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L gy

The topological KKM theorem of Chang et al. is slightly modified. By using our
topological KKM theorem, we obtain a generalized section theorem and a general-
ized fixed point theorem on W-spaces which do not have any linear structure, and
establish minimax inequalities for vector-valued mappings in Hausdorff topological
vector’spaces with closed pointed convex cones.  © 1996 Academic Press, Inc.

1. INTRODUCTION

In [13], the concept of H-space was firstly introduced by Horvath, and
later some important results on H-spaces were obtained by several authors
[2, 3, 6, 7]. Recently, Chen [10] proved a generalized Fan’s section theorem
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and a generalized Browder’s fixed point theorem for set-valued mappings
on H-spaces, and using these results he obtained a minimax inequality
theorem for vector-valued mappings.

Most recently, Chang ez al. in [8, 9] introduced the concept of a W-space
which is a topological space equipped with the family of its nonempty
connected subsets, proved a new and more general version of the topologi-
cal KKM theorem on a W-space, and obtained some minimax theorems as
its applications. ‘

In this paper, sightly modifying the topological KKM theorem of Chang
et al. [8, 9], we obtain a generalized section theorem and a generalized
fixed point theorem on W-spaces, and establish some minimax inequalities
for vector-valued mappings in Hausdorff topological vector spaces with
closed pointed convex cones.

2. MODIFIED TOPOLOGICAL KKM THEOREM

First, we give some definitions needed in this section.

DEFINITION 2.1 [8]. Let X be a Hausdorff topological space and {C,} a
family of nonempty connected subsets of X indexed by finite subsets A4 of
X such that 4 c C, then we call (X,{C,}) a W-space.

DernITION 2.2 [8]. Let (X, {C A}) be a W-space. Then a subset D C X
is called W-convex if for any finite subset 4 of D, C, C D.

. %y

Remark. Note that Hausdorff topological vector spaces, CoOnvex spaces,
contractible spaces, and connected spaces are special cases of W-spaces.

Remark. Let (X,{I',}) be an H-space; that is, X is a topological space
and {I,} is a given family of nonempty contractible subsets of X, indexed
by the finite subsets of X such that A C B implies I', < I'; [2, 3, 13]. If for
any finite subset 4 of X, A c T, then (X,{I,}) is a W-space.

DerFINITION 2.3, Let X and Y be two topological spaces; then a
multifunction F: X — 2% is said to be upper semicontinuous if for any
x € X and for any neighborhood V of F(x) in Y, there exists a neighbor-
hood U of x such that F(u) C V for all u € U.

- LemMa 2.1 [1]. Let X and Y be two Hausdorff topologicdl spaces, and
F: X - 2Y a multifunction.

(1) If F is upper semicontinuous with nonempty compact values, then
the graph of F (that is, {(x,y) € X X Y: y € F(x)}) is closed.

(2) If Y is compact and the graph of F is closed, then F is upper
Semicontinuous. :
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In the sequel, we denote the graph of F by Graph(F).

By slightly modifying the arguments of Chang et al. [8, 9], we can obtain
the following topological KKM theorem. For the completeness, we prove
our theorem. '

THEOREM 2.1. Let (X,{C,}) be a W-space,”Y a Hausdorff topological
space and F: X — 2¥ a multifunction satisfying the following conditions:
() F is upper semicontinuous with nonempty closed values;
(i)  for any finite set A ¢ X, N , o 4, F(x) is connected,
(iii) for anyx,, x, € X,

F(C{xuxz)) CF(XI) U F(‘xl)’

where F(C, . )= U, Coonr F(x);
(iv) Yis compact.

Then N, x F(x) # @.

