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1. PRELIMINARIES

DEFINITION 1. A topological space X is called a generalized interval
space, if there exists a mapping I': X X X —#(X), where #(X) is a
family of nonempty connected subsets of X. For any (x;, x,) € X X X we
denote I'(x,, x,) by I'{x; x,} and I'{x,, x,} is called a generalized interval
associated with x; and x,.

DEFINITION 2. Let X be a generalized interval space, Y be a topologi-
cal space, and Z be a completely dense linear ordered space. A subset B
of X is called T-convex, if for any x;, x, € B, we have I'{x,, x,} € B.

A mapping f: X — Z is called T-quasi-concave (convex), if for any
z € Z, the set {x € X: f(x) = z} ({x € X: f(x) < z}) is T-convex.

Let D be a subset of X. If for any I'{x,, x,}, D N I'{xy, x,} is a closed
(open) set in I{x,,x,}, then D is called a generalized interval closed
(open) set.

Remark. From the above definitions, it is easy to see that interval
space, H-space, convex space, contractible space, and topological linear

space all can be considered as special cases of generalized interval space.

Moreover the H-convex set in H-space is T-convex; the convex sets in
topological vector space are also T-convex and the quasi-concave (convex)
mapping is 7T-quasi-concave (convex).

We have to point out that the intersection of T-convex sets is T-convex
and each T-convex set can be considered as a generalized interval space.

DerINITION 3 [4]. Let X be a topological space, Z be an order
complete and order dense linear ordered space. A mapping f: X —> Z is
called upper (lower) semi-continuous, if the set {x € X: f(x) > z} {x € X:
f(x) <z} is aclosed set in X for all z € Z.

DEFINITION 4 [4]. Let X and Y be two topological spaces and
Y XX XY — R be afunction. T: Y — 2% is called #monotone, if for
any y,z €Y, for any u € Ty, and for any v € Tz

Ay, u,z) —A(y,v,z) = 0.

DEFINITION 5 [12]. Let X and Y" be two topological spaces. A mapping
G: Y= 2% is called transfer closed valued in Y if for any y €7,
x & G(y), then there exists an y' € Y such that x & G(y") (in the sequel
we denote by A the closure of A).

Remark. It is obvious that if G is closed valued in Y, then G is transfer
closed valued on Y.

In the sequel we denote S(Y) == {4 CY: A is a nonempty finite set}.
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2. PARAMETRIC TYPE OF KKM THEOREMS
IN GENERALIZED INTERVAL SPACES

In the sequel we need the following auxiliary lemmas:

Lemma 2.1[12].  Let X, Y be two topological spaces and G: Y — 2% be a
multivalued mapping. Then G is transfer closed valued on Y if and only if
nerG(y)= nerG(y)~

Proof. If G is transfer closed valued on Y, it is obvious that
ye¥G(¥) D N ,cyG(y). To prove the conclusion we have to prove
yeYG(Y) € N ,cyG(y). Suppose the contrary, then there exists x €
N,eyG(y) and x & N, cyG(y). Hence there exists y € Y such that
x & G(y). Since G is transfer closed valued on Y, there exists y' € Y such
that x ¢ G(y"). This contradicts x € N, cyG(y)- ‘
Conversely, if N,.yG(y)= N,<cyG(y), then for any y € Y and any
x & G(y), then x € N, cyG(y) = N, < yG(y). Hence there exists y' € Y
such that x & G(y"). This implies that G is transfer closed valued on Y.

m m

DD

LEMMA 2.2. Let Y be a generalized interval space, X be a topological
space, and F: Y — 2% be a mapping. Then for any x € X, Y\ F~(x) is a
T-convex set if and only if for any y,, y, € Y we have

F(y) €F(y,) VF(y,)  forally € T{y,,y,}.

Proof.  Necessity. Suppose the contrary, there exist y;,y, € Y and an
Yo € I{yy, y,} such that F(y,)  F(y,) U F(y,). Hence there exists x, €
F(yy)but x, & F(y,),i=1,2,andso y; & F~1(x,),i = 1,2,ie.,{y;, y,}
Y\ F (x,). Since Y\F (x,) is T-convex, I{y,,y,} €Y\ F 1(x,y).
Hence y, € Y\ F~!(x,), and so x, & F(y,). This contradicts the choice of
xg. Therefore for any y,, y, € Y, we have

F(y) CF(y,) UF(y,) forally eT{y;,y,}.

Sufficiency. Since for any y,, y, € Y, we have F(y) c F(y,;) U F(y,) for
all y € I'{y,, y,}. Hence for any x € X and for any #,, §, € Y\ F~*(x),
F(9) cF($)) UF($,) for all § € I{$,, ,). Since 9,7, & F1(x), ie.,
x & F(9,) and x & F($,), and so x & F($,) U F($,). This implies that
x & F(P) for all § € T{y,,y,), i.e, for all § € T{y,,y,}, y € Y\ F~1(x).
Therefore I{y,, y,} € Y\ F~1(x). This shows that Y\ F~!(x) is a T-con-
vex set for all x € X. This completes the proof.

