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Abstract. We study various Banach space properties of the dual
space E∗ of a homogeneous Banach space (alias, a JB∗-triple) E.
For example, if all primitive M -ideals of E are maximal, we show
that E∗ has the Alternative Dunford-Pettis property (respectively,
the Kadec-Klee property) if and only if all biholomorphic automor-
phisms of the open unit ball of E are sequentially weakly continu-
ous (respectively, weakly continuous). Those E for which E∗ has
the weak∗ Kadec-Klee property are characterised by a compactness
condition on E. Whenever it exists, the predual of E is shown to
have the Kadec-Klee property if and only if E is atomic with no
infinite spin part.

1. Introduction

Let E be a complex Banach space. It is said that E has the Kadec-
Klee property (the KKP hereafter) if weak sequential convergence in
the unit sphere of norm one elements of E implies norm convergence.
In other words, the KKP is the Schur property confined to the unit
sphere. When applied to the Dunford-Pettis property this procedure
results in its “alternative” introduced and studied in [21]. Thus E is
defined to possess the Alternative Dunford-Pettis property (the DP1
in the sequel) if, whenever (xn) and (ρn) are sequences in E and E∗,
respectively, where (ρn) is weakly null and xn → x weakly in E with
‖xn‖ = ‖x‖ = 1 for all n, we have ρn(xn) → 0. Plainly, the KKP im-
plies the DP1 and both properties are geometric. The geometry of E
is entirely determined by the structure of the group, G, of biholomor-
phic automorphisms on the open unit ball, D, of E [27]. When G acts
homogeneously on D, E is termed a JB∗-triple. The latter comprise
an extensive class of complex Banach spaces that includes all Hilbert
spaces, spin factors and C∗-algebras. More generally, given a complex
Hilbert space, every norm closed subspace of B(H) that is also closed
under x �→ xx∗x is a JB∗-triple.
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It was shown in [21] that the DP1 coincides with the usual Dunford-
Pettis property on von Neumann algebras. Modulo infinite dimen-
sional Hilbert spaces and spin factors, which possess the DP1 but not
the Dunford-Pettis property, this was extended to JBW∗-triples in [1].
Recently [10] the present authors were able to establish that a von
Neumann algebra is type I if and only if its predual has the DP1 and
have proceeded to obtain an analogous characterisation for JBW∗-triple
preduals [11]. The latter (see §2) represents the starting point of this
paper where we study the DP1 and the KKP on dual spaces of JB∗-
triples elucidating structure and connections with other convergence
properties.

We recall that, as defined in [27], a JB∗-triple is a complex Banach
space E with a continuous triple product (a, b, c) �→ {a, b, c} that is
conjugate linear in b and symmetric bilinear in a and c for which each
operator on E of the form D = D(a, a), given by x �→ {a, a, x}, is
hermitian with non-negative spectrum satisfying ‖D‖ = ‖a‖2 and

D({x, y, z}) = {D(x), y, z} − {x,D(y), z} + {x, y,D(z)} .
A tripotent of E is an element u satisfying {u, u, u} = u, associated

with which are the mutually orthogonal Peirce projections

P2(u) = Q2
u, P1(u) = 2(D(u, u)−P2(u)) and P0(u) = I−P2(u)−P1(u),

where Qu is the conjugate linear operator given by x �→ {u, x, u}. A
non-zero tripotent u of E is said to be minimal if P2(u)(E) = Cu. If
E has a predual, E∗, E is said to be a JBW∗-triple. In which case, the
predual is unique and the triple product is separately weak∗-continuous
[4]. If H is a complex Hilbert space, a weak∗ closed subspace of B(H)
that is closed under the triple product {a, b, c} = 1

2
(ab∗c + cb∗a) is

a JBW∗-triple known as a JW*-triple. The Cartan factors, of which
there are six kinds, are key examples of JBW∗-triples. The rectan-
gular, hermitian and symplectic Cartan factors, respectively, arise as
the weak∗ closed left ideals of B(H), the symmetric and the antisym-
metric operators on H (with respect to a conjugation, where H is a
complex Hilbert space). The spin factors comprise a fourth kind. The
exceptional factors of dimensions 16 and 27 are the remaining two.

