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~ Surjective isometries on spaces of
. differentiable vector-valued functions

by

FERNANDA BOTELHO and JAMES JAMISON (Memphis, TN)

Abstract. This paper gives a characterization of surjective isometries on spaces of
continuously differentiable functions with values in a finite-dimensional real Hilbert space.

1. Introduction. We consider the space of continuously differentiable
functions on the interval [0, 1] with values in a Banach space E. This function
space, equipped with the norm ||fll; = maxeepo,y{llf(z)lle + | f'(z) £}, is
a Banach space, denoted by C(([0, 1], E).

Banach and Stone obtained the first characterization of the isometries
between spaces of scalar-valued continuous functions (see [2, 15]). Sev-
eral researchers derived extensions of the Banach—Stone theorem to a va-
riety of different settings. For a survey. of this topic we refer the reader
to {7]. Cambern and Pathak [4, 5] considered isometries on spaces of scalar-
valued differentiable functions and gave a representation for the surjec-
tive isometries of such spaces. In this paper, we extend their result to
the vector-valued function space C(1)([0,1], E), for E a finite-dimensional
Hilbert space. We also characterize the generalized bi-circular projections
on C([0,1), E).

The characterization of the extreme points of the dual unit ball of a

closed subspace of the continuous functions a compact Hausdorff space due

to Arens and Kelley [6, p. 441] plays a crucial role in our proofs. In addition,
the following result by de Leeuw which gives a converse of the Arens—Kelley
theorem, for a closed subspace X of C(£2) (cf. [11]), is also essential to our
methods. To state de Leeuw’s result we need the following definition.

DEFINITION 1.1. The point w € 2 is said to be a peak point for h € X
if h(w) =1, [h(w1)] < 1 for every w; € £2, and |h(w)] = 1 at some w; 75 w
if and only if [g(w1)| = |g(w)| for all g € X.
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THEOREM 1.2 (cf. [11, p. 61]). Ifw € 12 is a peak point for some h € X,
then the functional & € X* defined by @(g) = g(w) is an extreme poznt of
the unit ball in X*.

We construct an isometric embedding of C(([0,1], E) onto a closed

subspace of the space of scalar-valued continuous functions on a compact set.
This allows us to describe the form of the extreme points of C()([0, 1], E)3.
We denote by B the unit ball in a Banach space B. We consider the isometry
F from CW([0,1], E). onto a subspace M of ‘the scalar-valued continuous
functions on 2 = [0, 1] x E} x EY, with E* equipped with the weak* topology,

F(f) = Fy(z, ,9) = o(f(2)) + 9% (f'(z))-

The surjective isometry on the dual spaces F* (Ff)(g) = Ff (F,) maps the

extreme points of M7} onto the extreme points of C(l)([O 1], E)1 It follows
from the Arens—Kelley lemma. [6, p. 441] that

ext(M) € {8, - Bu(Fy) = 0(f (@) + 9(f'(2)), ¥f € cm([o, 1, B)}.

PROPOSITION 1.3. If E is a smooth, separable and reflezive Banach
space, over the reals or complex numbers. Then ® is an extreme point of
M if and only if there ezists (z,0,7) € 2, with ¢ and ¥ eztreme pomts of
El, such that

&(f) = #(f () + ¢(f'(2))-

Proof. If @ is an extreme pomt of M then 95 = 45 for some w' =
(z,0,9) € 2. If ¢ (or ¥) is not an extreme point of EF, then there must
exist distinct functionals ¢; and ¢ in EY such that go - (o1 + Q02)/ 2. For
i=1,2, we set w; = (, s, %) and

@w;(Ff) @z(f(w)) + 'lﬁ(f (:L'))
We have & = (@, + D.,)/2and =~ =

[Bus (F1)| < lps(F@)] + (P @) < [ F @) +1If (:v)HE < IIflh = [Fslloo-

On the other hand, there exist a; € Ey (¢ = 1,2) so-that |¢z(m)f = 1.
Thus, if f; is the constant function equal to a;, then |®,,(Fy)| = 1 and

