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SOME TOPOLOGICAL AND MIXED
MINIMAX THEOREMS

BOR-LUH LIN (Towa City) and CAO-ZONG CHENG * (Beijing)

Abstract. Some noncompact topological and mixed minimax theorems in-
volving compactly locally upward and finitely weakly downward functions are
proved.

1. Introduction

Let X and Y be nonempty sets and let f : X xY — R. A minimax
theorem is a theorem that the following equality holds:

(*) infsup f(z,y) = supinf f(z,y).
Y X X Y

The usual conditions for a minimax theorem are that f is “convex” in one
variable and “concave” in other variables plus certain topological conditions
on X and (or) Y and f. The following are some nonlinear concavity-convexity
conditions of the function f that have been used in minimax theorems.

(I) Concavity of the function f on X:

(C4) X is a topological space and Y is a set. For any finite subset A of
Y and any r in R, the set

ﬂ {ac : wEX,f(ac,y)zr}

yeEA

is connected or empty in X.
(S«) X is an interval space [22] and Y is a set. For any x1,22 € X and
for all = € [z, x9],

f(xvy) 2 min{f(ﬂcl,y),f(acQ,y)}

forally e Y.

Recall that an interval space is a topological space X with a mapping
[,-] © X x X — {connected subsets of X } such that x1,x9 € [v1,x2] = [72, 71]
for all z1,x9 € X.
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(D) X and Y are nonempty sets. f is downward [19] on X, that is,
for every ¢ > 0, there exists 6 > 0 such that for any =1, 29 € X, there exists
xp € X such that for all y € Y,

(A) f(movy) gmin{f(xlvy)vf(x%y)}
and for all y € {y ey : ‘f(acl,y) - f(xg,y)‘ > 8},
(B> f(x07y) gmin{f(xl,y),f(xg,y)} + 0.

(Dy) X and Y are nonempty sets. f is weakly downward [4, 1, 2] on X,
that is, for any x1,x9 € X, there exists o € X such that for all y € Y, (A)

holds, and for all y € {y € Y : f(z1,y) # f(z2,9)},

(C) f(xﬁvy) >min{f(:c1,y),f(:c2,y)}.

(IT) Convexity of the function f on Y:
(C*) X is a nonempty set and Y is a topological space. For any finite
subset A of X and any r in R, the set

N {y:yeY flay) <r}

zEA

is connected or empty in Y.
(S*) X is a nonempty set and Y is an interval space. For any y1,y2 € Y
and all y € [y1, y2],

f(:c,y)§max{f(m,y1),f(:c,y2)} for all z € X.

(U) X and Y are nonempty sets. f is upward [19] on Y, that is, —f is
downward on Y.

(U*) X and Y are nonempty sets. f is weakly upward [4, 1, 2] on Y,
that is, — f is weakly downward on Y.

Under certain topological conditions on X, Y and f, any combination of
convexity-concavity from (I) and (II) yields a minimax theorem.

In fact, the minimax theorems involving the conditions (C,)-(C*) were
given by Konig in [12, 13], and by Ricceri in [17]; the minimax theorems
involving the conditions (C,)—(S*) (or (S,)—(C*)) were given by Cheng-Lin
in [3]; the minimax theorems involving the conditions (D,)—(S*) (or (S«)—
(U*)) were given by Cheng-Lin in [2]; the minimax theorems involving the
conditions (D)—(C*) (or (C4)—(U)) were given by Simons in [18]; the minimax
theorems involving the conditions (D)—(U) were given by Simons in [19]; the
minimax theorems involving the conditions (D,)—(C*) (or (C4)—(U*)) were
given by Cheng-Lin-Yu in [1]; the minimax theorems involving the conditions
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(Dy)—(U*) were given by Cheng-Lin-Yu in [1], by Domokos in [4] and by
Kindler in [10]; the minimax theorems involving the conditions (D, )—(U) (or
(D)—(U*)) were given by Kindler [10].