Let E be a JB∗-triple. We habitually regard E ⊂ E∗∗, the latter
being a JBW∗-triple by [17]. We denote the extreme points of the dual
ball E∗

1 of E∗ by ∂e(E
∗
1). For each ρ in ∂e(E

∗
1) there is a unique minimal

tripotent u(ρ) in E∗∗ such that ρ(u(ρ)) = 1 and all minimal tripotents
arise in this way [22]. The M-ideals of E are precisely its norm closed
algebraic ideals [4]. By a primitive ideal of E is meant a primitive
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M-ideal, the set of all of which is denoted by Prim (E). Thus,

Prim(E) = {ψ(ρ) : ρ ∈ ∂e(E
∗
1)},

where for each ρ ∈ ∂e(E
∗
1), ψ(ρ) denotes the largest norm closed ideal

(M-ideal) in ker(ρ). The corresponding structure map is ψ : ∂e(E
∗
1) →

Prim(E) (ρ �→ ψ(ρ)). When ∂e(E
∗
1) has the weak∗ topology and

Prim(E) has the usual hull-kernel topology, ψ is open and continu-
ous [12]. We refer to [2, 5, 23] for M-ideal theory in Banach spaces.

2. The DP1 and KKP in JB
∗
-triple Duals

By [24] the type I JBW∗-triples are the �∞-sums of A⊗C where A
is an abelian von Neumann algebra and C is a Cartan factor. This
notation is to be interpreted as follows. If C is an exceptional factor,
A⊗C means just A⊗C. Otherwise A⊗C means the weak∗ closure of
A⊗C in the von Neumann tensor product A⊗B(H) where C is a JW∗-
subtriple of B(H).

We shall say that a JBW∗-triple has no infinite spin part if it contains
no non-zero �∞-summand of the form A⊗C, where A is an abelian von
Neumann algebra and C is an infinite dimensional spin factor. An
atomic JBW∗-triple is an �∞-sum of Cartan factors.

Our starting point is the following recently discovered characterisa-
tion.

Lemma 2.1. Let E be a JBW*-triple. Then E∗ has the DP1 if and
only if E is type I with no infinite spin part.

Proof. See [11, Theorem 4.5] �
Theorem 2.2. Let E be a JBW*-triple. Then E∗ has the KKP if and
only if E is atomic with no infinite spin part.

Proof. Let E∗ have the KKP. Then E∗ has the DP1. Thus, by Lemma
2.1 and [24] we may suppose that E is of the form A⊗C, where A is
an abelian von Neumann algebra and C is a Cartan factor not equal
to an infinite dimensional spin factor. Given τ in C∗ with ‖τ‖ = 1,
A∗ is linearly isometric to the norm closed subspace A∗ ⊗ τ of E∗ via
ρ �→ ρ ⊗ τ . Since the KKP is inherited by norm closed subspaces, it
follows that A∗ has the KKP implying that A satisfies Dell’Antonio’s
property U and so is atomic, by [16, Theorem 2]. Hence, A⊗C is
atomic as required.

Conversely, let E = (
∑
Cα)∞, where each Cα is a Cartan factor not

equal to an infinite dimensional spin factor. Since, by [21, Theorem
1.9], the KKP is stable under �1-sums it is enough to show that the
predual of each Cα has the KKP. Thus, fixing Cα = C, say, it may be
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supposed that C is an infinite dimensional rectangular, hermitian or
symplectic factor. But then C∗ is isometric to a subspace of B(H)∗, for
some complex Hilbert space H, and so C∗ has the KKP because B(H)∗
does, by [21, 2.3]. We remark that the latter fact, for separable H, may
also be deduced from [3, Appendix]. This completes the proof. �

By Theorem 2.2 together with [13] we have the following.