THEOREM 2.3. Let Y be a generalized interval space, X be a topological
space, Z be a linear ordered space, F,G: Y X Z — 2% be two mappings such
that F has nonempty values and G is transfer closed valued. If the following
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conditions are satisfied: |
G) for any (y,z) €Y X Z, F(y,z) € G(y, z) and when z, < z,,

F(y,z,) €F(y,z,) forally €Y;

(i) for any z € Z, there exists £ € Z such that F(y, z) D G(y, z) forall
yEY; '
(iii) for any A € F(Y) and for any z € Z, N, < 4F(y, 2) is connected;
(v) for any x € X and for any z € Z, the set {y € Y: x € F(y, z)} is
T-convex and generalized interval closed,; -
™) foranyz € Z and anyyy, y, € Y, there exist 'y, y, € Iyy, y,}, such
that F(y', z) € F(yy, 2), F(y},z) C F(y,, z), then
1) {G(y,z): y €Y, z € Z} has the finite intersection property;
(2) if there exists (y,, zy) € Y X Z such that G(y,, z,) is compact,
then N, ey, ,czG(y,2) + .

Proof. Since F has nonempty values, by condition (i), for all (y, z) € Y
X Z, G(y, z) # &. If for any n elements of {G(y,z): y € Y, z € Z} their
intersection is nonempty, next we prove that for any n + 1 elements of
{G(y,z): y €Y, z € Z} their intersection is;also nonempty, where n > 2.

In fact, if there exist (y,z) €Y X Z, i=12,...,n + 1, such that

741G (y;,2,)= . Since Z is a linear ordered space, without loss of
generality we can assume that z; >z, > '+ 22, >z,,;, letting H =
N7} F(y;, z,), then we have

HNF(yy,z) N HNF(y,,z,) CHNF(y,,z) NF(y;,2,)

n+1

c NGOiz) =92.
i=1

This implies that H N F(y,, z,) and H N F(y,, z;) are separated from

each other. By condition (ii) and the assumptions of induction, there exists
2eZsuchthatforany y €Y

n+1
HNF(y,z)) = N F(yz) NF(y,21)
i=3
n+1 _
> NG(y,2) NG(y,2) <.
i=3

Define a mapping L: Y — 2% by L(y) = F(y, 21)3 y €Y, then for any
x€X,Y\L (x)={y € Y: x & F(y, z)}. By condition (iv) for any x €
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X, Y\ L™*(x) is T-convex. In view of Lemma 2.2 for any y;, y, €Y and
for any y € I{y,, y,} we have L(y) < L(y,) U L(y,), ie.,

F(y,2) ©F(y1,2) UF(y,,2) forall y € T{y,,y,).
Hence we have L

HNF(y,z) c (HﬂF(yl,zl)) U (HﬁF(yz,zl))
forall y € T{y,, y,}.

By condition (iii), H N F(y,z,) is connected. In addition, since H N
F(yy,z)) and H N F(y,,z,) aré separated from each other, for any
y S F {y 1> y 2}

HNOF(y,z) CHNF(y,2) or HNF(y,z) CHNF(y,,z).

Letting E; = {y € I{y, y,}: HN F(y,z) CHN F(y, z)) i=1,2, by
condition V), E; # &, i = 1,2, and T{y,, ¥2} = E; U E,. Since T{y,, y,} is
nonempty connected, at least one of E, N E, and E; N E, is nonempty.
Without loss of generality we can assume that E NE,# . Taking
Yo € Ey N E,, we have H N F(y,,2,) € H N F(y,, z,) and there exists a
net {y,}, < ; € E, such that y, — y,. Hence we have

HNF(y,,2z1) CHNF(y,,z;) forallael.

On the other hand, in the above we have proved that H N F( Yo, 2,) * .
Taking x, € H N F(y,, z,), we know that x, & H N F(y,, z,). Hence

X €HNF(y,,z) forallacl.

Therefore x, & F(y,,z,) for all a €1, ie., {y},c; € Y\ L 1(x,). Since
{Vouda e 1 €Ty, y,} and Y\ L(x,) is generalized interval closed, y, €Y
\L™(xy), ie., xy & F(y,, z,). This contradicts the choice of X. By this
contradiction, we know that {G(y, z): y € Y, z € Z} has the finite inter-
section property.

If, in addition, there exists (y,,z,) € Y'X Z such that G(yo,2y) is
compact, then it is easy to prove that N, oy, N,c,G(y,z)* . By
Lemma 2.1 we have N, ey, N,c,G(y,2) = @.

This completes the proof.

COROLLARY 2.4. Let Y be a generalized interval space, X be a topological
space, Z be a linear ordered space, and F and G: Y X Z — 2% be two
mappings such that F has nonempty values and G has closed values. If the
following conditions are satisfied:

@) for any (y,2) €Y X Z, F(y,2z) © Gy, z), and when z, < z, we
have

F(y,z,) CF(y,z;) forally €Y;
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(i) for any z € Z there exists a 2 € Z such that F(y, z) > G(y, 3) for
aly €Y;

(iii) for any A € FY) and for any z € Z, N ye aF(y, 2) is connected;

(iv) for any x € X and for any z € Z, {y €Y: x & F(y, z)} is T-convex
and generalized interval closed,

) for any z € Z and for any y,, y, € Y there exist y}, y, € Iy, y,}
such that F(y}, z) C F(y,, z), F(¥}, z) € F(y,, z), then
(D {G(y,2): y €Y, z € Z} has the finite intersection property;
() in addition, if there exists (yy, zy) € Y X Z such that G(y,, z,) is
compact, then N ,cy, N ,c,G(y,2) # &.

