, for all x € X and the following conditions:
() o(x, *) is upper semi-continuous; l
(i) forall A € F(X) and forallr ER theﬁ/ser

() v eXx: oz y) > 1}

XEA

is connected;
(i) (-, y) is quasi-convex and lower semi-continuous.

Then there exists an x, € X such that o(xy, y) <0 forally € X.
Proof. By Theorem 2.1, we have

sup inf ¢(x, y) = inf sup o(x, y)
yEX x€EX x€EX yEX

Since ¢(-, y) is lower semi-continuous, by using Proposition 1.4.6 in [2],

we know that sup,cx ¢(x, y) is lower semi-continuous in x; thus, by the
compactness of X, we know that there exists x* € X such that

sup inf ¢(x, y) = inf sup ¢(x, y) = sup o(x*, y).
yEX x€X . xEX yEX yEX

Since inf,cy sup,ex ¢(x, ¥) < sup,ex ¢(y, ¥) < 0, we have p(x*, y) <0
forally € X.

COROLLARY 3.2. Let X be a compact interval space, ¢: X X X — R
a function with ¢(x, x) < 0 for all x € X and h: X — R be an upper semi-
continuous function. If the following conditions are satisfied

(i) ¢, *) is upper semi-continuous and ¢(-, y) is lower semi-con-

tinuous, . ‘
(i) for all A € F(X) and for all r € R the set
() v € ¥rolxy) + h(y) >

XEA

is connected;
(iii) @(x, ¥) — h(x) is quasi-convex in x.
Then there exists an x* € X such that

o(x*, y) = h(x*) — h(y) forally € X.

Proof. Letting ¥(x, y) = ¢(x, ¥) — h(x) + h(y), it is easy to prove
that i satisfies all the conditions in Theorem 3.1. Therefore the conclusion

~ 11 ~ - . - A e At a1
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Remark. If condition (ii) in Corollary 3.1 is replaced by
(i)’ (x, y) + A(y) is quasi-concave in y,
then the conclusion of Corollary 3.2 still holds because condition (ii)’
implies condition (ii).
4. APPLICATIONS TO COINCIDENCE POINT PROBLEMS

In this section we use the results presented in Section 2 to study coinci-
dence problems. We have the following results.

THEOREM 4.1. Let X be a compact interval space, Y be a topological
space and F: X — 2 be a mapping with nonempty closed values, S €
BX, V). IfS™F(x) # D forallx € X and satisﬁens the following conditions:

() forall A € F(X), N,y S™IF(x) is connected;
(i) forall x € X, F~1(S(x)) is open and X\E~XS(x)) is W-convex.
Then F and S have a coincidence point x* in X, i.e., S(x*) € F(x¥). .
Proof. Define a mapping f: X X X — R as follows: ‘

| _fo, ifS@) € F),
fox 9= {1, if S(z) € F(x).

If F and § have no coincidence point in X, then for all x € X, we have
S(x) &€ F(x), and so f(x, x) = 0. For any « € R, since

S7IF(), if0<a=1,
M={zeX:f(x,)=a} =4X if a=<0,
<, fa>1,

and F is a closed valued mapping and S is continuous, we know that M
is closed. Therefore f(x, -) is upper semi-continuous.
Furthermore, for any « € R and for any A € #(X) we have

g, fa=1,
N cexfaa>ar={[ \{S"Fw}, ifo<a<l,
XEA XEA

X, fa<0.

By condition (i), for all @ € R and for all A € F(X), the set

m zE€EX:f(x,2)>a}
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is connected because for all « € Rand forall z € X

<, ifa<0,
xeXifx,2)sa}=<X, faz=1,
X\F(S(z)), if0sa<l.

Thus by condition (ii) we know that f{-, z) is lower semi-continuous and
quasi-convex. Hence by Theorem 3.1 we know that there exists an x*
such that

flx*, z)<0 forall z € X.

However, since f(x*, z) = 0 for all z € X, we have f(x*, z) 0 for all
Z € X, i.e., S(z) € F(x*) for all z E X. Therefore for all z € X, we have
z &€ S7IF(x*), and so S™IF(x*) = . This contradicts S~ 1F(x) # @ for
all x € X. Thus F and S have a coincidence point in X.

COROLLARY 4.2. Let X be a compact interval space and F: X — 2% be
a mapping with nonempty closed values. If the following conditions are
satisfied;

(i) for any A € F(X), N,e, F(x) is connected;
() foranyy € X, F~X(y) is open and X\F~'(y) is W-convex;

then F has a fixed point in X.

Proof. Taking ¥ = X and § = I (identity mapping) in Theorem 4.1,
the conclusion follows from Theorem 4.1.
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