Corollary 2.3. If E is a JBW*-triple then E∗ has the KKP if and
only if E∗ has the Radon-Nikodym property and E has no infinite spin
part.

Various structure in JB∗-triples is brought into focus when above
discussed properties are imposed upon dual spaces. A composition
series {Jλ : 0 ≤ λ ≤ α} in a JB∗-triple E is a strictly increasing family
of norm closed ideals of E indexed by a segment of ordinals satisfying
(i) J0 = {0} and Jα = E; (ii) if λ is a limit ordinal then Jλ is the
norm closure of the union of {Jµ : µ < λ}. If G denotes the group
of biholomorphic automorphisms of the open unit ball of E, then E
is said to be sequentially weakly continuous if every element of G is
sequentially weakly continuous (i.e. preserves weak sequential limits).
If all elements of G are weakly continuous then E is defined to be weakly
continuous.

Weak (sequential) continuity of this kind has been extensively stud-
ied in [25, 26, 28] and also in [9].

By a quotient of a JB∗-triple E we shall mean E/J for some norm
closed ideal J of E. An elementary JB∗-triple is the norm closed ideal,
J(C), of a Cartan factor C generated by its minimal tripotents. We
note that J(C)∗∗ = C.

Lemma 2.4. A JB∗-triple E has no infinite dimensional spin factor
quotients if and only if E∗∗ has no infinite spin part.

Proof. See [9, Theorem 4.4]. �

Proposition 2.5. The following are equivalent for a JB*-triple E

(a) E∗ has the KKP;
(b) E∗ has the Radon-Nikodym property and E has no infinite di-

mensional spin factor quotients;
(c) E has a composition series {Jλ : 0 ≤ λ ≤ α} such that for

each λ < α, Jλ+1/Jλ is an elementary JB*-triple not equal to
an infinite dimensional spin factor.
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Proof. The equivalence of (a) and (b) follows from Corollary 2.3 and
Lemma 2.4. The latter together with [7, Theorem 3.4] implies that (b)
and (c) are equivalent. �

A DP1 analogue of Proposition 2.5 is availed by the following.

Lemma 2.6. The following are equivalent for a JB*-triple E.

(1) E is sequentially weakly continuous;
(2) Every primitive ideal of E is maximal and E∗∗ is type I with no

infinite spin part;
(3) Every primitive quotient of E is an elementary JB*-triple not

equal to an infinite dimensional spin factor.

Proof. See [9, Theorem 5.5]. �
Proposition 2.7. Let E be a JB*-triple. Then E∗ has the DP1 if and
only if E has a composition series {Jλ : 0 ≤ λ ≤ α} such that , for
each λ < α, Jλ+1/Jλ is sequentially weakly continuous.

Proof. Suppose E∗ has the DP1. By Lemma 2.1 and Lemma 2.4 E∗∗

is type I and E has no infinite dimensional spin factor quotients. Since
every norm closed ideal and quotient of E inherits the latter condition,
it follows from [9, Proposition 3.5] that E has a composition series for
which each successive quotient satisfies the condition of Lemma 2.6(c),
as required.

Conversely, if E has a composition series of the kind described in
the statement, then E∗∗ is linearly isometric to the �∞-sum of the
(Jλ+1/Jλ)

∗∗ so that E∗∗ is type I with no infinite spin part, as follows
from Lemma 2.6(a) ⇒ (c), whence E∗ has the DP1 by Lemma 2.1. �

By a standard argument (c.f. [18, 4.3.5]) if E is a JB∗-triple with
a composition series {Jλ : 0 ≤ λ ≤ α} and F is a JB∗-subtriple of
E, then {F ∩ Jλ : 0 ≤ λ ≤ α} is a composition series of F and each
(F ∩ Jλ+1)/(F ∩ Jλ) is realisable as a JB∗-subtriple of Jλ+1/Jλ.