The cases that have not been given are minimax theorems involving the
following two sets of conditions:

(i) (D)~(S") (or (S.)~(U));

(i) (S.)-(5").

In this paper, we shall give two minimax theorems (Theorems 2 and 3 in
Section 3) under weaker conditions than the condition (i) or (ii), and give a
slight generalization (Theorem 1 in Section 3) of Kindler’s minimax theorem
involving the condition (D,)—(U). In our theorems, it is not required that the
space X or Y is compact.

2. Preliminaries

DEFINITION. Let X and Y be two nonempty set. Let f : X XY — R
be a function.

(FD,) f is said to be finitely weakly downward [10] on X, if, for every
1,22 in X and every finite subset A of Y, there exists xp in X such that
for all y € A, (A) holds, and for all y € {y €A: flx,y) # f(:cg,y)}, (C)
holds.

(FD) f is said to be finitely downward on X, if, for every ¢ > 0, there
exists 6 > 0 such that for every xj,x2 in X and every finite subset A of
Y, there exists xyp in X such that for all y € A, (A) holds, and for all

y € {y €A: ‘f(:cl,y) —f(:cQ,y)‘ > 5}, (B) holds.

(CLD) f is called compactly locally downward on X, if, for every ¢ > 0,
there exists § > 0 such that for every x1,x2 in X and every compact subset K
of Y (where Y is required to be a topological space), there exists g in X such

that for all y € Y, (A) holds, and for all y € {y €K : ‘f(acl,y) - f(acg,y)‘
> =}, (B) holds.
It is easy to see that the following conclusion is true:

LEMMA 1. Let X and Y be two nonempty sets. Let f : X XY — R be
a function. Then, on X,

f is downward
15 compactly locally downward
f pactly Y
f s finitely downward

f s finitely weakly downward;
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and
[ is weakly downward

f s finitely weakly downward.

Similarly, f may be defined as finitely weakly upward, finitely upward, or
compactly locally upward on Y. The corresponding statement of Lemma 1
also holds.

For convenience, for any finite subset A of Y and any r € R, we denote

U'(A) = ﬂ {reX: flxzy) 2r}.

yeEA

A family H of subsets of X is said to be pseudoconnected [20] if for any
Hy, Hy, Hy in 'H, HyN H{ # 0 # HyN Hy and Hy C Hy U Hy imply that
H{NHy # 0.

LEMMA 2. Let X be a topological space and let Y be a nonempty set.
Let f : X xY — R be a function such that U™ (y) is a compact subset of X
for any y €Y and r € R. Suppose that one of the following conditions is
satisfied:

(FDy) f is finitely weakly downward on X ;

(S«) X is an interval space and for any x1,x9 € X and for all x € [z, x3],

(D) flz,y) Z min{ f(x1,y), f(x2,y)}  forall yeY.

Then for any finite subset A of Y and any r in R, the family {Ur(y)
N UT(A)}yey is pseudoconnected.

PROOF. Suppose that A C Y is finite and r € R. Let yo,y1,y2 in Y such
that

U'(yo) NU"(A) CU"(y1) UU" (y2),
U'(yo) NU"(y1) NU"(A) #0, U'(yo) NU"(y2) NU"(A) #0

and
U'(yi)NU(y2) NU"(A) = 0.
Let D=U"(yo) NU"(A) and D; = DNU"(y;), i = 1,2. Then

(1) D C Dy UDso, DI#Q)#DQ
and
(2) DinNDy=0.
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Since U"(y) is compact for any y € Y and r € R, Dy and Dy are compact
subsets in X and f(-,y) is usc (upper semicontinuous) on X, there exists
x; € Dij, 1 = 1,2, such that

f(xl,yz)zorjrel%)if(x,yz) and f(xz,y1)=£r€1%);f(x,y1)-

By (2), 1 € D2 and x2 ¢ Dy. Hence f(x1,y1) 2 7 > f(x2,y1) and f(22,y2)
Zr > f(z1,y2).