&, € Mi. Thus & is not an extreme point of M7, contradicting our initial-

assumption. Similar reasoning applies if ¢ ¢ ext (El)
Now we show that & given by -

2(f) = o(f (@) + ¥(f(2)),

with w = (z,0,9) € 2 and ¢,9¥ € ext(E}), is an extreme point of M.
There exist a; and as in F; such that cp(al) = ¢ and y¥(ag) = e“"2 We
define f € CM([0,1], E) by -

e g + /\(t)e"iofz ap

£ty = 22
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with . - . N L ‘ o
o —3@ =)+ (z-1)(z—1t) for0<t<uz,
(L1) /\(t)'_{ 1(tz—:vz)—!—(:c+1)(t—x) fora:<t<1 ,
We observe that A(m) 0, N(z) =1, and- I)\(t)l + I/\’(t)l =1~ 3z~ t)2 < 1
for all £ # z: Therefore ' o
Fp@) = le(f() + $(f (@) = 1.
If w; # w with wy = (z1, ®1,%1) and z1 # x, we have
1Fp(wn)] = ler(F(21)) + (£ (20))] | o
L = "Qol(e_ialal + >\2(561)6~ia23§> + 11 (_X(xl);iiazazl> o
<1, P+ V) '
‘ - 2 2
Ifxl-x, and <p176<por 21)1#%5, then ‘ :
NFp(wi)l = ler(F(z1)) + (' (=)

_ [ et az etz as
HE )

unless |p1(e**2a;)| = 1 and [ (e~ ’°‘2a2)| = 1. The conclusion now follows
from Theorem 1.2. » ‘

<1l

<1,

An extreme point of M7 is therefore represented by a triplet (z,0,9) €
§2, with z € [0,1] and ¢, ¥ extreme points of E}. Given the hypothesis on E
we know that ext(E}) = E7. If T is a surjective isometry of C(([0,1], E),
then T™ maps extreme points to extreme points. Hence Proposition 1.3 as-
serts that given w = (z, ¢, ) there exists wy = (1, ¢1,%1) such that .

(1.2) T @)+ YTf) ()] = p1(f(21)) + ¥ (f/ (1))
for every f € C(02, E). .
This determines a transformation 7, on 2 = [0, 1] x E7 x EY, associated
with th__e isometry T and given by
T(;C, ®, d") = (.’1,‘1, ¢17¢1)'
LEMMA 1.4. 7 is a homeomorphism.

Proof. We first observe that T is well defined. Suppose there exist two

triplets wy = (z1,1,%1) and wy = (2, 2,%3), both corresponding to w =
(z,,%). Then

(1.3) p1(f(z1)) + ¥1(f'(z1)) = @2(f(22)) + Yo (f'(z2))-
If 21 # z3, we select a function f € C([0,1], E) constant equal to a,

~ an arbitrary vector in E;, on a neighborhood of z1, say Oy, , and equal to
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zero-on a neighborhood of z3, say Og,, with Oz, N O, = (. Equation (1.3)
implies that ¢1(a) = 0, so ¢ = 0. This contradicts ¢ € E} and shows that
z1 = zo. If f is now chosen to be constant equal to a, an arbitrary vector
in Ey, then (1.3) reduces to ¢1(a) = wa(a), thus ¢; = @,. If f is given by
f(z) = (x—x1)a then (1.3) implies that 91 = 2. Therefore 7 is well defined.
Similar arguments and the invertibility of T’ imply that 7 is a bijection. The
contfnuity of 7 follows from the weak* continuity of T*. w

2. Properties of the homeomorphism 7. In this section we explore
further properties of the. homeomorphism 7 to be used in our characteri-
zation of surjective isometries on C1)([0,1], E), with E a real and finite-
dimensional Hilbert space. '

For a fixed z € [0, 1] we define the map 7, : B} x Ef — [0,1] by 72.(p, %) =
m17(Z, p, ), with 7; representing the projection on the first component.

