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SOME TOPOLOGICAL AND MIXED

MINIMAX THEOREMS

BOR-LUH LIN (Iowa City) and CAO-ZONG CHENG � (Beijing)

Abstract. Some noncompact topological and mixed minimax theorems in-
volving compactly locally upward and �nitely weakly downward functions are
proved.

1. Introduction

Let X and Y be nonempty sets and let f : X � Y ! R. A minimax
theorem is a theorem that the following equality holds:

(�) inf
Y

sup
X

f(x; y) = sup
X

inf
Y

f(x; y):

The usual conditions for a minimax theorem are that f is \convex" in one
variable and \concave" in other variables plus certain topological conditions
onX and (or) Y and f . The following are some nonlinear concavity-convexity
conditions of the function f that have been used in minimax theorems.

(I) Concavity of the function f on X:
(C�) X is a topological space and Y is a set. For any �nite subset A of

Y and any r in R, the set

\

y2A

�
x : x 2 X; f(x; y) = r

	

is connected or empty in X.
(S�) X is an interval space [22] and Y is a set. For any x1; x2 2 X and

for all x 2 [x1; x2],

f(x; y) = min
�
f(x1; y); f(x2; y)

	

for all y 2 Y .
Recall that an interval space is a topological space X with a mapping

[�; �] : X�X ! fconnected subsets ofXg such that x1; x2 2 [x1; x2] = [x2; x1]
for all x1; x2 2 X.
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(D) X and Y are nonempty sets. f is downward [19] on X, that is,
for every " > 0, there exists � > 0 such that for any x1; x2 2 X, there exists
x0 2 X such that for all y 2 Y ,

(A) f(x0; y) = min
�
f(x1; y); f(x2; y)

	

and for all y 2
�
y 2 Y :

��f(x1; y)� f(x2; y)
�� = "

	
,

(B) f(x0; y) = min
�
f(x1; y); f(x2; y)

	
+ �:

(D�) X and Y are nonempty sets. f is weakly downward [4, 1, 2] on X,
that is, for any x1; x2 2 X, there exists x0 2 X such that for all y 2 Y , (A)

holds, and for all y 2
�
y 2 Y : f(x1; y) 6= f(x2; y)

	
,

(C) f(x0; y) > min
�
f(x1; y); f(x2; y)

	
:

(II) Convexity of the function f on Y :
(C�) X is a nonempty set and Y is a topological space. For any �nite

subset A of X and any r in R, the set

\

x2A

�
y : y 2 Y; f(x; y) 5 r

	

is connected or empty in Y .
(S�) X is a nonempty set and Y is an interval space. For any y1; y2 2 Y

and all y 2 [y1; y2],

f(x; y) 5 max
�
f(x; y1); f(x; y2)

	
for all x 2 X:

(U) X and Y are nonempty sets. f is upward [19] on Y , that is, �f is
downward on Y .

(U�) X and Y are nonempty sets. f is weakly upward [4, 1, 2] on Y ,
that is, �f is weakly downward on Y .

Under certain topological conditions on X, Y and f , any combination of
convexity-concavity from (I) and (II) yields a minimax theorem.

In fact, the minimax theorems involving the conditions (C�){(C
�) were

given by K�onig in [12, 13], and by Ricceri in [17]; the minimax theorems
involving the conditions (C�){(S

�) (or (S�){(C
�)) were given by Cheng-Lin

in [3]; the minimax theorems involving the conditions (D�){(S
�) (or (S�){

(U�)) were given by Cheng-Lin in [2]; the minimax theorems involving the
conditions (D){(C�) (or (C�){(U)) were given by Simons in [18]; the minimax
theorems involving the conditions (D){(U) were given by Simons in [19]; the
minimax theorems involving the conditions (D�){(C

�) (or (C�){(U
�)) were

given by Cheng-Lin-Yu in [1]; the minimax theorems involving the conditions
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(D�){(U
�) were given by Cheng-Lin-Yu in [1], by Domokos in [4] and by

Kindler in [10]; the minimax theorems involving the conditions (D�){(U) (or
(D){(U�)) were given by Kindler [10].