Proof. Since G has closed values, G is transfer closed valued on Y X Z.
Hence the conclusion follows from Theorem 2.3 immediately.

3. APPLICATIONS TO MINIMAX PROBLEMS

In this section we shall use the results presented in Section 2 to study
the minimax problems. We have the following results:

THEOREM 3.1. Let Y be a generalized interval space, X be a topological
space, Z be an order complete and order dense linear ordered space, and f, g:
X XY - Z be two functions satisfying the following conditions:

() forany A € AY) and foranyz € Z, N yEA{x € X: f(x,y) > z¥is
a connected set;
(i) (@) foramyx € X, y — f(x, y) is T—quasz-convex and is lower-semi-
continuous on any generalized interval of Y;
() foranyy €Y, x = f(x,y) and x — g(x,y) are upper semicon-
tinuous;
(iii) there exist z, < inf .y sup, < y f(x,y) and y, € Y and a compact
subset L C X such that g(x,’y,) < z, forallx € X\ L;
) f(x,y) <glx,y) forall (x,y) €X X Y;

) for any y,, y, € Y there exist y;, y, € I{y,, y,} such that f(x, y}) <
fx,y), i =1,2, and for any x € X.

Then 2, = Sup,.« x inf, oy §(3, ) 2 inf, ¢y sup, c x fx,y) = 2*.

Proof. By the completeness of Z, we know that z* and z, both exist.
Letting Z = {z € Z: z < z*}, then Z is a dense linear ordered space. For
any (y,z) €Y X Z, letting F(y,z) ={x€X: f(x,y) >z}, G(y,2) = {x
€X: f(x,y) =z}, H(y,z) = {x € X: g(x,y) > z}, it follows from condi-
tion (ii)(b) that G(y, z) and H(y, z) both are closed for all (y,z) € Y X Z.
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Next we prove that mappings F and G satisfy all conditions of Corollary
2.4. In fact, by the definition of z*, F: Y X Z — 2%X is nonempty valued.
Again by the definition of F and G, it is easy to see that they satlsfy
condition () in Corollary 2.4. In addition, for any z € Z with z < z*, by
the denseness of Z, there exists a 3 € Z such_that z < 2 < z* and o)
zZ € Z and F(y,z) D G(y, 2) for all y € Y. This implies that condition (ii)
in Corollary 2.4 is satisfied. Again for any x € X and for any z € Z

{(yeY:x&F(y,2)} ={y €Y: f(x,y) <z}.
By condition (ii}(a) we know that condition (iv) in Corollary 2.4 is satisfied.
By conditions (i) and (v) we know that conditions (iii) and (v) are satisfied.
By conclusion (1) of Corollary 2.4, {G(y, z): y € Y, z € Z} has the finite
intersection property. _
On the other hand, by condition (iv), for any (y,z) € Y X Z, G(y, z) C
H(y, z). Hence {H(y,z): y €Y, z € Z} is a family of closed sets having
the finite intersection property. By condition (iii), for any x € X\ L,
8(x, ) <z, i, x € {x € X: g(x,y,) < z,}. Hence x & H(y,, z,) = {x
€X: g(x,y0) =2} and so H(y,, z,) CL. Since L is compact and
H(yy, z,) is closed, H(y,, z,) is compact. Hence we have
n n H(y,Z) = n n H(y,Z) mI{(yO’ZO) #* @
yeYzeZ yeEY z€Z
Taking £ € N,cy N,z H(,2), we have g(£,y) >z for all y €Y and
for all z € Z. Hence z, = sup, ¢ x inf, .y g(x,y) >z for all z € Z. By
the denseness of Z we have

sup inf g(x,y) >z* = inf supf(x,y).
xeXx yeY YEY xex
This completes the proof.

COROLLARY 3.2. Let Y be a generalized interval space‘, Xbea topologicél
space, and Z be an order complete and order dense linear ordered space. If f:
X XY — Z satisfies the following conditions:

@) forany A e AY) andfor any z € Z, N,e4lx €X: f(x,y) >z}
is connected,

@) (@) for any x € X, y — f(x,y) is T-quasi-convex, and is lower
semi-continuous on any generalized interval of Y,

(b) foranyy €Y, x — f(x,y) is upper semi-continuous;

(iii) there exist zy <inf,.y sup, ey f(x,y), y, €Y, and a compact
subset L C X such that f(x,y,) <z, forallx € X\ L;

Gv) for anyy, y, € Y there existy}, ¥, € T{y,, y,} such that
f(x,y) <f(x,9), i=1,2 andforallx € X,
then sup, ¢ y inf, . y f(x,y) = inf, .y sup, o x f(x, y).
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Proof. The conclusion of Corollary 3.2 can be obtained from Theorem
3.1 immediately.