(a) Suppose that condition (FD,) is satisfied. Let F' = {yo,y1,y2} U A.
Then for x1,x2 in X, there exists x¢ in X such that for all y € F, (A) holds,
and for all y € {y € F : f(x1,y) # f(x2,y)}, (C) holds.

Since x; € D; (i =1,2), by (A) and (1), xg € D C D1 U Dy. If xg € Do,
then by (C),

f(@o,y1) > min { f(z1,11), f(z2,91)} = f(22,91).

This contradicts the maximality of f(x2,y1) in Ds. Similarly, if xy € Dy,
we get a contradiction with the maximality of f(x1,y2) in Dy. There-
fore U (y1) NU"(y2) NU"(A) # (0. This completes the proof that the family
{U"(y)nU"(4)} is pseudoconnected for all finite subsets A in Y and
r € R.

(b) Suppose that the condition (S) is satisfied. Take z; € D;, i =1,2.
For any x € [x1, 23], we have (D). Hence [x1,25] C D C Dy U D5. Since D;,
i=1,2, are closed and [z1,x3] is connected, this contradicts (2). Hence
Ur(y1) NU"(y2) NU™(A) # 0 and the family {U"(y) NU"(A)} is pseudo-
connected for all finite ACY andallr ¢ R. O

yey

yeYy

REMARK. Under the condition (S,), it is only required that U"(y) is
closed for any y € Y and r € R in the proof of Lemma 2.

3. Main results

THEOREM 1. Let X be a topological space and Y be a nonempty set. Let
f: X xY — R be a function such that U (y) is a compact subset of X for
any y €Y and r € R. Suppose that

(CLU) f is compactly locally upward on Y, that is, —f is compactly
locally downward on Y';

(FDy) f is finitely weakly downward on X.

Then (*) holds.
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PROOF. Since U"(y) is compact for any y € Y and r € R, it suffices to
prove that for any finite subset Yy of Y,

(3) supinf f(x,y) 2 infsup f(x,y).
X Y Y X

We verify (3) by induction on the cardinality of Yj.

It is clear that (3) holds when cardYy = 1. Suppose that (3) is true
when card Yy £ n. For Yy with cardYy =n + 1, let Yy = {y1,y2} U A where
card A =n — 1. For any y € Y, we have that (3) holds for {y} U A. Hence

inf sup inf f(z,y) 2 infsup f(z,y).
yey X {yjuA Y X

Let £ > 0 and let » = inf sup inf f(x,y)— 2c. Then for any y € Y, there
yeY X {y}UA

exists € U ({y} UA) C U™(y) NU"(A). Hence for all y € Y,

(4) r+e¢< sup f(x,y) < +oo.
zeUT(A)

Let h(y) = sup f(x,y), y€Y. By (4), r < inf h(y). Since f is com-
zeUr(A) yey
pactly locally upward on Y, for € > 0, there exists 6 > 0 with the properties
in (CLU).
We claim that there exist z1,z9 in Y such that

(5) U™ () NU"(A) C U"(yi)
and for all y € Y,
(6) hy) < h(z) — 6 = U7 (y) VU7 (A) & U"(z4).
In fact, if y; satisfies (6), take z; = ;. For any z! € Y satisfying (5) there ex-
ists 22 € Y such that h(z%) < h(z') — ¢ and U"(22)NU"(A) C U"(z'). Then
2? satisfies (5). Take z; = 22 if 22 also satisfies (6). Continuing the process,
we get, for all n € N

h(zY) 2 h(z2) 462 - 2 h(z") + né.

Since in)f/ h(y) = r, the process must stop at some n. Take z; = 2".
ye

Let K = [U"(y1)UU"(y2)] NU"(A). For 21,z €Y and the compact
subset K C X, choose yg € Y as in the condition (CLU), i.e.,

f(:c,yo)émax{f(:c,zl),f(m,@)} Ve e X
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and
fx,yo) < max { f(x,21), f(x,22)} =&
Vee{z €K : |f(v,21) - fla,22)| 2 ¢},
Hence
(7) U'(yo) NU"(A) C [U"(z1) NU"(A)] U [U"(22) NU(A)].

