A MINIMAX THEOREM INVOLVING WEAKLY DOWNWARD FUNCTIONS

BOR-LUH LIN (Iowa City) and CAO-ZONG CHENG (Beijing)

Abstract. A minimax theorem involving weakly downward functions is proved.

1. Introduction

Let X and Y be nonempty sets and let f be a real-valued function defined on $X \times Y$. f is said to be downward on X if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all x_1 , x_2 in X, there exists an element x_0 in X with the properties that for all y in Y,

(*)
$$f(x_0, y) \ge \min \{ f(x_1, y), f(x_2, y) \}$$

and

$$|f(x_1,y) - f(x_2,y)| \ge \varepsilon \Rightarrow f(x_0,y) \ge \min\{f(x_1,y), f(x_2,y)\} + \delta.$$

f is said to be upward on Y if -f is downward on Y.

S. Simons [7] introduced the upward-downward functions to include t-convex and s-concave functions considered in [3]. Recall that for $s, t \in (0,1)$, f is said to be s-concave on X if for all x_1, x_2 in X there exists x_0 in X such that for all y in Y,

$$f(x_0, y) \ge s \max \{f(x_1, y), f(x_2, y)\} + (1 - s) \min \{f(x_1, y), f(x_2, y)\}.$$

f is said to be t-convex on Y if -f is (1-t)-concave on Y. Simons has proved the following result.

THEOREM 1 [8]. Let X be a compact (Hausdorff) space and let Y be a nonempty set. Suppose $f: X \times Y \to \mathbf{R}$ such that $f(\cdot, y)$ is upper semicontinuous (usc) on X for all y in Y. If f is downward on X and is upward on Y, then

(**)
$$\inf_{Y} \sup_{X} f(x,y) = \sup_{X} \inf_{Y} f(x,y).$$

For other minimax theorems involving upward-downward functions, see [7].

Recently, A. Domokos [2] introduced the following functions with certain properties. Let us call them weakly downward and weakly upward functions.

DEFINITION [2]. Let X and Y be nonempty sets and let f be a real-valued function defined on $X \times Y$. f is said to be weakly downward on X if for all x_1 , x_2 in X, there exists x_0 in X such that for all y in Y, (*) holds and

$$f(x_1, y) \neq f(x_2, y) \Rightarrow f(x_0, y) > \min \{f(x_1, y), f(x_2, y)\}.$$

f is said to be weakly upward on Y if -f is weakly downward on Y.

A. Domokos [2] proved that in the case when both spaces X and Y are compact, and f is a real-valued continuous function on $X \times Y$, then (**) holds provided f is weakly downward on X and is weakly upward on Y.

The result was independently extended by J. Kindler and by Cao-Zong Cheng, Bor-Luh Lin and Feng-Shu Yu [1] by requiring $f(\cdot, y)$ to be use on X for all y in Y and $f(x, \cdot)$ to be lsc on Y for all x in X. In fact, Kindler proved that the following theorem holds. The authors wish to thank Professor Kindler for sending us the preprint [6].

THEOREM 2 [6]. Let X be a compact space, Y be a countably compact space and let f be a real valued function on $X \times Y$ such that $f(\cdot, y)$ is use on X for all y in Y and $f(x, \cdot)$ is lsc on Y for all x in X. Suppose that f is finitely weakly downward on X and f is weakly upward on Y. Then (**) holds.

f is said to be finitely weakly downward on X if for all finite subsets B in Y and for all x_1 , x_2 in X, there exists x_0 in X such that for all y in B, the condition (*) holds.

It is easy to see that if f is s-concave on X then f is weakly downward on X and if f is t-convex on Y then f is weakly upward on Y. Furthermore, it is interesting to compare the weakly upward functions with the submaximum functions studied in [4]. The concept of submaximum functions is based on the result of W. Wu [11]. Submaximum functions may be looked at as the limit case of t-convex functions when t approaches zero with a certain additional condition. Also, weakly upward-downward functions may be considered as the limit case of upward-downward functions when $\varepsilon = \delta = 0$. In this paper, we prove a minimax theorem involving weakly downward functions. The result is interesting in comparison with the result in [5].