Corollary 2.8. Let F be a JB*-subtriple of a JB*-triple E.

(a) If E∗ has the DP1, then F ∗ has the DP1.
(b) If E∗ has the KKP, then F ∗ has the KKP.

Proof. (a) Since sequential weak continuity is inherited by JB∗-subtriples
and by quotients this follows from the preceding remark and Proposi-
tion 2.7.

(b) If E∗ has the KKP then it has the DP1 so that via (a) and its
argument together with Proposition 2.5 (a) ⇔ (c), F has a composition
series in which successive quotients are JB∗-subtriples of non-infinite
dimensional spin factor elementary JB∗-triples. But JB∗-subtriples of
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the latter kind are themselves C0-sums of JB∗-triples of the same kind
[8]. It follows that F has a composition series of the kind described in
Proposition 2.5(c), whence the result. �

Remark. The analogues of 2.8(a), (b) for preduals of JBW∗-triples
are false. Any non-type I JW∗-triple E can be realised as a JW∗-
subtriple of B(H) for some complex Hilbert space H. But B(H)∗ has
the KKP whereas E∗ (by Lemma 2.1) does not ever have the DP1.

In the next result part (a) is a consequence of Lemma 2.1 together
with Lemmma 2.6 (b) ⇒ (a) and (b) follows from Theorem 2.2 com-
bined with [28, Theorem 5.7] to give a direct comparison of above
phenomena in a significant case.

Proposition 2.9. Let E be a JB*-triple for which every primitive ideal
is maximal. Then

(a) E∗ has the DP1 if and only if E is sequentially weakly
continuous.

(b) E∗ has the KKP if and only if E is weakly continuous. �

A JBW∗-triple E is said to be σ-finite if every family of mutually
orthogonal tripotents in E is at most countable. Such JBW∗-triples
have been studied in [20]. On the bidual of a JB∗-triple σ-finiteness is
a strong condition revealing structures similar to those discussed above,
as we shall now see.

First we recall, [27], that the JB∗-subtriple generated by an element
x in a JB∗-triple E is linearly isometric to C0(Sx), where Sx, the triple
spectrum of x, is a locally compact Hausdorff space of [0,+∞) with
Sx ∪ {0} compact. This notation is retained in the next result and
thereafter.

Theorem 2.10. The following are equivalent for a JB*-triple E.

(a) E∗∗ is σ-finite,
(b) E∗∗ is atomic and σ-finite,
(c) E has a countable composition series (Jλ)0≤λ≤α , where each

Jλ+1/Jλ is an elementary JB*-triple of countable rank.

Hence, if E is separable, then E∗ has the KKP if and only if E∗∗ is
σ-finite with no infinite spin part.

Proof. If (c) holds then E∗∗ is linearly isometric to the countable �∞-
sum of the necessarily σ-finite Cartan factors (Jλ+1/Jλ)

∗∗, implying the
condition (b). The implication (b) ⇒ (a) being obvious, it remains to
show (a) ⇒ (c).
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Let E∗∗ be σ-finite and let x ∈ E. Since C0(Sx) is linearly isomet-
ric to a JB∗-subtriple of E, C0(Sx)

∗∗ is linearly isometric to a JBW∗-
subtriple of E∗∗ and so is σ-finite. Since the support projections, in
C0(Sx)

∗∗, of the evaluation maps on C0(Sx) are mutually orthogonal,
Sx must be countable. Thus, (c) now follows from [8, Theorem 3.4]
and [9, Theorem 4.5]. �
Remark 2.11. Non-separable spin factors and rectangular Cartan fac-
tors of the form B(H,K) where H is non-separable and K is separable,
are σ-finite with non-separable elementary ideal. All other σ-finite Car-
tan factors have separable elementary ideal. Thus, if E∗∗ is σ-finite and
contains no Cartan factor �∞-summands of the first kind mentioned
above, then E∗ is norm separable. Hence, in this case, if E∗∗ is σ-finite
then E is separable if and only if E∗ is separable.