The next lemma holds for a finite-dimensional Banach range space, the
proof does not require an inner product structure. '

LEmMA 2.1. If E a finite-dimensional Banach space, then 1, is a con-
stant function. ‘

Proof. If 7, is not constant, then its image is a non-degenerate subin-
terval of [0,1]: We select a basis for E*, say {¢1,...,9x}, consisting of
functionals of norm 1. We select an element

Y € (BT x EY) \ {7(9s, 0:), T2 (05, —i) Yiza,... k-
Then we set 7(z,0i,0:) = (i,M:&), T(x,0i,—ps) = (%i,0,5), and
7(x, 0, %0) = (¥,7,§). We select g € CN([0,1], E) such that, for all ¢ =
L...,k, g(z:) = 9(y:) = ¢'(z:) = ¢'(4i) = O, 9(y) = v and ¢ (y) = v, where
u and v are such that n{u) = 1 and £(v) = 1. Therefore we have
2i((T9)(®)) + 0i((Tg)' () = m(g(x:)) + &i(g' (x:)) = O
and ' »
- #il(T9)(x)) — i((Tg) (z)) = ci(g(w:)) + Bild' (ws)) = 0.
Théséfequations imply that ¢;((Tg)(x)) = 0 and ¢;((T'g)’ (x)) = 0 for all 4.
Hence Tg(z) = (Tg)'(z) = O, implying that 2 = n(g(y)) + £(¢'(y)) = 0.
This contradiction establishes ’g}‘x‘e”‘claim.\- o P
 For fixed z €.10,1] and ¢ € Ef, we define the map 'r(;",,) : B} — EY by
' Tiap)(¥) = 1 provided that T(x, ¢, %) = (21,01, %1).
LEMMA 2.2. If E is a finite-dimensional real Hilbert spa'ce'then, for any
fized z € [0,1] and ¢ € EY, 7(5 ) is constant.

Proof. The Riesz Representation Theorem allows us to set notation as
follows: ¢,9 € Ej-are completely determined by the inner product with
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~ a single vector u, v respectively. Hence we define 7 : [0,1] X Ey x E; —

[0,1] x Ey x By by 7(z,u,v) = (a;l,u;,vl), and for eve»ry»f € C(l)’([O, 1], E),
(2.1) (TH(@),u) + (TF) (@), v) = (f(z1), 1) + (f (1), v1)-

For fixed z and u, we let Flguy : B1.— Ej be given by F(g y(v) =
mo(7(z, u,v)), where m is the projection on the second component. We prove

~ the lemma by showing that Fz,u) is constant. For simplicity we denote F(, 4,

by just F, unless the dependence on x, u has to be emphasized.
- We choose f(t) = a, a unit vector. Then

(TH)@),) + (T @), 0) = (o, Fk)).

This implies that _ - o
(@) = (o TLEEEDY

for every v € Ey. The function G : E; — E defined by G(v) =“F(v) +F(—v)
is therefore constant, denoted by w. As a consequence, for every vg and v;
in E;, we have ’ : o ‘

(Fo), F(=0)) = (F@), F(=0)),  (F(uo), Fo)) = (F(—t), F().
~ Therefore ‘

1F(vo) — F(—20)[I* = 2 — 2(F (vo), F(~v0)) = 2 — 2(F (v), F(~v1))
| NF (o) — F(=w)|I? = [|F(v1) = F(—v1)|%

Moreover, the function H : E; — R given by H(v) = ||F(v) — F(=v)| is
also constant. This implies that : ‘ ~

(F{vg) — F(—vp), F(vg) + F(—’Uo)) =0.