The cases that have not been given are minimax theorems involving the
following two sets of conditions:

(i) (D){(S�) (or (S�){(U));
(ii) (S�){(S

�).
In this paper, we shall give two minimax theorems (Theorems 2 and 3 in

Section 3) under weaker conditions than the condition (i) or (ii), and give a
slight generalization (Theorem 1 in Section 3) of Kindler's minimax theorem
involving the condition (D�){(U). In our theorems, it is not required that the
space X or Y is compact.

2. Preliminaries

Definition. Let X and Y be two nonempty set. Let f : X � Y ! R

be a function.

(FD�) f is said to be �nitely weakly downward [10] on X, if, for every
x1; x2 in X and every �nite subset A of Y , there exists x0 in X such that
for all y 2 A, (A) holds, and for all y 2

�
y 2 A : f(x1; y) 6= f(x2; y)

	
, (C)

holds.
(FD) f is said to be �nitely downward on X, if, for every " > 0, there

exists � > 0 such that for every x1; x2 in X and every �nite subset A of
Y , there exists x0 in X such that for all y 2 A, (A) holds, and for all

y 2
�
y 2 A :

��f(x1; y)� f(x2; y)
�� = "

	
, (B) holds.

(CLD) f is called compactly locally downward on X, if, for every " > 0,
there exists � > 0 such that for every x1; x2 inX and every compact subsetK
of Y (where Y is required to be a topological space), there exists x0 in X such

that for all y 2 Y , (A) holds, and for all y 2
�
y 2 K :

��f(x1; y)� f(x2; y)
��

= "
	
, (B) holds.

It is easy to see that the following conclusion is true:

Lemma 1. Let X and Y be two nonempty sets. Let f : X � Y ! R be
a function. Then, on X,

f is downward
+

f is compactly locally downward
+

f is �nitely downward
+

f is �nitely weakly downward;
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and
f is weakly downward

+

f is �nitely weakly downward.

Similarly, f may be de�ned as �nitely weakly upward, �nitely upward, or
compactly locally upward on Y . The corresponding statement of Lemma 1
also holds.

For convenience, for any �nite subset A of Y and any r 2 R, we denote

U r(A) =
\

y2A

�
x 2 X : f(x; y) = r

	
:

A family H of subsets of X is said to be pseudoconnected [20] if for any
H0, H1, H2 in H, H0 \H1 6= ; 6= H0 \H2 and H0 � H1 [H2 imply that
H1 \H2 6= ;.

Lemma 2. Let X be a topological space and let Y be a nonempty set.
Let f : X � Y ! R be a function such that U r(y) is a compact subset of X
for any y 2 Y and r 2 R. Suppose that one of the following conditions is
satis�ed:

(FD�) f is �nitely weakly downward on X;
(S�) X is an interval space and for any x1; x2 2X and for all x 2 [x1; x2],

(D) f(x; y) = min
�
f(x1; y); f(x2; y)

	
for all y 2 Y:

Then for any �nite subset A of Y and any r in R, the family
�
U r(y)

\ U r(A)
	
y2Y

is pseudoconnected.

Proof. Suppose that A � Y is �nite and r 2 R. Let y0; y1; y2 in Y such
that

U r(y0) \ U
r(A) � U r(y1) [ U

r(y2);

U r(y0) \ U
r(y1) \ U

r(A) 6= ;; U r(y0) \ U
r(y2) \ U

r(A) 6= ;

and

U r(y1) \ U
r(y2) \ U

r(A) = ;:

Let D = U r(y0) \ U
r(A) and Di = D \ U r(yi), i = 1; 2. Then

(1) D � D1 [D2; D1 6= ; 6= D2

and

(2) D1 \D2 = ;:
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Since U r(y) is compact for any y 2 Y and r 2 R, D1 and D2 are compact
subsets in X and f(�; y) is usc (upper semicontinuous) on X, there exists
xi 2 Di, i = 1; 2, such that

f(x1; y2) = max
x2D1

f(x; y2) and f(x2; y1) = max
x2D2

f(x; y1):

By (2), x1 62 D2 and x2 62 D1. Hence f(x1; y1) = r > f(x2; y1) and f(x2; y2)
= r > f(x1; y2).

(a) Suppose that condition (FD�) is satis�ed. Let F = fy0; y1; y2g [A.
Then for x1; x2 in X, there exists x0 in X such that for all y 2 F , (A) holds,
and for all y 2 fy 2 F : f(x1; y) 6= f(x2; y)g, (C) holds.