We conclude this section with two observations.

Proposition 2.12. Let E be a JB*-triple. Then

(a) E has a largest norm closed ideal J for which J∗ has the DP1;
(b) E has a largest norm closed ideal J for which J∗ has the KKP.

Proof. (a) Let K be the largest weak∗ closed ideal of E∗∗ that is a type
I JBW∗-triple with no infinite spin part and let J = E ∩ K. Then
J∗ has the DP1, by Lemma 2.1, since J∗∗ is a weak∗ closed ideal of
K. Conversely, let I be a norm closed ideal of E such that I∗ has
the DP1. A further application of Lemma 2.1 gives I∗∗ ⊂ K so that
I = I∗∗ ∩ E ⊂ K ∩ E = J .

(b) Via Theorem 2.2, the proof is similar. �
Proposition 2.13. Let E be a JB*-triple with the KKP. Then E is
finite dimensional or a spin factor or a Hilbert space.

Proof. Given x ∈ E, the commutative C∗-algebra C0(Sx) has the KKP
and so is finite dimensional by [21, Theorem 3.4] implying that Sx is
finite. By, [8, Proposition 4.5 (iii)] and [14, Theorem 6], this implies
that E is reflexive. In particular, E is a JBW∗-triple and the result is
now immediate from [1, Corollary 3]. �

3. The weak* Kadec-Klee Property

If X is a Banach space, let S(X∗
1 ) denote the unit sphere of norm

one elements in X∗.

Definition 3.1. Let X be a Banach space. The dual space, X∗, is
said to have the weak∗ Kadec-Klee property (W∗KKP, in the sequel) if
weak∗ sequential convergence in S(X∗

1 ) implies norm convergence.
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By [19, Theorem 2.6], if I is a norm closed inner ideal of a JB∗-
triple E, then each ρ ∈ S(I∗1 ) has a unique extension ρ ∈ S(E∗

1). We
retain this notation in the following, the statement and proof of which
is reminiscent of [15, Lemma 1].

Lemma 3.2. Let I be a norm closed inner ideal in a JB*-triple E.
Then the unique extension map, from S(I∗1 ) to S(E∗

1), is weak*-
continuous.

Proof. Let ρα → ρ in the σ(I∗, I)-topology in S(I∗1 ). To show continuity
it is enough to show that there is a subnet ρβ → ρ in the σ(E∗, E)-
topology. But there is a subnet ρβ → τ in the σ(E∗, E)-topology with
τ ∈ E∗

1 . Since τ |I = ρ, we have ‖τ‖ = 1 so that τ = ρ by the above
mentioned uniqueness, as required. �
Corollary 3.3. Let I be a norm closed inner ideal in a JB*-triple E
such that E∗ has the W*KKP. Then I∗ has the W*KKP.

Proof. This follows from Lemma 3.2. �
We recall that a JB∗-triple E is defined to be a compact JB∗-triple if

the conjugate linear operator, x �→ {a, x, a} , is compact for each a ∈ E.
Such JB∗-triples have been studied in [8, 6]. By [8, Theorems 3.4, 3.6] or
[6, Theorem 18] a JB∗-triple E is compact if and only if E is a C0-sum
of elementary JB∗-triples Ei, where no Ei is an infinite dimensional
spin factor. In which case, E∗∗ is the �∞-sum of the Cartan factors
E∗∗

i . Since, then, E is an ideal of E∗∗ it follows from Lemma 3.2, for
example, that weak∗-convergence in S(E∗

1) implies weak convergence.
Therefore by Theorem 2.2, we have the following.

Lemma 3.4. If E is a compact JB*-triple, then E∗ has the W*KKP.

Elements ρ, τ in ∂e(E
∗
1), where E is a JB∗-triple, are orthogonal if

the tripotents u(ρ), u(τ) are orthogonal, in which case ‖ρ − τ‖ = 2
(since (ρ− τ)(u(ρ) − u(τ)) = 2).