Remark. The condition “there exist z, < inf, ey sup, e x f(x, ), y, €
Y, and a compact subset L C X such that f(x, y,) < zy forall x e X\ L”
is equivalent to the condition “there exist z, < inf yev SUP, e x f(x,y) and
Yo €Y such that {x € X: f(x, y;) = z,} is compact.” Therefore Corollary
3.2 includes the main results of Cheng and Lin [3] as its special cases and
so it contains the corresponding results of Brézis, Nirenberg, and
Stampacchia [2], Komornik [7], M. A. Geraghty and Lin [9], Stach6 [11],
and Wu [13] as its special cases.

COROLLARY 3.3. Let Y be a compact generalized interval space, X be a
compact topological space, Z be an order complete and order dense linear

ordered space, and f: X XY — Z be a mapping satisfying the following

conditions:
@) for any A € AY) and for any z € Z, N yedx €X: fx,y) >z}
is connected or empty; J

(i) foranyx € X, f(x,y) is T-quasi-convex and lower semi-continuous
iny; .
(i) foranyy €Y, x = f(x,y) is upper semi-continuous;,
(v) foranyy,, y, € Y there existy}, y, € T{y,, y,} such that flx,y) <
fx,y) forallx € X, i=1,2.
Then f has a saddle (£, ) € X X Y.

Proof. By using Corollary 3.2 and Proposition 1.4.6 and Theorem 3.10.4
of [4], we can obtain the conclusion of Corollary 3.3 immediately.

Remark. Corollary 3.3 contains the famous von Neumann theorem in
mathematical economy and game theory.

THEOREM 3.4. Let Y be a generalized interval space, X be a topological
space, Z be-an order complete and order dense linear ordered space, and fand
8§ X XY — Z be two mappings satisfying f(x,y) < g(x,y) for all (x,y) €
X X Y and the following conditions:

tinuous;

(i) for anyy € Y, f(x,y) and g(x, y) are upper semi-continuous in x;

(iii) there exist a nonempty subset K ¢ X and a compact subset HC'Y
such that

infsu f(x,y) < inf supf(x,y),
yEYxegff( y) er\ergf( ¥)

@ for any x € X, y = f(x,y) is T-quasi-convex and lower semi-con-
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and for any finite subset F C X there exists a compact set K(F) DK U F,
such that for any A € FY) and forany z € Z, N , c [Ax € K(F): f(x,y) >
z} is connected,

(iv) for any y,, y, € Y there exist y, y, € I{y,, yé}‘ such that f(x, y}) <
fx,y) forallx € X, i =1,2. -
Ihen SuprX innyY g(x: y) = infer SupxeXf(x’ y)

Proof. Letting z, =sup, .y inf, .y g(x,y) and z* = infyeysquEX
f(x, y), by the completeness of Z, we know that z, and z* both exist. If
z, < z%, again by the density of Z, there exists £ € Z such that z, <2 <
z*.

For any x € X, letting L(x) ={y € Y: f(x,y) <Z}, by condition (i),
L(x) is a closed set in Y. For any x € X, letting M(x) = L(x) N
(N, < x L)), then M(x) is a closed set. .

Next, we prove that M(x) c H for all x € X.

In fact, for any y, € Y\ H, by condition (i), we know that
Sup, < x f(x, yo) = z* > 2. Therefore there exists a x; € K such tl}at
f(xg,v0) > 2, ie., y, & L(x,) and so y, € N,cxL(t). This implies
that (N, xL(¢) € H. Hence M(x) C H for all x € X.

Finally, we prove that {M(x): x € X} has the finite intersection prop-
erty. In fact, for any finite set F C X, by condition (iii), there exists a
compact subset K(F) D KU F such that for any A € #(Y) and for any
z€Z, N, 4x € K(F): f(x,y) >z} is connected. From Theorem 3.1 we
have

sup inf g(x,y) > inf sup f(x,y),
xeK(F)YEY YEY xek(F)

and so we have

inf sup f(x,y) < sup inf g(x,y) =2z* <Z.
YEY xek(F) xeX YEY

Now we prove that N ,cxmM(x) # . Suppose the contrary,

N rexyM(x) = &, then we have ¥ = U, ¢ x»(Y \ M(x)), and so for .

any y €Y, there exists x(y) € K(F) such that y € Y\ M(x(y)), ie.,
y & M(x(y) = L(x() N (N, L(). Hence y & L(x(y)) or y &
N.exL(@). If y & L(x(y)), then f(x(y),y) > 2; if y & N,exL(2), theP
there exists £(y) € K € K(F) such that y & L(£(y)), i.e., f(Z(y),y) > 2.
This implies that there exists 2 mapping £: ¥ — K(F) such that f(£(y), y)
> 2. Therefore we have sup,c g f(x,y) >Z for all y €Y. Hence
inf, ¢ y SUP, < g¢r) f(x, ¥) = 2. This contradicts inf , . y sup, ¢ g7y f(x, ) <
2. Therefore N,exrM(x) # . Since N, M%) D N, grM&),
{M(x): x € X} has the finite intersection property.
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However, since H is compact and M(x) < H for all x € X, N e xM(x)
# (J. Hence there exists a § € M(x)for all x € X, and so ¥ € L(x) for all
x € X, ie., f(x,9) < £ for all x € X. Hence z* < . This contradicts the
choice of 2. Therefore z, > z*. This completes the proof.