THEOREM 3 [5]. Let X be a compact space and let Y be a topological space. Let f be a real valued function on $X \times Y$ with the following properties:

- (1) $f(\cdot, y)$ usc on X for all y in Y;
- (2) f is submaximum on Y, i.e., for any y_1 , y_2 in Y, there exists a continuous function $S: [0,1] \to Y$ such that $S(0) = y_1$, $S(1) = y_2$ and for any $0 \le a \le c \le b \le 1$,

$$f(x, S(c)) \le \max \{f(x, S(a)), f(x, S(b))\}$$
 for all x in X ;

(3) f is s-concave on X for some $s \in (0,1)$. Then (**) holds.

The main result of this paper is the following theorem.

THEOREM. Let X be a compact space and let Y be an interval space. Suppose that $f: X \times Y \to \mathbf{R}$ satisfies the following conditions:

- (i) $f(\cdot,y)$ is use on X for all y in Y and $f(x,\cdot)$ is lse on all intervals in Y:
 - (ii) for all y_1 , y_2 in Y and for all $y \in [y_1, y_2]$,

$$f(x,y) \le \max \left\{ f(x,y_1), f(x,y_2) \right\}$$

holds for all x in X;

(iii) f is weakly downward on X. Then (**) holds.

Recall that a topological space X is called an *interval space* [10] if there is a mapping $[\cdot, \cdot]$ from $X \times X$ to the connected subsets of X such that $x_1, x_2 \in [x_1, x_2] = [x_2, x_1]$ for all x_1, x_2 in X. $[x_1, x_2]$ is called an *interval in* X.

2. Proof of the Theorem

A family \mathcal{H} of subsets of a set X is said to be *pseudoconnected* [9] if for any H_0 , H_1 , H_2 in \mathcal{H} , $H_0 \cap H_1 \neq \emptyset \neq H_0 \cap H_2$ and $H_0 \subset H_1 \cup H_2$ imply that $H_1 \cap H_2 \neq \emptyset$.

Let $f: X \times Y \to \mathbf{R}$. For $A \subset Y$ and $r \in \mathbf{R}$, we denote $U^r(A) = \{x : x \in X, f(x,y) \geq r, \text{ for all } y \in A\}$. The proof of the theorem is based on the following lemma.

LEMMA. Let X be a compact space and let Y be a nonempty set. Suppose $f: X \times Y \to \mathbf{R}$ satisfies the following conditions:

(1) $f(\cdot, y)$ is use on X for all $y \in Y$;

(2) f is weakly downward on X.

Then for any finite subset A in Y and for any $r \in \mathbf{R}$, the family $\mathcal{H} = \{U^r(y) \cap U^r(A) : y \in Y\}$ is pseudoconnected.

PROOF. Suppose there exist y_0, y_1, y_2 in Y such that

$$U^r(y_0) \cap U^r(A) \subset U^r(y_1) \cup U^r(y_2), \quad U^r(y_0) \cap U^r(y_1) \cap U^r(A) \neq \emptyset,$$

$$U^r(y_0) \cap U^r(y_2) \cap U^r(A) \neq \emptyset \quad \text{and} \quad U^r(y_1) \cap U^r(y_2) \cap U^r(A) = \emptyset.$$

Let
$$D = U^r(y_0) \cap U^r(A)$$
 and $D_i = D \cap U^r(y_i)$, $i = 1, 2$. Then

$$(1) D \subset D_1 \cup D_2, \quad D_i \neq \emptyset, \quad i = 1, 2$$

and

$$(2) D_1 \cap D_2 = \emptyset.$$

Since $f(\cdot,y)$ is use on the compact space X for all $y \in Y$, D_i , i = 1, 2 are compact subsets in X. Hence there exist $x_i \in D_i$, i = 1, 2 such that $f(x_1, y_2) = \max_{x \in D_1} f(x, y_2)$ and $f(x_2, y_1) = \max_{x \in D_2} f(x, y_1)$.

For x_1, x_2 in X, since f is weakly downward on X, there exists $x_0 \in X$ such that for all $y \in Y$,

(3)
$$f(x_0, y) \ge \min \{ f(x_1, y), f(x_2, y) \}$$

and

(4)
$$f(x_1, y) \neq f(x_2, y) \Rightarrow f(x_0, y) > \min \{ f(x_1, y), f(x_2, y) \}.$$