Lemma 3.5. Let E be a separable JB*-triple such that E∗ has the
W*KKP. Then E is a compact JB*-triple.

Proof. Since E∗ has the W∗KKP it has the KKP and so contains a non-
zero elementary compact JB∗-triple ideal by Proposition 2.5 ((a) ⇒
(c)). Let J be the C0-sum of all such ideals of E. Then J is compact
and we must show that J = E. In order to obtain a contradiction,
suppose that J 
= E.

We have ∂e(E
∗
1) = X ∪ Y , where

X = {ρ ∈ ∂e(E
∗
1)|ρ(J) 
= 0} and Y = {ρ ∈ ∂e(E

∗
1)|ρ(J) = 0},
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the latter being weak∗ closed in ∂e(E
∗
1). If X is weak∗ closed in ∂e(E

∗
1)

then Y is open so that ψ(Y ) is open in Prim(E), where

ψ : ∂e(E
∗
1) → Prim(E)

is the structure map (see Introduction). This would imply that E =
I ⊕ J for some non-zero norm closed ideal I of E. Since I∗ has the
W∗KKP, this would further imply that I contains a non-zero compact
elementary ideal orthogonal to J , a contradiction. Therefore, X is not
weak∗-closed and so, since the unit ball of E∗

1 is metrisable, there is
a sequence (ρn) in X with weak∗ limit ρ in Y . But ρ is orthogonal
to each ρn giving ‖ρn − ρ‖ = 2, for all n, and we have arrived at the
desired contradiction. �
Lemma 3.6. Let E be a compact JB*-triple and let (ρn) be an infinite
mutually orthogonal sequence in ∂e(E

∗
1). Then (ρn) is weak* null.

Proof. For each n, let en denote u(ρn), the support tripotent of ρn, and
let e denote

∑
n en (in E∗∗). Let f be a minimal tripotent of E∗∗ and let

ρ ∈ ∂e(E
∗
1) with ρ(f) = 1. We have ρ(e) =

∑
n ρ(en), so that ρ(en) →

0. Hence, via [22, Lemma 2.2], since ρn, ρ ∈ ∂e(E
∗
1) and en and f are

respectively, their support tripotents, we have |ρn(f)| = |ρ(en)| → 0.
Given x ∈ E, let ε > 0. Since E is compact there exists y ∈ E such

that y is a linear combination of a finite number of minimal tripotents
in E with ‖x − y‖ ≤ ε. By above, ρn(y) → 0, so that for all n large
enough

|ρn(x)| ≤ |ρn(x− y)| + |ρn(y)| < 2ε.

Hence, (ρn) is weak∗ null. �
Given a JB∗-algebra E and x ∈ E with 0 ≤ x ≤ 1, then r(x) will

denote the range projection of x in E∗∗ (i.e. the least projection in E∗∗

majorising x).

Lemma 3.7. Let J be a norm closed compact ideal of a non-compact
JB*-algebra E and let E = J + Cx, where x is a positive norm one
element of E with x(x− 1) ∈ J and r(x) = 1 (in E∗∗). Then E∗ does
not have the W*KKP.

Proof. We note that J is an essential ideal of E. Indeed, suppose
I ∩ J = 0 for some ideal I of E. Then E = I ⊕ J and hence I
is one dimensional which is a contradiction since E is non-compact.
We also note that x + J is a minimal projection of E/J . Further,
x(1 − x) =

∑
n λnen, for some mutually orthogonal sequence (en) of

minimal tripotents in J and non-negative null sequence (λn). We have

r(1 − x) = r(x) r(1 − x) = r(x(1 − x)) ≤
∑

en,
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so that r(1−x) is a σ-finite projection in E∗∗. If 1−r(1−x) is of finite
rank then E∗∗ must be σ-finite so that E is separable since E is, by
construction, a JB∗-algebra with no infinite spin factor quotients (see
Remark 2.11). In this case the result follows from Lemma 3.5. Thus we
may suppose that there exists an infinite mutually orthogonal sequence,
(fn), of minimal projections in E∗∗ such that fn ≤ 1− r(1− x), for all
n. For each n, let ρn ∈ ∂e(E

∗
1) with support fn.