Remark. Theorem 3.4 improves and extends Theorem 2 of Lin and
Quan [8].

COROLLARY 3.5. Let Y be a generalized interval space, X be a topological
space, Z be an order complete and order dense linear ordered space, and f:
X XY — Z be a mapping satisfying the following conditions:

@ foranyx € X, f(x,y) is T-quasi-convex and lower semi-continuous
iny;
(i) foranyy € Y, x = f(x, y) is upper semi-continuous;,
(iii) there-exist a nonempty subset K X and a compact subset H C'Y
such that

inf supf(x,y) < inf supf(x,y),
2 S ) < it s f)
and for any finite set F C X there exists a compact subset K(F) > K U F such
that for any A € A(Y) and for any z € Z, N yedx € K(F): f(x,y) >z} is
connected,

() for any y,, y, € Y there exist y,, y, € T{ Y1, ¥} such that

f(x, ) <f(x,5) forallx e X,i=1,2.

Then sup, . x inf, .y G, y) = inf, oy sup, ¢ x f(x, y).
Proof. Tt follows from Theorem 3.4 that

sup inf f(x,y) > inf supf(x,y).
xeX YE€Y Y€Y yex

However, it is obvious that inf,_y sup, .y f(x,y) > SUp,  x inf, <y

f(x, y). Hence the conclusion is obtained.

Remark. Since the condition “for any A € #(Y) and for any z € Z,
N,cdx € K(F): f(x,y) >z} is connected” implies the condition “for
any A € #A(Y) and for any z € Z, N, 4x € K(F): f(x,y) >z} is con-
nected,” therefore Corollary 3.5 contains Corollary 1 of Lin and Quan [8]
as its special case.

COROLLARY 3.6 [6]. Let X and Y be nonempty convex subsets of
Hausdorff topological vector spaces M and N, respectively, andf: X X Y - R
be a function satisfying the following conditions: :

@) foranyx € X; y — f(x, ) is quasi-convex and lower semi-continu-
ous;
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(i) for any y, x — f(x, y) is quasi-concave and upper semi-continuous;
(iii) there exists a nonempty compact convex subset K C X and a compact
subset H C Y such that

sup f(x,y) < inf supf(x,y).
erer;(f( ) YEH yek

Then inf, ¢ y sup, ¢ x f(x,y) = sup, . x inf, o y f(x, ).

Proof. For any x,,x, € X and for any y,,y, €7, letting.l“{xl, X} =
cofxy, x,}, I{y,, ¥,} = coly,, y,}, under the structures like thl.S,.X and Y
both are generalized interval space. Furthermore for-any finite subset
F c X, letting K(F) = co(K U F), then all conditions in Corollary 3.5 are
satisfied. The conclusion follows from Corollary 3.5 immediately.

- 4. APPLICATIONS TO SECTION PROBLEMS

In this section, we shall use the results presented in Section 2 to study
the section problems. We have the following results.

THEOREM 4.1. Let Y be a generalized interval space, X be a topological
space, Z be a dense linear ordered space, and B and C be two sets of
X XY X Z satisfying the following conditions: :

(@) Bcc;
(i) for any (y, z) € Y X Z, the sections

B, ={x€X:(x,y,z) €B} + J,

y,2)
and

Co= (¥ €X: (3,3,2) € €)

are transfer closed valued and there exists (y,, z,) € Y X Z such that C, ,,
is compact; .

(iii) if z, = zy, then B, ., By, ., forally €Y; and for any z € Z
there exists Z € Z such that B, ,, D C,, s forally € Y;

(v) for any A € F(Y) and forany z € Z, N ,c 4B, ,, is connected,

) forany (x,z) € X X Z, the set Y\ B, ,, = {y € Y: (x,y,2) & B}
is generalized interval closed and T-convex in Y

(vi) for any z € Z and for any y,, y, € Y there exist ¥, y, € I{y,, y,}

such that B, ,, € B, .5, i=12.
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However, since H is compact and M(x) c H forall x € X, N,exM(x)
# (J. Hence there exists a § € M(x)forall x € X ,and so ¥ € L(x) for all
X € X, ie., fx, ) < £ for all x € X. Hence z* < 2. This contradicts the
choice of 2. Therefore z, > z*. This completes the proof.

Remark. Theorem 3.4 improves ahd extends Theorem 2 of Lin and
Quan [8].

COROLLARY 3.5. Let Y be a generalized interval space, X be a topological
space, Z be an order complete and order dense linear ordered space, and f:
X XY — Z be a mapping satisfying the following conditions:

@ forany x € X, f(x,y) is T-quasi-convex and lower semi-continuous
iny;
(i) foranyy € Y, x = f(x, y) is upper semi-continuous;,

(iii) there-exist a nonempty subset K € X and a compact subset H C'Y
such that

inf supf(x,y) < inf supf(x, ,
o () <, ()
and for any finite set F < X there exists a compact subset K(F) > K U F such
that for any A € F(Y) and for any z € Z, 0 ye Alx € K(F): f(x,y) >z} is
connected, »
Gv) for anyy,, y, € Y there exist Y1, Y5 € Nyy, y,} such that

f(=,%) <f(x,y) foralxeX,i=1,2.