Next, we prove that
(8) U'(yo) NU"(z1) NU"(A) # 0.
Take g € U™ (yo) NU"(A) CU"(yo) NU"(A). If f(xp,21) = r then

>
g € U (yo)NU"(21)NU"(A). If f(xo,21) <7r <r+4e = f(xo,y0) S f(xo,22),
this implies that

xp € {xGK D f(xy2) = flw,22)] 26}

~—

IN

By (CLU)

h(za) =6 2 f(xo, 22) — 6 = max { f(xo, 21), f(x0,22)} — 6 2 f(o,0)-

Since

h(yo) = sup f(x,y0) = sup [, 0),
zeUT(A) zeUm(A)NUT+=(yo)
it follows that
h(z2) — 6 2 h(yo)-
By (6)
U'(yo) NU"(A) £ U"(22).

Now (8) follows from (7).
Similarly, we can prove that

(9) U (yo) N U (25) N U"(A) # 0.

From (7),(8),(9) and Lemma 2, it follows that U"(z1) NU"(z2) NU"(A) # 0.
Hence U (y1) NU"(y2) NU"(A) # 0 by (5). Let x € U (y1)NU" (y2) NU"(A).

Then inf f(x,y) 2 r. Hence supinf f(z,y) 2 r. Since € > 0 is arbitrary,
{y1,y2}UA4 X Yo
it follows that

supinf f(z,y) 2 inf sup inf f(z,y) 2 infsup f(z,y). O
X Yo yeY X {y}uA Y X
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COROLLARY 1 [10]. Let X be a compact space and let Y be a nonempty
set. Let f : X xY — R be a function such that f(-,y) is usc on X for all
y € Y. Suppose that (U) and (FD,) hold

Then (x) holds.

PROOF. Since the condition that f(-,y) is usc on the compact space X
for any y € Y implies that U"(y) is compact for any y € Y and r € R, and
(U) implies (CLU) by Lemma 1, Corollary 1 follows from Theorem 1. O

Similarly, it is clear that the next Corollary 2 follows from Theorem 1.

COROLLARY 2 [19]. Let X be a compact space and let Y be a nonempty
set. Let f : X xY — R be a function such that f(-,y) is usc on X for all
y €Y. Suppose that (U) and (D) hold.

Then (*) holds.

THEOREM 2. Let X be a topological space and let' Y be an interval space.
Let f : X xY — R be a function such that U"(y) is a compact subset of X
forany y €Y and r € R, and f(x,-) is lsc (lower semicontinuous) on any
interval of Y for any x in X. Suppose that (S*) and (FD,) hold.

Then (*) holds.

PROOF. Since f is finitely weakly downward on X, by Lemma 2, it fol-
lows that the family {U"(y) N U"(A4)} yey 18 pseudoconnected for all finite

subsets A of Y and all » € R. Theorem 2 follows by using the same argument
as the proof of Theorem given in [2]. O

COROLLARY 3. Let X be a compact space and let Y be an interval space.
Let f : X xY — R be a function such that f(-,y) is usc on X for any y in
Y and f(x,-) is lsc on any interval of Y for any x in X. Suppose that (S*)
and (FD) hold.

Then (x) holds.

THEOREM 3. Let X andY be two interval spaces. Let f : X XY — R be

a function such that U (y) is a closed subset of X for anyy € Y andr € R,

U™ (yo) is a compact subset of X for some yo € Y and ro < infsup f(x,y),
Y X

and f(x,-) is lsc on any interval of Y for all x in X. Suppose that (S*) and
(S,) hold.
Then (*) holds.

PROOF. By Lemma 2 and Remark, the condition (S,) implies that the
family { U"(y) N UT’(A)}yey is pseudoconnected for all finite subsets A of Y
and for all » € R. Theorem 3 is proved as the proof of Theorem 2. O
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