Since xi 2 Di (i = 1; 2), by (A) and (1), x0 2 D � D1 [D2. If x0 2 D2,
then by (C),

f(x0; y1) > min
�
f(x1; y1); f(x2; y1)

	
= f(x2; y1):

This contradicts the maximality of f(x2; y1) in D2. Similarly, if x0 2 D1,
we get a contradiction with the maximality of f(x1; y2) in D1. There-
fore U r(y1) \ U

r(y2) \ U
r(A) 6= ;. This completes the proof that the family�

U r(y) \ U r(A)
	
y2Y

is pseudoconnected for all �nite subsets A in Y and

r 2 R.
(b) Suppose that the condition (S�) is satis�ed. Take xi 2 Di, i = 1; 2.

For any x 2 [x1; x2], we have (D). Hence [x1; x2] � D � D1 [D2. Since Di,
i = 1; 2, are closed and [x1; x2] is connected, this contradicts (2). Hence

U r(y1)\U
r(y2)\U

r(A) 6= ; and the family
�
U r(y)\U r(A)

	
y2Y

is pseudo-

connected for all �nite A � Y and all r 2 R. �

Remark. Under the condition (S�), it is only required that U r(y) is
closed for any y 2 Y and r 2 R in the proof of Lemma 2.

3. Main results

Theorem 1. Let X be a topological space and Y be a nonempty set. Let
f : X � Y ! R be a function such that U r(y) is a compact subset of X for
any y 2 Y and r 2 R. Suppose that

(CLU) f is compactly locally upward on Y , that is, �f is compactly
locally downward on Y ;

(FD�) f is �nitely weakly downward on X.
Then (�) holds.
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Proof. Since U r(y) is compact for any y 2 Y and r 2 R, it su�ces to
prove that for any �nite subset Y0 of Y ,

(3) sup
X

inf
Y0

f(x; y) = inf
Y

sup
X

f(x; y):

We verify (3) by induction on the cardinality of Y0.
It is clear that (3) holds when cardY0 = 1. Suppose that (3) is true

when cardY0 5 n. For Y0 with cardY0 = n+ 1, let Y0 = fy1; y2g [A where
cardA = n� 1. For any y 2 Y , we have that (3) holds for fyg [A. Hence

inf
y2Y

sup
X

inf
fyg[A

f(x; y) = inf
Y

sup
X

f(x; y):

Let " > 0 and let r = inf
y2Y

sup
X

inf
fyg[A

f(x; y)� 2". Then for any y 2 Y , there

exists x 2 U r+"
�
fyg [A

�
� U r+"(y) \ U r(A). Hence for all y 2 Y ,

(4) r + " 5 sup
x2Ur(A)

f(x; y) < +1:

Let h(y) = sup
x2Ur(A)

f(x; y), y 2 Y . By (4), r 5 inf
y2Y

h(y). Since f is com-

pactly locally upward on Y , for " > 0, there exists � > 0 with the properties
in (CLU).

We claim that there exist z1; z2 in Y such that

(5) U r(zi) \ U
r(A) � U r(yi)

and for all y 2 Y ,

(6) h(y) 5 h(zi)� � =) U r(y) \ U r(A) 6� U r(zi):

In fact, if yi satis�es (6), take zi = yi. For any z
1 2 Y satisfying (5) there ex-

ists z2 2 Y such that h(z2) 5 h(z1)� � and U r(z2)\U r(A) � U r(z1). Then
z2 satis�es (5). Take zi = z2 if z2 also satis�es (6). Continuing the process,
we get, for all n 2 N

h(z1) = h(z2) + � = � � � = h(zn) + n�:

Since inf
y2Y

h(y) = r, the process must stop at some n. Take zi = zn.