Proof.  First, we prove by induction that the family {F(x): x € X} has
the finite intersection property. By condition (i), F(x) is nonempty for
each x € X. Suppose that for any » elements of {F(x): x € X}, n > 2,
their intersection is nonempty and now we prove that for any » + 1
elements of {F(x): x € X} their intersection is also nonempty. Suppose

that this is not the case, then there exists some subset {x,, ..., x,, %, ,} in
X such that

n+1

N F(x;) = 2.

i=1

Letting H = N 773 F(x;), by the assumption of induction and condition
(i), H N F(x,), i = 1,2, is a nonempty connected set and

(HNF(x))N(HNF(xy)) = @. ’ (1.1)
In view of condition (iii), for x;, x,, we have
HNOF(Cy, ) € (HNF(x;))U(H N F(x,)). (1.2)
Letting
E ={xeC, .y HNF(x) CHNF(x;)}  and
E,={x€Cy ., HNF(x) CHNF(x,)),
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then both E; and E, are nonempty by the fact that x; € E; and x, € E,.
By (1.1) and (1.2), we have C;, ., = E; U E,. Since C, ,, is connected
and E; N E, = &, we know that either E, or E, must not be a closed set.
Without loss of generality, we can assume that E, is not closed. Taking
x, € (E,\ E,) N E,, there exists a net {x,},; € E, such that x, = x,.
Since x, € E, and x, € E, (a € I), we have

HNF(xy) CHNF(x;) and
HNF(x,) CcHNF(x,) forall e el

Taking y, € H N F(x,) for each « € I, then we have y, € H N F(x,) for
all @ € I. Since H N F(x,) is compact, we may assume that y, =y, €
H N F(x,). On the other hand, since x, — x, and F is upper semicontin-
uous with nonempty closed values, by Lemma 2.1, y, € F(x,) and hence
vy € H N F(x;). Thus (H N F(x;))N(H N F(x,)) # &, which contradicts
(1.1). Therefore the family {F(x): x € X} of sets has the finite intersection
property. By conditions (i) and (iv), we have N, . x F(x) # &.

Remark. We can find the essentially same result as the above Theorem
2.1 in [15].

3. GENERALIZED SECTION THEOREM

Now we give.a generalized section theorem on W-spaces as follows;

THEOREM 3.1. Let (X,{C,}) be a W-space, Y a compact Hausdo
topological space, and G a nonempty subset of X X Y such that &
(1) Gisclosedin X XY;

(2) for any finite subset A of X, N ,c Ay € Y] (x,y) e G} is con-
nected, '

(3 foreachyeY, B, ={x € X|(x,y) & G} is W-convex or empty.
Then there exists y, € Y such that X X {y,} € G.

Proof. Let F(x) ={y € Y|(x,y) € G} for each x € X. Since
Graph(F) = G, by (1) Graph(F) is closed. Since Y is compact, by Lemma
2.1, F is upper semicontinuous with closed values. By (2), for any finite

subset A of X, N,. 4 F(x) is connected. Now we prove that for any .

X5 Xy € X, F(C,, ,.y) © F(x;) U F(x,). Suppose to the contrary that thc?ré
exist x;, x, € X such that F(C, ., & F(x;) U F(x,). Then there exists
ys € F(Cy, ;) such that y, & F(x,) and y, & F(x,). Thus there exists
Xy € Cy, ., such that y, € F(x,), y4 & F(x;) and y, & F(x,). Hence
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we have (X, y,) € G, (x;,y,) & Gand (x,,y,) & G. Since (x1,y,) & G
and (x,,y,) € G, thenx,, x, € B, .Since by (3) B, is W-convex, Ciapry ©
B, , hence (x,,y,) & G, which contradicts the fact that (x,,y,) € G.
Therefore F satisfies all the assumptions in Theorem 2.1. Thus we have
N xe x F(x) # &. Hence there exists a y, € Y such that X X {y,} € G.

As an application of Theorem 3.1, we can obtain the following general-
ized fixed point theorem on a compact W-space which is closely related to
the Fan—-Browder fixed point theorem in [5].

THEOREM 3.2. Let (X,{C,}) be a compact W-space and P: X — 2% a
multifunction such that
(1) for any x € X, P(x) # D and Graph(P) is open;
() for any finite subset A of X, N < 4 [ X\ P~X(y)] is connected;
(3 foreach x € X, P(x) is W-convex.

Then there exists ¥ € X such that & € P(x).