Then, for each n, ρn is a pure state of E and fn ≤ 1− r(1− x) ≤ x,
so that ρn(x) = 1. Since, by Lemma 3.6, (ρn) is weakly null on J , we
have that (ρn) has weak∗ limit τ ∈ S(E∗

1). But ‖ρn − ρm‖ = 2 for
n 
= m so that (ρn) is not norm convergent. �

Given a JB∗-triple E and x ∈ E the norm closed inner ideal, E(x),
generated by x in E can be realised as a JB∗-algebra containing x as a
positive element.

We are now ready to prove the converse of Lemma 3.4.

Theorem 3.8. Let E be a JB*-triple. Then E∗ has the W*KKP if
and only if E is compact.

Proof. Let E∗ have the W∗KKP. As in the proof of Lemma 3.5, E
contains an essential norm closed compact ideal, J , equal to the norm
closed ideal generated by the minimal tripotents of E. Suppose that
J 
= E. Since (E/J)∗ has the W∗KKP we can choose a norm one
element x of E\J such that x + J is a minimal tripotent of E/J . Let
I denote J ∩ E(x), where E(x) is the norm closed inner ideal of E
generated by x. We have

J + E(x) = J + Cx

so that
E(x) = I + Cx,

via the natural linear isometry between E(x)/I and (J + E(x))/J .
Passing to the JB∗-algebra, E(x), we have x ≥ 0 in E(x) and r(x)

is the identity element of (E(x))∗∗. Further, x + J is a projection in
E(x)/I so that x(1 − x) ∈ I, and I is a compact ideal of E(x).

Moreover, E(x) is not compact else x lies in the norm closed linear
span of the minimal projections of E(x) and, since the latter is an inner
ideal of E, this would imply the contradiction that x is in I. Thus, by
Lemma 3.7, E(x)∗ does not have the W∗KKP and so, by Corollary 3.3,
neither does E∗. Therefore, I = E, as required. �
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[20] Edwards, C. M. and Rüttimann, G. T, Exposed faces of the unit ball in a

JBW∗-triple, Math. Scand. 82, no. 2, 287–304 (1998).



12 L. J. BUNCE AND A. M. PERALTA

[21] Freedman, W., An alternative Dunford-Pettis property, Studia Math. 125,
143–159 (1997).

[22] Friedman, Y. and Russo, B., Structure of the predual of a JBW*-triple, J.
Reine u. Angew. Math. 356, 67-89 (1985).

[23] Harmand, P., Werner, D. and Werner, W., M -ideals in Banach spaces and Ba-
nach algebras, Lecture Notes in Mathematics, 1547, Springer-Verlag, Berlin,
1993.

[24] Horn, G., Classification of JBW*-Triples of type I, Math. Z. 196, 271-291
(1987).

[25] Isidro, J. M. and Kaup, W., Weak continuity of holomorphic automorphisms
in JB∗-triples, Math. Z. 210, no. 2, 277-288 (1992).

[26] Isidro, J. M. and Stacho, L. L., On weakly and weakly∗ continuous elements
in Jordan triples, Acta Sci. Math. (Szeged) 57, no. 1-4, 555–567 (1993).

[27] Kaup, W., A Riemann mapping theorem for bounded symmetric domains in
complex Banach spaces, Math. Z. 183, 503-529 (1983).

[28] Kaup, W. and Stacho, L. L., Weakly continuous JB∗-triples, Math. Nachr.
166, 305–315 (1994).

University of Reading, Reading RG6 2AX, Great Britain.

E-mail address: L.J.Bunce@reading.ac.uk

Departamento de Análisis Matemático, Facultad de Ciencias, Uni-
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