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A MINIMAX THEOREM INVOLVING
WEAKLY DOWNWARD FUNCTIONS

BOR-LUH LIN (Iowa City) and CAO-ZONG CHENG (Beijing)

Abstract. A minimax theorem involving weakly downward functions is
proved.

1. Introduction

Let X and Y be nonempty sets and let f be a real-valued function defined
on X xY. f is said to be downward on X if for every € > 0, there exists
é > 0 such that for all z1, z2 in X, there exists an element xg in X with the
properties that for all y in Y,

(*) f(x[]vy) Zmin{f(iﬂl,y)sf(ﬁ«“z,y)}

and

| f(z1,9) — flz2,y)| 2 = f(zo,y) Z min{ f(z1,y), f(z2,4)} +6.

f is said to be upward on Y if —f is downward on Y.

S. Simons [7] introduced the upward-downward functions to include
t-convex and s-concave functions considered in [3]. Recall that for s,¢ € (0,1),
f is said to be s-concave on X if for all x1, x3 in X there exists xp in X such
that for all y in Y,

flzo,y) 2 smax { f{z1,y), f(x2,y)} + (1 — s)min { f(z1,9), f(z2,9)}.

f is said to be t-conver on Y if —f is (1 — ¢)-concave on Y. Simons has
proved the following result.

THEOREM 1 [8]. Let X be a compact (Hausdorff) space and let Y be a
nonempty set. Suppose f : X XY — R such that f{-,y) is upper semicon-
tinwous {usc) on X for all y in' Y. If f is downward on X and is upward
onY, then

(%) infsup f(x,y) = supinf f(z,y).
Y X X Y

For other minimax theorems involving npward-downward functions, see

[7]-
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Recently, A. Domokos [2] introduced the following functions with certain
properties. Let us call them weakly downward and weakly upward functions.

DEFINITION [2]. Let X and Y be nonempty sets and let f be a real-
valued function defined on X x Y. f is said to be weakly downward on X if
for all ;, x5 in X, there exists ay in X such that for all y in Y, (%) holds
and

f(e1,y) # flza,y) = flzo,y) > min { f(z1,9), flw2,9)}.
f is said to be weakly upward on Y if —f is weakly downward on Y.

A. Domokos [2] proved that in the case when both spaces X and Y are
compact, and f is a real-valued continuous function on X x Y, then ()
holds provided f is weakly downward on X and is weakly upward on Y.

The result was independently extended by J. Kindler and by Cao-Zong
Cheng, Bor-Luh Lin and Feng-Shu Yu [1] by requiring f(-,y) to be usc on
X forally in Y and f{x, -) to be Isc on Y for all  in X. In fact, Kindler
proved that the following theorem holds. The authors wish to thank Profes-
sor Kindler for sending us the preprint [6].

THEOREM 2 [6]. Let X be a compact space, Y be a countably compact
space and let f be a real valued function on X x Y such that f{-,y) is usc
on X for ally inY and f(x,-) is lsc on Y for all x in X. Suppose that f
is finitely weakly downward on X and [ is weakly upward on Y. Then (x*)
holds.

f is said to be finitely weakly downward on X if for all finite subsets B
in Y and for all 1, 7 in X, there exists xg in X such that for all y in B,
the condition (%) holds.

It is easy to see that if f is s-concave on X then f is weakly downward
on X and if f is {-convex on Y then f is weakly upward on Y. Furthermore,
it is interesting to compare the weakly upward functions with the submax-
imum functions studied in [4]. The concept of submaximum functions is
based on the result of W. Wu [11]. Submaximum functions may be looked
at as the limit case of #-convex functions when ¢ approaches zero with a
certain additional condition. Also, weakly upward-downward functions may
be considered as the limit case of upward-downward functions when ¢ =8
== 0, In this paper, we prove a minimax theorem involving weakly downward
functions. The result is interesting in comparison with the result in [5].

THEOREM 3 [5]. Let X be o compact space and let Y be a topological
space. Let f be a real valued function on X x Y with the following properties:

(1) f(-,y) usc on X for ally inY;

(2) [ is submaximum on Y, t.e., for any y1, y2 in Y, there exists a con-
tinuous function S : [0,1] = Y such that S(0) = y1, S(1) = y2 and for any
0alcsfbsl,

flz,8() < max{f(a:,S(a)) ,flx, S(b)) } for all x in X,
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(3) f is s-concave on X for some s € (0,1).
Then (%) holds.

The main result of this paper is the following theorem.