- Itv € B is such that {F(v), F(—v)} is linearly independent, we set IT, to be

the two-dimensional space spanned by F(v) and F(~v). Clearly w € II,. In
the plane II,,, we represent F'(v) by (w/|jwf|)e’® and F(—v) by (w/|jw])e= .
This is the polar representation for F(v) and F(—v) in IT,, with w identi-

fied with the positive direction of the x-axis. Without loss of generality, we -

choose o € (0,). This, in particular, implies that w = F(v) + F(—v) =

- (2cos(a)/||w||)w and 2 cos() = [|w]|. The value of & is then uniquely deter-

mined, so {F(v), F(—v)} are the only two values in the range of F' belonging
to the plane I7,. The line Ow divides the line segment F(v)F(—v) into two
equal parts. Since G is a constant function we have

 rEye (L) ns(z, 0 —2F(—v>||)

with S(z,d) representing the set of points in E at distance § from z € E,
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and {w}t+ representing the space orthogonal to the span of w. We also notice
that F'(vg) # £F(—vg) for every vg. '

These considerations imply that F' maps the n — 1- sphere ext(E;) to a
set homeomorphic to a subset of an n — 2-sphere, and F sends antlpodal
points to antipodal points. We now show that such a map cannot exist.

First, for n=2 thls would mean that F would map S? onto two points,
which is impossible since St is connected and F is continuous. The general
case is a consequence of the Borsuk-Ulam Theoreém (see [13, p. 266]).

Therefore {F(v), F(—v)} is linearly dependent and as a consequence,
we consider the following two possibilities:

(i) F(v) = F(-v) for every v,
(ii) F(—v) = —F(v) for every v.

In case (i), we have F(v)-= w/2 for every v, so F is constant.
In case (11), gwen two different vectors % and vy in Fy we have - -

(@1)@) )+ <(Tf)’( ) Toerol +on > = <ap(vo_+vl_) > :

vo + 1| llvo + |

Up + V1 v + U1 |
@ =(@ne psy) = (o (-ptan)-
Hence (Tf)(c),w)=Oand

(e ) = (o (o))

This implies that

Fug) + Fv) _ ( vg + vy
oo +vall 7 \Jlwo +wi]

Equatmn (2.2). 1mphes that

(F(vo), F (v1)) = {vo, v1),

or F is norm preservmg We deﬁne amap O : [0 1] X E1 — C'(El,El) by
Oz, u)(v) = Fizu)(v). It follows from Lemma 1.4 that © is continuous.

(2.2)

) IP@0) + Pl = oo + sl

- Furthermore, we have shown that for each (z, u) € [0,1] x Ey, O(z, u) is

either constant or an isometry in Ej.

* The- continuity of @ and the connectedness of the domain [0 1] x Ey
implies that the range of © consists only of constant functions on C (E1, Ey)
or only of norm preserving functions on E; that map antipodal points onto
antipodal points. This last assertion follows from the fact that the distance
between one such norm preserving map on F; and a constant function is
greater than or equal to v/2. In fact, let Faou = O(z0,up) be a constant
function, everywhere equal to a, and Fy; ,, = ©(z1,u1) be norm.preserving

Furthermore,

‘ Consequently,
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on E1 with Fy, u, (—v) = —Fy, 4; (v) for all v € E;. Then we have
”F:Eo,uo F$17u1 ”00 = Héax{”Fxo,uo (v) = Fay (V) £}

”F:DD,UD (v) - Foy (v)“E = ”a F$1,u1 ('U)”E, ”
”Ftro,uo( U) El,ul( ’U}”E = ”a + Fzy ('U)”E’
1mplymg that ‘
I8 P Ol + o+ B 0 < 2max{at i @IE)-

1 Fzo o — Faogulloo > V2

As mentioned before, this unphes that the range of @ contains only
constant functions or only norm preserving maps. Now we show that the
assumption that the range of © contains only norm preserving maps that
send antipodal points to antipodal points leads to a contradiction.

In fact, if the range of © contains only such maps, then for a fixed
constant functlon fon [0, l] equal to a € Ey, we have

{(TF)(z),u u) + ((Tf) (@), ) - (0, Fzu)(v))
and . . N
(T£)(=),u} — {(Tf) (=), ) = (a, F(:c w(= v)).

Therefore ((T'f) (z),u) = 0 for all v and :z:, and soT f is zero. This completes
the proof = :

REMARK 2 3. We mention that we can  also prove, followmg a sxmllar
strategy, that for'a ﬁxed T € [0 1] and ¥ € E7, the map T) : BY — Ef
such that - '

T (P) =
is constant. This result is stated in Lemxha 3.2 of the next section.