Then SUPy e x inferf(xa y) = infer supxeXf(x’ y)
Proof. Tt follows from Theorem 3.4 that

sup inf f(x,y) > inf sup f(x,y).
xeX YEY YEY yex

However, it is obvious that inf, .y sup, < x f(x, y) > sup, . xinf, y

f(x, y). Hence the conclusion is obtained.

Remark. Since the condition “for any 4 € K(Y) and for any z € Z,
N,cAx € K(F): f(x,y) >z} is connected” implies the condition “for
any A € AY) and for any z € Z, N, e 4x € K(F): f(x,y) >z} is con-
nected,” therefore Corollary 3.5 contains Corollary 1 of Lin and Quan [8]
as its special case.

COROLLARY 3.6 [6]. Let X and Y be nonempty convex subsets of
Hausdorff topological vector spaces M and N, respectively, andf: X X Y - R
be a function satisfying the following conditions:

() for any x € X; y = f(x, y) is quasi-convex and lower semi-continy-
ous;
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(i) for any y, x — f(x, y) is quasi-concave and upper semi-continuous;

(iii) there exists a nonempty compact convex subset K C X and a compact
subset H C 'Y such that

inf supf(x,y) < inf supf(x,y).
Jo smpf(xy) = It s i

Ihen infersupxeXf(x’y) = SuprXinferf(x7y)'

Proof. For any x;,x, € X and for any y,,y, €Y, letting I'{x,, x,} =
co{x,, J];}, y,, y};} = ccz){yl, ¥,}, under the structures like this, X and Y
both are generalized interval space. Furthermore fo'r'any finite subset
F c X, letting K(F) = co(K U F), then all conditions in Cf)rqllary 3.5 are
satisfied. The conclusion follows from Corollary 3.5 immediately.

- 4. APPLICATIONS TO SECTION PROBLEMS

In this section, we shall use the results presented in Section 2 to study
the section problems. We have the following results.

THEOREM 4.1. Let Y be a generalized interval space, X be a topological
space, Z be a dense linear ordered space, and B and C be two sets of
X X Y X Z satisfying the following conditions: ‘

(@) BcC;
(ii) for any (y, z) € Y X Z, the sections

By, o

={xeX:(x,y,z) €B} #,

and

C(y,z) = {x EX: (x,ya Z) = C}

are transfer closed valued and there exists (yy, zo) € Y X Z such that C,_, .,
is compact; ‘

(i) if z, = z,, then B, , , C B,z forally €Y; and for any z € Z
there exists Z € Z such that B, ,, D C, 5 forally €Y;

(v) for any A € F(Y) and for any z € Z, N ,c 4B, ,, is connected;

() forany (x,z) € X X Z, the set Y\ B, ,, ={y € Y: (x,y,2) & B}
is generalized interval closed and T-convex in Y; ‘

(vi) for any z € Z and for any y,,y, € Y there exist y, vy, € I{y,, y,}
such that B, ,, CB, ., i=12.
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Then there exists an £ € X such that {3} X (Y X Z) c C.

Proof. Letting F(y, z) = B(y 2 Gy, 2) = C, ,y, it is easy to see that F
and G satisfy all conditions in Theorem 2.3. By conclusion (2) in Theorem
23, N,ey> N,czG(y,2z) # &. Hence there exists an £ € X such that
fe G(y,z)forall(y,z) €Y X Z,ie.,(%,y,2z) € Cforall(y,z) €Y X Z,
and so {2} X (Y X Z) c C.

COROLLARY 4.2.  Let Y be a generalized interval space, X be a topological
space, Z be a dense linear ordered space, and B and C be two subsets of
X XY X Z satisfying the following conditions:

(H BcC;

(i) for any (y, z) €Y X Z, the section B, ,,={x €X: (x,y,2) €
B}Y# @, and C,, ,,={x€X: (x,y,2) € C} % closed and there exists
(x9,¥9) € Y X Z'such that C,,, , , is compact

(iid) zle <z, then B, ,, C B, ., forally €Y and for any z€ Z
there exists a 2 € Z such that B(y 22 C(y p foraly €Y;

(iv) forany A e F(Y) and forany z € Z, N ye aBy, ) is connected;

) for any (x,2) €X X Z, Y\B,, ,,={y€Y: (x,y,2) € B} is
generalized interval closed in Y and T-convex;

(~vi) for any z € Z and for any y,, y, € Y there exist yl, ¥y € T{y;, y,}
such that B, ,, C B, .5, i=1,2.

Then there exists an £ € X such that {£} X (Y X Z) c C.

5. APPLICATIONS. TO VARIATIONAL
INEQUALITY PROBLEMS

In this section we shall use the results presented in Section 2 to study
the variational inequality problems in generalized interval spaces. For this
purpose, we first give the following lemma.

LEmMMA 5.1 [4]. Let X be a topological space, %: X — R U {+} be
lower (upper) semi-continuous, i € I. Then sup; ;% (inf;c ;&) is lower
(upper) semi-continuous.