THEOREM. Let X be a compact space and let Y be an winterval space.
Suppose that f : X xY — R satisfies the following conditions:

(i) f(-,y) is usc on X for olly in Y and f(x, ) is Isc on all intervals
in Y,

(i) for all y1, yo i Y and for all y € [, y2),

f(Tay) é max { f(x':yl)a f(may2)}

holds for all x in X,
(iii) f is weakly downward on X.
Then (%) holds.

Recall that a topological space X is called an interval space [10] if there

is a mapping [, -] from X x X to the connected subsets of X such that
x1, &y € [w1, 23] = [T2,21] for all zy, g in X. [21,29] is called an interval
in X.

2. Proof of the Theorem

A family H of subsets of a set X is said to be pseudoconnected [9] if for
any Hy, Hy, Hyin 'H, HyNHy # 0 # HyN Hy and Hy C H U Hy imply that
HiNH # .

Let f: X xY - R. For ACY and r € R, we denote U"(4) = {x :
z€e X, flxz,y) 2r,foralye A} . The proof of the theorem is based on the
following lemma.

LEMMA. Let X be a compact space and let Y be a nonempty set. Suppose
f i X xY — R satisfies the following conditions:

(1Y f(-,y) isuscon X forally € Y;

(2) f is weakly downward on X.

Then for any finite subset A in Y and for any r € R, the family
H={U"(y)NU"(A) : y€ Y} is pseudoconnected.

PROOF. Suppose there exist yo, y1, ¥2 in Y such that

U'(yo) NUT(A) CU (1) WU (y2), UT(go) U () NTUT(A) # 0,
U'(yo) NU () NUT(A) #0 and U'(y) U (y2) U™ (A} =

Let D=U"(yo) NU"{A) and D; = DNU"(y;), i =1,2. Then
(1) D cC Dy U D,, Dz?é@, i=1,2
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and
(2) DinDy, = Q.

Since f{-,y) is usc on the compact space X forally € Y, D;, i = 1,2 are
compact subsets in X. Hence there exist x; € D;, ¢ = 1,2 such that f(x1,y2)

= MaXzern f(ma 312) and f($27 yl) = MaXge Dy f(ﬂ?, yl)
For zy, 22 in X, since f is weakly downward on X, there exists zg € X

guch that for all y € Y,

(3) f(mﬂuy) g min {f($lay}af($21 y)}

and

(4) f(:’cl)y) '_/é f(-’ﬂQ,y) = f(’LOa?J) > min{f(a:l,y),f(mg,y)} .

Since x1,29 € D, hence xg € D € DU Dy by (3) and (1). If zy € Dy,
then since zo € Do and by (2), x1 € Dy, we have fxq,y2) 2 7 > f(z1,¥2)
By (4),

Flwo,y2) > min { (21, y2), f{za,y2) } = flws,p0).

This contradicts the maximality of f(x1,¥2). Similarly, if zy € D2, we get
a contradiction with the maximality of f{xs,y1). Therefore U (y) N U™ (y32)
NUT(A) # 0. This completes the proof of Lemma. O

PROOF OF THEOREM. Since X is compact and f(-,y) is usc on X
for all ¥ in Y, it suffices to show that for any a < infsup f(xq,¥), fo(X,A4)
Y X

= supinf f{z,y) 2 a for all finite subsets A in Y.
X A
Fix o < infsup f(x,y). We shall prove f.(X, A) 2 « by induction on the
Y X

cardinality |A| of any finite subset 4 in V.
If {A| =1, obviously, f«(X, A) 2 infsup f(z,y) > .
Y X

Suppose that f.(X,A) Z « for all A CY with |4| £ n, but for some
BCY, |Bl=n+1 and f.(X,B)<a Choose reR, f(X,B)<r<a.
Let B=AU{y1,p}, s € A, i =1,2 and g # ya. Since fo (X, B) < r <«
{(5) U(B)=10
and for all y in Y,

(6) b#U(y)nU*(A)
Cl{az:z€ X, flz,y) >r} NU(A) C U (y) nUT(A).
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From (ii}, for all ¥ € [y1, 2], we have U"(y) C U"(y1) UU" (y2) which implies
that

(7) Un(y) NUT(A) C [UT(p) nUT(A)] U [U(g2) NUT(A)].
Fori=1,2, let
L={y:yelyLplU@nU(4) cU(y}.

By (5), we have

L={y:veyulU@nU(nnU(4) =0}

and
L={y:y€y,plUynU(n)nU(4)=0}.

It is clear that y; € I;, i=1,2, 1N, =0 and I Ul; C [y1,¥2]. If there
exists yo € [y1, 2] and yo & I1 U Iy, then

(8) U'(yo) U (g) NUT(A) #0, i=1,2.