Let K =
�
U r(y1) [ U

r(y2)
�
\ U r(A). For z1; z2 2 Y and the compact

subset K � X, choose y0 2 Y as in the condition (CLU), i.e.,

f(x; y0) 5 max
�
f(x; z1); f(x; z2)

	
8x 2 X
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and

f(x; y0) 5 max
�
f(x; z1); f(x; z2)

	
� �

8x 2
�
x 2 K :

��f(x; z1)� f(x; z2)
�� = "

	
:

Hence

(7) U r(y0) \ U
r(A) �

�
U r(z1) \ U

r(A)
�
[
�
U r(z2) \ U

r(A)
�
:

Next, we prove that

(8) U r(y0) \ U
r(z1) \ U

r(A) 6= ;:

Take x0 2 U r+"(y0) \ U
r(A) � U r(y0) \ U

r(A). If f(x0; z1) = r then
x0 2 U r(y0)\U

r(z1)\U
r(A). If f(x0; z1) < r < r+" 5 f(x0; y0) 5 f(x0; z2),

this implies that

x0 2
�
x 2 K :

��f(x; z1)� f(x; z2)
�� = "

	
:

By (CLU)

h(z2)� � = f(x0; z2)� � = max
�
f(x0; z1); f(x0; z2)

	
� � = f(x0; y0):

Since

h(y0) = sup
x2Ur(A)

f(x; y0) = sup
x2Ur(A)\Ur+"(y0)

f(x; y0);

it follows that

h(z2)� � = h(y0):

By (6)

U r(y0) \ U
r(A) 6� U r(z2):

Now (8) follows from (7).
Similarly, we can prove that

(9) U r(y0) \ U
r(z2) \ U

r(A) 6= ;:

From (7),(8),(9) and Lemma 2, it follows that U r(z1) \ U
r(z2) \ U

r(A) 6= ;.
Hence U r(y1)\U

r(y2)\U
r(A) 6= ; by (5). Let x 2 U r(y1)\U

r(y2)\U
r(A).

Then inf
fy1;y2g[A

f(x; y) = r. Hence sup
X

inf
Y0

f(x; y) = r. Since " > 0 is arbitrary,

it follows that

sup
X

inf
Y0

f(x; y) = inf
y2Y

sup
X

inf
fyg[A

f(x; y) = inf
Y

sup
X

f(x; y): �
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Corollary 1 [10]. Let X be a compact space and let Y be a nonempty
set. Let f : X � Y ! R be a function such that f(�; y) is usc on X for all
y 2 Y . Suppose that (U) and (FD�) hold

Then (�) holds.

Proof. Since the condition that f(�; y) is usc on the compact space X
for any y 2 Y implies that U r(y) is compact for any y 2 Y and r 2 R, and
(U) implies (CLU) by Lemma 1, Corollary 1 follows from Theorem 1. �

Similarly, it is clear that the next Corollary 2 follows from Theorem 1.

Corollary 2 [19]. Let X be a compact space and let Y be a nonempty
set. Let f : X � Y ! R be a function such that f(�; y) is usc on X for all
y 2 Y . Suppose that (U) and (D) hold.

Then (�) holds.

Theorem 2. Let X be a topological space and let Y be an interval space.
Let f : X � Y ! R be a function such that U r(y) is a compact subset of X
for any y 2 Y and r 2 R, and f(x; �) is lsc (lower semicontinuous) on any
interval of Y for any x in X. Suppose that (S�) and (FD�) hold.

Then (�) holds.

Proof. Since f is �nitely weakly downward on X, by Lemma 2, it fol-
lows that the family

�
U r(y) \ U r(A)

	
y2Y

is pseudoconnected for all �nite

subsets A of Y and all r 2R. Theorem 2 follows by using the same argument
as the proof of Theorem given in [2]. �

Corollary 3. Let X be a compact space and let Y be an interval space.
Let f : X � Y ! R be a function such that f(�; y) is usc on X for any y in
Y and f(x; �) is lsc on any interval of Y for any x in X. Suppose that (S�)
and (FD) hold.

Then (�) holds.

Theorem 3. Let X and Y be two interval spaces. Let f : X�Y !R be
a function such that U r(y) is a closed subset of X for any y 2 Y and r 2 R,
U r0(y0) is a compact subset of X for some y0 2 Y and r0 < inf

Y

sup
X

f(x; y),

and f(x; �) is lsc on any interval of Y for all x in X. Suppose that (S�) and
(S�) hold.

Then (�) holds.

Proof. By Lemma 2 and Remark, the condition (S�) implies that the

family
�
U r(y) \U r(A)

	
y2Y

is pseudoconnected for all �nite subsets A of Y

and for all r 2 R. Theorem 3 is proved as the proof of Theorem 2. �
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