Proof.  Suppose to the contrary that there is no fixed point of P in X.
Thus for any x € X, x & P(x). Consider the set G = {(x,y) € X X X|
y & P(x)}. Since for each x € X (x,x) € G, G is a nonempty subset of
X X X.By (1), G is closed in X X X. By (2), for any finite subset 4 of X,

N [X\P'(»)] = N [X\{xeX:(x,y) £ G}]

yE€A YEA

rl{x €X:(x,y) € G},

which is connected. By (3), for each x € X {y € X|(x, y) ¢ G} = P(x) is
W-convex or empty. By Theorem 3.1, there exists x, € X such that
{xo} X X € G. Hence for any x € X, x & P(x,), i.e., P(x,) = &, which
contradicts the fact that P(x,) # . Thus, there exists ¥ € X such that
X € P(x). '

4. MINIMAX INEQUALITIES FOR VECTOR-VALUED
MAPPINGS

In 1961, Fan [11] proved the following minimax inequality for real-val-
ued mappings.

THEOREM (K. Fan). Let X be a nonempty compact convex subset of a
Hausdorff topological vector space and f: X X X — R such that

() foreachy € X, f(x,y) is lower semicontinuous in x;
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(i) for each x € X, f(x,y) is quasi-concave in y.
Then we have

mm sup f(x,y) < sup f(x,x).
€x yeXx x€X

Now we give some minimax inequalities for vector-valued mappings in
topological vector spaces with closed pointed convex cones.

DerINITION 4.1. Let Y be a Hausdorff topological vector space with a
closed pointed convex cone S such that the interior of S, int S is nonempty
and C be a nonempty subset of Y.

(1) A point y, € C is called a minimal point of C if C N (y, —
S) = {y,}, by Min C we denote the set of all minimal points of C;

(2) A point y, € C is called a weakly minimal point of C if C N
(yo — int §) = &, by Min,, C we denote the set of all weakly minimal
points of C.

(3) A point y, € C is called a maximal point of C if C N (y, +
§) = {y,}, by Max C we denote the set of all maximal points of C.

(4) A point y, € C is called a weakly maximal point of C if
C N (y, +intS) = I, by Max,, C we denote the set of all weakly maxi-
mal points of C.

LemMa 4.1[4, 14].  If C is a nonempty compact subset of Y. Then we.have
@MinC+J; (GB)MaxC#

Remark. Min C € Min,, C and Max C € Max,, C.

The following lemma is a special case of Lemma 5.5 in [16].

LEMMA 4.2. Let X be a nonempty compact subset of a Hausdorff topologi-

cal space, and Y a topological vector space, and S CY a closed pointed
convex cone with-int S # . If f: X X X — Y is continuous, then

&+ |J Max,, f(X,t) cMin |J Max, f(X,t) +S.
teX teX

DEFINITION 4.2. Let (X,{C,}) be a W-space. Then a subset D of X is
called weakly W-convex if for any finite subset A of D, C, N'D is
connected, i.e., (D,{C, ., N D)) is a W-space.

THEOREM 4.1.  Let (U,{C,}) be a W-space and Y a Hausdor(ff topological

vector space with a closed pointed convex cone § such that int S is nonempty.’

Let X be a compact weakly W-convex subset of U and f: XXX —Y a
vector-valued mapping such that
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(D given m € Max,, U,cx f(t, ), N, fu € X |fx,u) —m &
int S} is connected for any ﬁnzte subset A of X;

(2) given m € Max,, U,y f(t,1), B, ={x € X|f(x,u) —
int S} is W-convex or empty for each u € X;;

(3) fis continuous.

Then for every m € Max,, U, x f(t,t) there exists

z € Min |J Max,, f(X,¢)
teX '

such that z — m & int S. Moreover, we have

Max (J f(¢,t) cMin |J Max, f(X,t) +K, whereK=Y\ (- int$).

teX teX

Proof. Note that (X,{C,, x N X}) is a W-space. Since {(x, x) |x € X}
is compact and f is continuous, by Lemma 4.1 Max U , . x f(¢,¢) #+ & and
hence Max,, U, .y f(t,1) # &. Let m € Max,, U, x f(t,1), then there
exists #, € X such that m = f(zy, 7). Let G={(x,u) eXXX|m €
f(x,u) + K}. Since m € Max,, U ;¢ x f(z,1), by the weak maximality of m,
(x,x) € G for any x € X, and hence G is nonempty. Since m — K is
closed and f is continuous, G is also closed in X X X. By (1), for any finite
subset A of X, N,clueX|(x,u) €G =N,cfueX|fx,u) -
m & int S} is connected. By (2), for each u € X, {x € X|(x,u) & G} =
{x eX|f(x,u) —m € int S} is W-convex or empty. By Theorem 3.1,
there exists uy, € X such that X X {u,} c G, that is, for any x € X,
m & f(x,u,) + K. Since Max,, f(X,u,) is nonempty, let x, € X such
that f(x,u,) € Max,, f(X, uo) Thus m € f(xy,u,) + K. By Lemma 4.2,