From (iii) and the Lemma, {U’" ()N UT(A)}yey is pseudoconnected. Tt fol-
lows from (7) and (8) that U"(B) # 0. Hence we have that Iy U ly = {1, ¥2)-
We next show that I, 7 == 1,2 are closed subsets of [y1, y2].
Let {&:} C 11, &o € [y1,12) and & — €. Then for all k, U”

(¢
C U"(y1). Suppose &y & Iy, then & € Ip. Hence U (§)NUT(A)NU
and

)ﬂ()
"(y1) =

{z:zeX, flz,&)>r}NU(A)NTU (1) =0.

By (6), we can choose zg € {x : z € X, f(z,&) >r} NU"(A). Then
xzp € UT(y1). Tt follows that zg & U" (&) for all k. Thus f(zg, &) = r by
the fact that f is lsc on [y1,y2]. This contradiction shows that £ € I and
so I is closed in [y1,y2]. Similarly, 75 is closed in [y1,y2]-

Thus [y1,y2] is connected. We conclude that f.(X, A) = a for all finite
subsets AinY. 0O

REMARKS. (1) The Theorem can be proved by using Lemma and the
results in [9].

(2) The Theorem remains true if (i) is replaced by the following: f is
usc on X X [yy,y2] for all 41, y2 in Y. The proof is similar to that of the
Theorem. We only need to prove that I;, i = 1,2 are closed in [y1, y2] in this
case.

(3) The Theorem fails even if X and Y are compact connected sets in R
when (ii) is replaced by the following weaker condition:
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ii') For all y1, 2 in Y, there exisis yy in ¥ such that
i,y

f(msyﬂ) é max { f(wayl)ff(w:yZJ} .
EXAMPLE. Let X =Y =[-1,1]. Define f : X xY — R by

—x—4y+3 it (z,y) €0, 1] [0 1}
oy ) —QBy+Dr—4dy+3 if (a: y) € [—1,0) x [0,1]
e =3 row-2y-1 i (my) €, 1]><[ 1,0

(1-—y)x—2y—1 if (z,y) €{-1,0) x[-1,0).

Obviously, f{-,y) is continuous on X for all y € Y and f(x, -} islscon Y for

all z € X. Condition (ii'} is satisfied by taking yo = 4 or yo = y2. For any

x1, 2o in X, let xp = BEE2, Then (iii) is satisfied. However 1nfsup flz,y)
Y

=1 and supinf f(z,y) = —1.
X v

Acta Mathematica Hungarica 87, 2000



A MINIMAX THEOREM INVOLVING WEAKLY DOWNWARD FUNCTIONS 293

References

[1] Cao-Zong Cheng, Bor-Luh Lin and Feng-Shuo Yu, Weakly upward-downward mini-
max theorems, in: Proc. Workshop on Minimaz Theory and Appl. {Erice, Italy,
September, 1996), pp. 21-28.

[2] A. Domokos, A minimax theorem, Ann. Univ. Sci. Budapest, 37 (1994), 157-163.

[3] M. A. Geraghty and Bor-Luh Lin, On a minimax theorem of Terkelsen, Bull. Inst.
Math. Acad. Sinica, 11 (1983), 343-347.

[4] M. A. Geraghty and Bor-Luh Lin, Topological minimax theorems, Proc. Amer. Math.
Soc., 91 (1984), 377-380,

[5] M. A. Geraghty and Bor-Luh Lin, Minimax theorems without convexity, Contemporary
Math., 52 (1986), 102-108.

[6] J. Kindler, Domokos minimaz theorem for usc-lsc functions, preprint (to appear).

[7] 8. Simons, On Terkelsen’s minimax theorem, Bull. Inst. Math. Acad. Sinica, 18 (1990},
35-39.

[8] S. Simons, An upward-downward minimax theorem, Arch. Math., 55 (1990}, 275-279.

[9] S. Simons, A flexible minimax theorem, Acte Math. Hunger., 63 (1994), 119-132.

[10] L. L. Staché, Minimax theorems beyond topological vector spaces, Acta Sci. Math.
(Szeged), 42 (1980), 157-164.

[11] Wen-Tsun Wu, A remark on the fundamental theorem in the theory of games, Sci.
Rec. New Ser., 3 (1959), 229-233.

{Received September 28, 1998; revised July 26, 1999)

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF IOWA

IOWA CITY, 1A 52242

U.8.A.

DEPARTMENT OF MATHEMATICS
COMPUTER INSTITUTE

BEIJING POLYTECHNIC UNIVERSITY
BELJING 100044

CHINA

Acta Mathematice Hungarica 87, 2000