3. Surjective 1sometr1es of C M([o, 1} E). In this section we establish
that surjective isometries on C‘(l)([O 1], E) are composition operators. First,
we prove preliminary results about surjective isometries on these spaces.
The space E is a finite-dimensional Hilbert space. The Riesz Representation
Theorem allows us to associate a unique unit vector to each.functional in
EY. Then we represent 7 : [0,1] x E; x Ey — [0,1] x Ey x E; given by
T(z,u,v) = 7‘(33 ul,vl) w1th Uy v, U1, V1 correspondmg to cp, P, 1, ()
respectively. -

LEMMA 3. 1 If E is a ﬁmte-dzmenszonal real Hzlbert space and T is
a surjective isometry on CW([0,1], E) then T maps constant functions to

- constant functions.
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. Proof. We assume that thefe exists a constant function f € C( ([0, 1], E) .
with f(t) = a, a vector in E, such that T'f is not constant. This means -

there exists zo € [0,1] such that (T'f)"(zo) # Og. We choose a vector V0
in E; orthogonal to (T'f)(xo), i-e. ((Tf) (z0),v0) = 0. We set 7(xo,u,v) =
(z1,u1,v1). Then o S

(3.1) (T ) (o), ) + (T (), v) = (& uz):

Lemma 2.2 implies that ‘ .
(32) (TF)(@o),u) + ((TF) (wo), v0) = (@, w1). -

Therefore ((T £)(20),u) = (a,u1) and {(Tf)’ (:c('))_,v)‘ = 0 for every v.. This

contradicts our initial assumption that (T'f)(z¢) # Og, and completes the

proof. = o . _ )

For a fixed z € [0,1] and v € Ej, we define Twyw) :Ey = Fy by -
T(zw)(8) = V1 provided that 7(z,u,v) = (x1,u1,v1):

z €[0,1} ‘and v € By, 7(3,) is constant.

LEMMA 3.2. If E is a finite-dimensional real Hilbert space then, for fized

" Proof. We follow the steps in the proof of Lemma 2.2 with the following
modification. We consider functions of the form f(t) = (t —z;)a witharep- -
resenting some unit vector in E, and set F(u) = v; with u and v; associated - -
with the functions ¢ and ¥y, respectively. A similar strategy to that followed.
in Lemma 2.2 allows us to conclude that either F is constant or (Tf)’ is :

zero. If (T'f)" is zero, then T'f is constant. Lemma 3.1 and the surjectivity of

- T imply that f must be constant. This contradiction completes the proof. m

LEMMA 3.3. IfE is a finite-dimensional real Hilbert space,  and x; are
such that 7(z,u,v) = (z1,u1,v1), and f € CV([0,1), E), then f(z1) = 0p

implies that (T f){z) = Og.
Proof. Equation (2.1) reduces to S T
(TF) (@), u) + (TF)(z),v) = (f'(21), v1)-

Now considering ug € E;, Lemmas 2.1 and 3.2 imply that.

(TH) @) w0+ (TF @) = (Flew).

Therefore ((Tf)(z),u — uo) = 0. Since ug is. chosen aﬁbiﬁrarily in By we

conclude that T'(f)(z) =0g. =

LEMMA 34. If E is a ﬁm’te—dimén’sz’pndl real Hilbert spa_cé and T is a
surjective isometry on CW([0,1], E), then there exists a surjective isometry

U on E and a homeomorphism o on the interval [0, 1] such that

- - THE) =U(f(e(t)
for every f € CO([0,1], E). ‘ :

_an isemetry on F, we have
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~ Proof. We define U(v) = T(%)(0) with & representing the constant func-
tion equal to v. Since T is a surjective isometry, U is also a surjective isome-
try on E. Given f € C)([0,1], E) and z; € [0, 1] we denote by f; the func-
tion given by fi(t) = f(t) — f(z1). Lemma 3.3 implies that T(f1)(z) = 0g.
Therefore , '

T(f)(@) =U(f(z1))- -

We set o(z) = z3; Lemmas 1.4 and 2.1 imply that ¢ is a homeomorphiém. .