LEMMA 5.2 [1l. Let X and Y be two topological spaces, and
W: XXY—>R and G: Y- 2¥ be two mappings. Let V(y) =
SuprG(y) W(X y)

(1) if W is lower semi-continuous on X X Y and G is lower semi-con-
tinuous at y,, then V is lower semi-continuous at y,y;
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(2) if W is upper semi-continuous on X X Y and G is upper semi-con-
tinuous at y, € Y and G(y,) is compact, then V is upper semi-continuous at
Yos .

(3) if X is compact and W is lower semi-continuous on X X Y, then
M(y) = inf, _ x W(x, y) is lower semi-continuous-on Y.

THEOREM 5.3. Let Y be a generalized interval space, X be a topological
space, h: Y — R be a lower semi-continuous function, %: Y X X XY > R
be a function, and T: Y — 2% be a upper semi-continuous #monotone
mapping with compact values. If the following conditions are satisfied:

G) y = Ay, v, z) is lower semi-continuous on Y, (v, z) = Ay,v,z)
is upper semi-continuous on X X Y, and for anyy € Y, there exists v € Ty
such that A(y,v,y) = 0;

(i) Ay,v, z) + () is T-quasi-convex in'y on Y;

(iii) there existy, €Y, ry <0, u, € Ty, and a compact subset L CY,
such that Ayy, ug, z2) — h(z) <ry — h(y,) forallz € Y\ L;

@) for any A € FKY) and for r < 0, the set

N {z €Y: supHA(y,v,z) +h(y) — h(2) >r}
y€A vETz

is connected,
) foranyy,,y, €Y, there exist y,, v, € I{y,, y,} such that

sup A(;,0, z) + h(y;) = sup FA(¥;,v,z) + h(y;)

velz velz

fordllzeY,i=1,2;

then there exists 2 € Y such that inf, o, Ay, u, 2) = h(2) — h(y) for all
yevY.

Proof. Since T is S“monotone, for any y, z € Y and for any u € Ty,
v € Tz, we have Ay, u, z) > Ay,v, z), and so

inf #(y,u,z) = sup F(y,v,z).

uely veTz

Letting
g(z,y) = ing.?(y,u,z) +h(y) — h(z) forall y,z €Y,
ue

f(z,y) = supF(y,v,2) +h(y) — h(z) forall y,z €7,

velz

then f(z,y) <g(z,y)forall (z,y) €Y X Y.
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For any y € Y and for any r < 0, letting
F(y,r) ={z€Y:f(z,y) >},
G(y,r) ={z€Y:f(z,y) 21},
H(y,r) ={z€Y:g(z,y) 271},

it is easy to see that F(y,r) c G(y,r) C H(y,r) and condition (i) in ‘

Corollary 2.4 is satisfied. For any r < 0, taking 7 such that » <7 < 0 we
know that condition (i) in Corollary 2.4 is also satisfied. Since T is a upper
semi-continuous mapping with compact values, /4 is lower semi-continuous,
and by condition (i) and Lemma 5.2(2), z ~ f(z, y) is upper semi-continu-
ous on Y. Hence G(y,r) is closed for all y € ¥ and for all r < 0. Next, by
condition (i) for any y € Y there exists v € Ty such that Sy, v, y) > 0,
and so sup, ¢ r, Sy, v, y) = 0. Hence for any y € Y and for any r < 0, we
have y € F(y, r). This implies that F has nonempty values.

By condition (iv) for any 4 € #(Y), N,z € Y: sup, .7, AY,0,2)
+ h(y) — h(z) > r} is connected, ie., N ye aF(y,r) is connected. Hence
condition (iii) of Corollary 2.4 is also satisfied.

By condition (i), y = f(z, y) is T-quasi-convex. Hence for any z € Y
and for any r<0,{y € Y: z &€ F(y,n)} ={y € Y: f(z,y) <r} is T-con-
vex. Since y = Ay, v, z) is lower semi-continuous and % is lower semi-
continuous, the set {y € Y: z & F(y, r)} is closed for all z € Y and for all
r <0. This means that condition (iv) of Corollary 2.4 is satisfied. By
condition (v) we know that condition (v) in Corollary 2.4 is also satisfied.
Hence all conditions in Corollary 2.4 are satisfied. By Corollary 2:4(1),
{G(y,r): y € Y, r < 0} has the finite intersection property, and so {H(y, r):
y €Y, r <0} also has the finite intersection property. Furthermore, by
condition (i), z - (y,v, z) is upper semi-continuous, % is lower semi-
continuous, and it follows from Lemma 5.1 that g(z, y) is upper semi-con-
tinuous in z. So H(y,r) is a closed set for all y € Y and for all 7 < 0. By
condition (iii), there exist y, € Y, ry < 0, u, € Ty,, and a compact subset
L C Y such that Sy, ug, z) — h(z) < ry — h(y,) forall z € Y\ L. Hence
we have

in]f F(yo,u,z) +h(yy) —h(z) <r, forall zeY\L.
ueTly, -
Therefore Y\ L c{z € Y: g(z,y,) <ry}, e, H(yy,r,) L. Since L is
compact, H(y,,r,) is compact. Hence we have N ,cy N, H(y,7) # @.
Thus there exists Z € Y such that 2 € H(y,r) for all y € Y and for all
r<0,ie., g(2,y) > r forall r <0 and for all y € Y. By the arbitrariness
of r < 0, we know that g(2,y) > 0forall y €Y, ie.,
inf P(y,u,2) >h(2) —h(y) forallyey.

ueTy »
This completes the proof.
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Remark. Theorem 5.3 extends Theorem 2 in Yen [14] to the case of
generalized interval spaces.