Since $x_1, x_2 \in D$, hence $x_0 \in D \subset D_1 \cup D_2$ by (3) and (1). If $x_0 \in D_1$, then since $x_2 \in D_2$ and by (2), $x_1 \notin D_2$, we have $f(x_2, y_2) \ge r > f(x_1, y_2)$. By (4),

$$f(x_0, y_2) > \min \{f(x_1, y_2), f(x_2, y_2)\} = f(x_1, y_2).$$

This contradicts the maximality of $f(x_1, y_2)$. Similarly, if $x_0 \in D_2$, we get a contradiction with the maximality of $f(x_2, y_1)$. Therefore $U^r(y_1) \cap U^r(y_2) \cap U^r(A) \neq \emptyset$. This completes the proof of Lemma. \square

PROOF OF THEOREM. Since X is compact and $f(\cdot, y)$ is use on X for all y in Y, it suffices to show that for any $\alpha < \inf_{Y} \sup_{X} f(x_1, y), f_*(X, A)$ $\equiv \sup \inf f(x, y) \ge \alpha$ for all finite subsets A in Y.

Fix $\alpha < \inf_{\substack{Y \ X}} \sup_{\substack{X}} f(x,y)$. We shall prove $f_*(X,A) \ge \alpha$ by induction on the cardinality |A| of any finite subset A in Y.

If |A| = 1, obviously, $f_*(X, A) \ge \inf_{Y} \sup_{X} f(x, y) > \alpha$.

Suppose that $f_*(X,A) \ge \alpha$ for all $A \subset Y$ with $|A| \le n$, but for some $B \subset Y$, |B| = n + 1 and $f_*(X,B) < \alpha$. Choose $r \in \mathbf{R}$, $f_*(X,B) < r < \alpha$. Let $B = A \cup \{y_1, y_2\}$, $y_i \notin A$, i = 1, 2 and $y_1 \ne y_2$. Since $f_*(X,B) < r < \alpha$,

$$(5) U^r(B) = \emptyset$$

and for all y in Y,

(6)
$$\emptyset \neq U^{\alpha}(y) \cap U^{\alpha}(A)$$

$$\subset \left\{ x : x \in X, f(x,y) > r \right\} \cap U^{r}(A) \subset U^{r}(y) \cap U^{r}(A).$$

From (ii), for all $y \in [y_1, y_2]$, we have $U^r(y) \subset U^r(y_1) \cup U^r(y_2)$ which implies that

(7)
$$U^r(y) \cap U^r(A) \subset \left[U^r(y_1) \cap U^r(A) \right] \cup \left[U^r(y_2) \cap U^r(A) \right].$$

For i = 1, 2, let

$$I_i = \{ y : y \in [y_1, y_2], U^r(y) \cap U^r(A) \subset U^r(y_i) \}.$$

By (5), we have

$$I_1 = \{ y : y \in [y_1, y_2], U^r(y) \cap U^r(y_2) \cap U^r(A) = \emptyset \}$$

and

$$I_2 = \{ y : y \in [y_1, y_2], U^r(y) \cap U^r(y_1) \cap U^r(A) = \emptyset \}.$$

It is clear that $y_i \in I_i$, i = 1, 2, $I_1 \cap I_2 = \emptyset$ and $I_1 \cup I_2 \subset [y_1, y_2]$. If there exists $y_0 \in [y_1, y_2]$ and $y_0 \notin I_1 \cup I_2$, then

(8)
$$U^r(y_0) \cap U^r(y_i) \cap U^r(A) \neq \emptyset, \quad i = 1, 2.$$

From (iii) and the Lemma, $\{U^r(y) \cap U^r(A)\}_{y \in Y}$ is pseudoconnected. It follows from (7) and (8) that $U^r(B) \neq \emptyset$. Hence we have that $I_1 \cup I_2 = [y_1, y_2]$.

We next show that I_i , i = 1, 2 are closed subsets of $[y_1, y_2]$.

Let $\{\xi_k\} \subset I_1$, $\xi_0 \in [y_1, y_2]$ and $\xi_k \to \xi_0$. Then for all k, $U^r(\xi_k) \cap U^r(A) \subset U^r(y_1)$. Suppose $\xi_0 \notin I_1$, then $\xi_0 \in I_2$. Hence $U^r(\xi_0) \cap U^r(A) \cap U^r(y_1) = \emptyset$ and

$$\left\{x: x \in X, f(x, \xi_0) > r\right\} \cap U^r(A) \cap U^r(y_1) = \emptyset.$$

By (6), we can choose $x_0 \in \{x : x \in X, f(x, \xi_0) > r\} \cap U^r(A)$. Then $x_0 \notin U^r(y_1)$. It follows that $x_0 \notin U^r(\xi_k)$ for all k. Thus $f(x_0, \xi_0) \ge r$ by the fact that f is lsc on $[y_1, y_2]$. This contradiction shows that $\xi_0 \in I_1$ and so I_1 is closed in $[y_1, y_2]$. Similarly, I_2 is closed in $[y_1, y_2]$.