THEOREM 3.5. IfE is a ﬁm’te-dim‘ehsional real Hilbert space, then T is
a surjective isometry on C([0,1], E) if and only if there ezists a surjective
isometry on E such that for every f, o ' C
| T(f)(x) = U(f(o(z)))
witho =Id oro=1-1d. :

Proof. It is clear that a composition operator of the form described in
the theorem is a surjective isometry on (o, 1], E). Conversely, if T is
a surjective isometry then Lemma 3.4 asserts the existence of a surjective
isometry U on F and a homeomorphism o on the interval [0, 1] such that

T(H®) =U(fle(t))

for every f € C([0,1], E). In particular, if f(z) = za with a an arbitrary
vector in E, then T(f)(z) = o(2)U(a). This implies that & is continuously
differentiable. Similar considerations applied to T~ imply that o~ is also
continuously differentiable. Therefore ¢ is a diffeomorphism of [0, 1]. Since
TNl = maxz{|Tf(z)|z + |(Tf) (z)|| £} and Tf(z) = Uf(o(z)) with U

(3-3) ITfll= max{HUf(a(:c))HE +UF (@)l slo’ (z)[}
= max{||f(oc(z))e + |/ (c(z))]|Elo’(z)|}

and , : :

1fll= max{||f(a:)HE.+ 1f'@)lle} = [1f (o)l & + || (z0) || =
for some zg € [0,1].. Therefore lo’(671(z0))| < 1. On the other hand,
T7Hf)(z) = U~ f(0~}(z)) and S L

T fll = max{[[U f (07 (z)) |1z + 1T (X)) | el(e ™) (=) [}

' ' =‘max'{”f(a‘.1_(a:))|!g + ||f’(0_1_(7"3))IIEI(Ufl)'(m)l}i

Therefore |(0~1)((20))| = 1/]0’(z0)| < 1 and so lo’(z0)| > 1. To conclude
that |o'(z)| = 1 for all 2, we need to show that for every = € [0,1] there
exists f such that || f||1 = ||f(z)||z+]f'(z)|| £ and || f'(z)|| & # 0. We consider
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fz(t) = /\x(t)a with a a unit vector in E and A, ngen as in (1. 1)

| (a: t2)+(x—1)(m—t) for0<t<a:

Hence |o'| =1 and s00'=Idor=1—Id. "

REMARK 3.6. If the range sbace E is an infinite-dimensional separable
Hilbert space then there are nonsurjective isometries, Let {en}nen be an
orthonormal basis and U be the operator defined by U(e,) = e2,. The
isometry T : C([0,1], E) — CM([0,1], E) given by T(f)(z) = U(f(z)) is
not surjective. It is not clear, whenever E is finite-dimensional, if there are
isometries on CA([0, 1], E) which are not surjective.

Theorem 3.5 was stated for range spaces that are finite-dimensional
Hilbert spaces over the reals, and we now extend our characterization to
finite-dimensional Hilbert spaces over the complex numbers.

: COROLLARY 3.7. [f Eisa ﬁmte dimensional complez Hilbert space, then
T is a surjective isometry on CM([0,1], E) if and only if there exzsts a
surjectwe zsometry U on E such that, for every f,

T(f)(@) = U(f(o(x)))
withcr—Id oro(z)=1-1d. '

Proof. ‘The space E is equipped Wlth an inner product over C, denoted
by (-,-). This inner product induces a norm on. E, denoted by || ||, and the
norm || - || is defined on the space cM([0,1], E). We define another inner
product (-,-) on E by : ‘

(u v) = Re (u, v).

The space E with multiplication only by real scalars and equipped W1th th.ls '
real inner product (-, -), is a Hilbert space, denoted by E The mduced norm_ ,

is denoted by || - || and |
irll = Sup {|||f (w)lll +1f (x)ill}

is the corresponding norm on C (1)([0 1] E) The 1dent1ty map id : (E - —

(E, || -] is real linear. Furthermore, given u € E we have
Jul® = (u,4) = Re (u,u) = [[ul®.