THEOREM 5.4. Let Y be a generalized interval space, X be a topological
space, h: Y — R _be lower semi-continuous, % Y XX XY — R and
T: Y — 2% be a upper semi-continuous mappirig with compact values. If
conditions (i), (ii), (iv), (v) in Theorem 5.3 and the following condition (iil)
are satisfied:

(iii) there exist y, €Y, ry < 0, and a compact subset L C'Y such that

sup F(yg,0,2) <h(z) —h(yy) +r, forallze Y\L,

velz

then there exists a Z € Y such that

sup F(y,v,2) =h(2) —h(y)  foralyeY.

vel?
Proof. Letting
f(z,y) = supF(y,v,2z) +h(y) —h(z) forallz,y €Y,

veTlz

F(y,r) ={zeY:f(z,y)>r} forallyeYandforall7 <0,
G(y,r)={z€Y:f(z,y) 2r} forally € Yandforall r <0,

by the same methods as in the proof of Theorem 5.3, we can prove that
{G(y,r): y €Y, r <0}is a family of closed sets having the finite intersec-
tion property. Furthermore by condition (iii) there exist y, €Y, ry <0,
and a compact subset L CY such that sup,cr, A, v,2) <h(z) -
h(yy) + ry for all z € Y\ L. Hence we have

sup F(y9,0,2) + h(y,) —h(z) <r, forallzeY\L.

veElz ”
This implies that Y\ L c{z € Y: sup,c 7, F(,,0,2) + A(y,) — h(z) <
ro). Hence we have '

G(y4,1y) = {z €Y: sup A(yg,0,2) +h(yy) —h(z) = ro> cL.
. veTz :

Since L is compact and G(y,,r,) is closed, G(y,, r,) is compact. Hence

Nyey N, <oG(,r) # J, and so there exist a £ € G(y,r) forall yeY

and for all » < 0. Hence we have f(2,y) >r for all r <0 and for all

y € Y. By the arbitrariness of r < 0, we have f(2,y) > Oforall y €Y, ie.,

sup A(y,v,2) 2 h(£) —h(y) forallye Y.‘

veT?

This completes the proof.
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Remark. Theorem 5.4 improves and extends Theorem 3 of Yen [14].
If T is a single-valued mapping, then we have the following results.

THEOREM 5.5. Let Y be a generalized interval space, X be a topological
space, h: Y — R be a lower semi-continuous function, and . Y X X X Y —

R, T:Y > X If Ay, Ty,y) = 0 for all y € Y and the following conditions
are satisfied:

D Ay, 1y,2) > Ay, Tz, 2) forall (y,z) €Y X Y;

(D) Ay, Ty, z) is upper semi-continuous in z; A v, 1z, z) is lower
semi-continuous in 'y and upper semi-continuous in z;

(iii) Ay, Tz, 2) + h(y) is T-quasi-convex in y;
(iv) there existy, € Y, ry < 0, and a compact subset L < Y such that
A0, o> 2) — h(z) <ry — h(y,) forallz € Y\ L;

) for any A € FAY), N,edzeY: Ay, Tz, 2) + h(y) — h(z) > r}
is connected or empty for all r < 0 ’

(i) for any y,, y, €Y, there exist y), y, € I y1, ¥o} such that
(i Tz, 2) + h(y;) 22(¥}, Tz, 2) + h(¥)) forallz€Y,i=1,2;
then there exists a £ € Y such that Ay, Ty, 2) = k(%) — h( y) for all y €Y.
Proof. The proof is similar to one in Theorem 5.3, so we omit it here.

Similar to the proof of Theorem 5.4, we can prove the following

Lty

THEOREM 5.6. Let Y be a generalized interval space, X be a topological
space, h: Y — R be a lower semi-continuous function, and . Y X X X Y —
R and T: Y — X be two mappings satisfying Ay, Ty, y) = 0 forallyeyYy
and the following conditions:

. @D Ay, Iz, z) is lower semi-continuous in y and upper semi-continuous
in z;

G) Ay, Iz, z) + h(y) is T-quasi-convex in y;

(iii) there exist y, € Y, ry < 0, and a compact subset L < Y such that

A(¥0:Tz,2) —h(z) <ry—h(y,) forallze Y\L;

(v) foranyr < 0 and forany A € #F(Y), N yedz €Y Ay, Tz, 2) +
h(y) — h(z) > r} is connected,

) foranyy,y, € Y there exist ¥, y,, € I{ Y1> Yo} such that
SV Tz,2) + h(y,) 22y, Tz, 2) + h(y))  forally€Y,i=1,2.

Then there exists 2 € Y such that

F(y,1%,8) = k(%) = h(y)  forallye Y.
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Remark. Ky Fan’s famous theorem for implicit variational inequalities
(see [5]) is a special case of Theorem 5.6 in which X =Y, 2 =0,and T is
an identity mapping.
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