@+ |J Max,, f(X,t) cMin |J Max, f(X,) + 5.
teX teX

Hence there exists

z € Min |J Max f(X t)  suchthat f(x,,u,) €z + S.
teX

Thus

mef(xg,u,) +Kez+S+K=z+K,

ie, z — m & int §. Furthermore, by the arbitrariness of m &
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Max, U,cxf(t,t) we have Max, U,cx f (t,¢) € Min U, x

- Max,, f(X,t) + K. Since S is pointed, Max U, ¢ x f(t,) C Max,, U,cx

f(¢,t). Thus,

Max (J f(z,t) cMin |J Max,, f(X,?) + K.
tex teXx

This completes the proof.

THEOREM 4.2. Let (X,{C,}) be a W-space, Y be a Hausdorff topological
space, and Z a Hausdorff topological vector space with a closed pomzfed
convex cone S such that int S is nonempty. Let f: X X Y — Z be a mapping
satisfying the following conditions:

(D) fis continuous;
(i) (a) for any finite subset A of X, the set {y € Y|f(x,y) & int S,
Vx € A} is connected.
() for any x,, x, € X, we have

f(x,) = f(x1,y) € Sorf(x,y) = f(x2,9) €S
for dix € Cixpxpy and ally €Y;

(iii) Y is compact.
Then one of the following conclusions holds;

(1) there exists ¥ € X such that f(X,y) € int S foranyy € Y.
(2) there exists y € Y such that f(x,y) & int S for any x € X.

Proof. Define F: X — 2" by F(x) ={y € Y|f(x,y) & int S} for any
x € X. If there exists ¥ € X such that F(%) = O, then the conclusgon @
holds. Suppose that F(x) # & for any x € X. Sipce f 1s continuous,
Graph(F) = {(x, y) | f(x,y) € Z \ int S} is closed. Since Y is compact, by
Lemma 2.1 F is upper semicontinuous with closed values. By (iiX(a),
assumption (ii) of Theorem 2.1 holds. By (iiXb), for any x;, x, € X, we
have

. %y

f(x1,y) €f(x,9) = Sor f(xy,y) €f(x,5) =S
foralx € C, ,,andally €Y.

Let z€C, ., and y € F(z), then f(z,y) € intS. Since f(x,,y) €
f(z,y) = S or flx,,y) € fz,y) = §,

flx,y) €(Z\intS) —S=Z\intS ~ or

F(x,,y) € (Z\intS) — S =Z\int S.
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Hence y € F(x;) U F(x,). Thus assumption (iii) of Theorem 2.1 holds. By
Theorem 2.1, N,cx F(x) # &. Hence there exists y € Y such that
f(x,5) & int S for any x € X. ~

This completes the proof.

-

Remark. If X is a Hausdorff topological vector space, then condition
(ii)(b) becomes the definition of the properly quasi S-concavity, which
appeared in [12, 16].
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1. INTRODUCTION

In this paper, equations of the type

x(t) = —ax(2) + Af(x(t - 1)) | (1.1)

f+ R* = R", A > 0 are considered. }

Téboas, in [5], has studied the planar delay differential equation x(z) =
—x(¢) + af(x(t — 1)) for @ >0, and the elements of the diagonal of the
Jacobian Matrix of f at (0,0), ie., Jf(0,0) are all zeros. An existence
theorem for nonconstant periodic solutions is achieved for some value of
a > a, for some a,. The method used consists of finding a cone in the
phase space which is mapped into itself under a certain operator defined
by the flow. A fixed point of this operator corresponds to a periodic
solution. _ :

We treat the case where the diagonal of Jf(0,0) is not null. Another
aspect of this paper is to take the functions in a set X in such a way that it
becomes an equicontinuous set. Since f is continuous and £(0,0) = 0 and
the work is done in a neighbourhood of zero, it is easy to show that the
solutions of (1.1) have the same properties when they return to the set K.

201