Consequently, (E - 1) and (E,| - 1) are lmearly 1sometr1c as real Ba-
nach spaces. If T is a surJectlve isometry on C(([0,1], E), then T, on
c®([o,1], E), given by T(f) = T(f) is also a surjective isometry. In fact,

171l = izg]{ﬂlff(t)lﬂ +I Ty = t:l[t%j{llf(-t)ll +IF @I =1flh
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Theorem 3.5 now asserts that there exists a real isometry U on E and
o = Id or 1-1d so that T(f)(t) = U(f(o(t))). Then it follows that T(f)(t) =
U(f(c(2))). It also follows that U is a complex linear isometry by considering
constant functions. This concludes the proof. =

4. Generalized bi-circular projections on C()([0,1], E). In this
section we give a characterization of all generalized bi-circular projections
on CW([0,1}; E) with E a finite-dimensional complex Hilbert space. We
starting by reviewing the definition of generalized bi-circular projection.

. DEFINITION 4.1 (cf. [8]). A bounded linear projection P on.CM([0, 1}, E)
is said to be a generalized bi-circular projection if and only if there exists a

modulus 1 complex number A, different from 1, so that P+ A(Id —P) is'an
isometry 7 on CM([0,1], E). ‘

The 1sometry T must satlsfy the followmg operator quadratlc equatlon
-1+ NT+ AId=0.

Since T' is a surjective 1sometry, "Theorem 3.5 implies the ex1stence of a

 surjective isometry U on E such that

U*f(z) = (L+ MU (f(o(2)) + )\f(fv)
Therefore if A = —1 then U2 = Id and P is the average of the identity with
an isometric reflection R(f)(z) = U(f(o(x))). If XA # —1, then o(z) =  for
every z € [0, 1] and U? — (1 + \)U + AId = 0. Hence ;

P = N @),

We summarize the previous considerations in the following proposition.

. PROPOSITION 4.2. Let FE be a ﬁniie—ldimensional complex Hilbert space.
Then P is a generalized bi-circular projection on c® ([0,1], E) if and only
if there exists a generalized bi-circular projection Pg on E so that Pf(z) =

Pg(f(x)).

REMARK 4.3. We wish to thank the referee for several helpful sugges-
tions that resulted in a substantial improvement of this paper. The referee
also suggested that the proof of our main result could be shortened by using
results by Jarosz and Pathak in [9].
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Weighted variable L? integral inequalities for S
the maximal operator on non-increasing functions

. . by
C. J. NEUGEBAUER (West' Lafayett_e, IN)
Abstract. Let B, be the Armo—Muckenhoupt weight class which controls the weight-
ed LP-norm inequalities for the Hardy operator on non-increasing functions. We replace

the constant p by a function p(z) and examine the assomated LP@ _norm inequalities of
the Hardy operator.

1. Introduction. The Welghts w : Ry — R, for which the ‘Hardy
operator

Hf(z) = L S f(t)dt

on non-negative non-increasing functlons f (we write simply f i) is bounded

. c>Son(alc)pw(x) dz < Cx S f(@Pw(z)dz, 1<p<oo,
0 0 ' '

have been characterized by Arifio and Muckenhoupt [1] by the condition-

{2) WEBy: S (§>pw(w) dz < cSw(x) dz.

r 0

A different proof of (1)<>(2) was given by me in [7] where it is also apparent
that in the implication (2)=-(1) the constant c, can be taken to be (c+1)P.
For (1)=>(2) one uses the test function f = X[o,r] and (2) follows with ¢ = ¢,.
We also note that for f|, H f (z) equals M f(z), the Hardy—L1ttlewood max-
imal function.

In the past few years a great deal of attention has been paid to the
problem of the boundedness of M on variable LP-spaces. If p: R™ — [1,00)
and w : R™ — Ry, let LP(®) (1) be the collectlon of all functions f ]R" - R
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