Thus $[y_1, y_2]$ is connected. We conclude that $f_*(X, A) \geq \alpha$ for all finite subsets A in Y. \square

REMARKS. (1) The Theorem can be proved by using Lemma and the results in [9].

- (2) The Theorem remains true if (i) is replaced by the following: f is use on $X \times [y_1, y_2]$ for all y_1, y_2 in Y. The proof is similar to that of the Theorem. We only need to prove that I_i , i = 1, 2 are closed in $[y_1, y_2]$ in this case.
- (3) The Theorem fails even if X and Y are compact connected sets in \mathbb{R} when (ii) is replaced by the following weaker condition:

(ii') For all y_1, y_2 in Y, there exists y_0 in Y such that

$$f(x, y_0) \le \max \{f(x, y_1), f(x, y_2)\}.$$

EXAMPLE. Let X = Y = [-1, 1]. Define $f: X \times Y \to \mathbf{R}$ by

$$f(x,y) = \begin{cases} -x - 4y + 3 & \text{if } (x,y) \in [0,1] \times [0,1] \\ -(3y+1)x - 4y + 3 & \text{if } (x,y) \in [-1,0) \times [0,1] \\ (y+2)x - 2y - 1 & \text{if } (x,y) \in [0,1] \times [-1,0) \\ (1-y)x - 2y - 1 & \text{if } (x,y) \in [-1,0) \times [-1,0). \end{cases}$$

Obviously, $f(\cdot,y)$ is continuous on X for all $y \in Y$ and $f(x,\cdot)$ is lsc on Y for all $x \in X$. Condition (ii') is satisfied by taking $y_0 = y_1$ or $y_0 = y_2$. For any x_1, x_2 in X, let $x_0 = \frac{x_1 + x_2}{2}$. Then (iii) is satisfied. However $\inf_{Y \in X} \sup_{Y \in X} f(x,y) = 1$ and $\sup_{X \in Y} \inf_{Y} f(x,y) = -1$.

References

- Cao-Zong Cheng, Bor-Luh Lin and Feng-Shuo Yu, Weakly upward-downward minimax theorems, in: Proc. Workshop on Minimax Theory and Appl. (Erice, Italy, September, 1996), pp. 21-28.
- A. Domokos, A minimax theorem, Ann. Univ. Sci. Budapest, 37 (1994), 157–163.
- [3] M. A. Geraghty and Bor-Luh Lin, On a minimax theorem of Terkelsen, Bull. Inst. Math. Acad. Sinica, 11 (1983), 343–347.
- [4] M. A. Geraghty and Bor-Luh Lin, Topological minimax theorems, Proc. Amer. Math. Soc., 91 (1984), 377-380.
- [5] M. A. Geraghty and Bor-Luh Lin, Minimax theorems without convexity, Contemporary Math., 52 (1986), 102-108.
- [6] J. Kindler, Domokos minimax theorem for usc-lsc functions, preprint (to appear).
- [7] S. Simons, On Terkelsen's minimax theorem, Bull. Inst. Math. Acad. Sinica, 18 (1990), 35–39.
- [8] S. Simons, An upward-downward minimax theorem, Arch. Math., 55 (1990), 275-279.
- [9] S. Simons, A flexible minimax theorem, Acta Math. Hungar., 63 (1994), 119-132.
- [10] L. L. Stachó, Minimax theorems beyond topological vector spaces, Acta Sci. Math. (Szeged), 42 (1980), 157-164.
- [11] Wen-Tsun Wu, A remark on the fundamental theorem in the theory of games, Sci. Rec. New Ser., 3 (1959), 229-233.

(Received September 22, 1998; revised July 26, 1999)

DEPARTMENT OF MATHEMATICS UNIVERSITY OF IOWA IOWA CITY, IA 52242 U.S.A.

DEPARTMENT OF MATHEMATICS COMPUTER INSTITUTE BEIJING POLYTECHNIC UNIVERSITY BEIJING 100044 CHINA