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ON THE NORM OF ELEMENTARY OPERATORS

A. BLANCO, M. BOUMAZGOUR anD T. J. RANSFORD

ABSTRACT

The norm problem is considered for elementary operators of the form Usp: A— A, =
azb+bza (a,b € A) in the special case when A is a subalgebra of the algebra of bounded operators
on a Banach space. In particular, the lower estimate ||U, 5] > [lal|[|b]] is established when the
Banach space is a Hilbert space and A is the algebra of all bounded linear operators.

1. Introduction

Let A be a real or complex Banach algebra. A linear mapping ¢: A— A of the
form

T — Zaiwbi, \ (1)
=1

where a;, b; € A (1 <i< n)is called an elementary operator on .A. The norm problem
for elementary operators consists in finding a formula which describes the norm of
an elementary operator in terms of its coefficients. Every elementary operator is
obviously bounded (take as upper bound, for instance, > ., [|as||[|;]]), but until
now no satisfactory lower bounds seem to be known for the norm of arbitrary
elementary operators. (See [12] for a survey of this problem.) ‘

A most satisfactory answer to the norm problem has been given when the algebra,
A of the previous paragraph is the Calkin algebra of a separable Hilbert space [6].
In this case, the norm of an elementary operator ¢, as defined above, coincides with
the Haagerup tensor norm of » .. ; a; ®b; (see also [11] and [1, §5.4]).

For more general Banach algebras the current state of the art is less promising.
For instance, in the case of the algebra B(H) of all bounded operators on a complex
Hilbert space H, besides the cases of generalized derivations (z —— az — zb)
(see [17]) and two-sided multiplications (z — azb), no simple expression for the
norm of an elementary operator seems to be known.

In this paper we shall be concerned with the elementary operator

Uap:B(E)—B(E), X+— AXB+BXA (A BecB(E)),

where B(E) denotes the algebra of all bounded operators on a (real or complex)
Banach space E. It is natural in this case to look for lower estimates of the form
c[[All||B]|. The problem is then to determine the largest possible constant ¢ such
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that
) (2)

When E is a Hilbert space the problem has been considered by several authors [7,
9, 10, 15, 16]. It was conjectured in [9] that ¢ = 1 in this particular case, and it
was shown in [10] that ¢ > 2/3. This estimate was further improved to 2(v/2 — 1)
in [15]. The value ¢ = 1 has been established under the assumption that A and B
are self-adjoint [16], and also under the assumption that |4 + zB|| > || A|| for all
zeC[2]. :

Here we settle this problem definitively by establishing the largest possible

[Uasll = clAllIBI (4, B € B(E)).

constant (¢ = 1) in the inequality (2) in the case when F is a Hilbert space

(Theorem 3.7 below). We also establish the largest possible constant (¢ = 2(v/2—1))
in the same inequality for certain normed algebras of operators acting on arbitrary
Banach spaces. Moreover, we show that the estimate 2(v/2 — 1)||A||[|B|| is sharp
within the class of Banach algebras B(FE).

We conclude this section with some notations and terminology.

Given a Banach space E, we denote by F’ its (topological) dual. ‘Operator’ always
means bounded linear operator. The following distinction will be important in what
follows. For an operator T': E — E we denote by 7" : E' — E' its adjoint, defined
by (T"f)(z):=f(Tz) (z € E, f € E'). If H is a Hilbert space and V: H — H is a
linear operator, we denote by V*: H — H its adjoint defined by (h, V*k):=(Vh, k)
(h,k € H).

We denote by B(E), F(E) and N(E) respectively the algebras of bounded,

bounded finite-rank and nuclear operators on a Banach space E. The nuclear and
operator norms will be denoted by | .||x and ||. || respectively.

By an operator algebra on a Banach space E we mean a subalgebra of B(E) that
contains the ideal F(E). (Note that no topology whatsoever is assumed.)

Let X and Y be normed spaces and let T: X — Y be a linear operator. Let
E and F be linear subspaces of X and Y respectively. If T(E) C F, we write
|T:E— F|| for the norm of T|%, that is, the restriction to E and corestriction
to F' of T. Here the norms on E and F need not be the same as those on X and
Y. We also write ||7: X — Y| for ||T||.

Let H be a Hilbert space. We denote by G2(H) the class of Hilbert-Schmidt
operators on . Recall that G5(H) is itself a Hilbert space with the inner product
(8,T):==tr(T*9) (5,7 € &3(H)). The Hilbert-Schmidt norm will be denoted by
52(.). Recall also that for a nuclear (respectively compact) operator on H, say
T, we have ||T||n = >, 0:(T) (respectively || T|| = max;{c:(T)}), where (o;(T))
denotes the sequence of singular values of T'.- »

We denote by diag{ai,as} the diagonal matrix

<%1 C?z) € Mz(@)
Throughout, K stands for either R or C. The real and imaginary parts of a complex
number z are denoted by R(z) and (z) respectively.

2. Some general results

In this section we prove some résults for a kind of elementary operator more
general than the one mentioned in the introduction (see below). These results will
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be needed in the next section. Though we shall need them only for two-dimensional
Hilbert spaces, we have chosen to state and prove them here in a more general form,
since we believe they are of some interest in their own right, and consideration of
the general case does not entail much additional effort. v

Let A=(A1, As,...,An) and B=(By, By, ..., B,) be n-tuples of bounded linear
operators on a (real or complex) Hilbert space H, and let

Uap:B(H)—B(H), X+— > (A:XB;+ BXA). (3)
: i=1
In Theorem 2.3 below, we provide a lower bound for the norm of this elementary
operator. First we prove the following. | '

ProOPOSITION 2.1. Let H be a Hilbert space and let Us, g be as above. Then

a5 : B(H) — B(H)|| = |[ta,5 : N (H) — N (H))|

= _sup |Uae(X)|N. (4)
X:|X|y=t, :
rankX =1

Proof. The first equality follows on noting that Ua,p:B(H) — B(H) is the
adjoint of Uy 5 : N(H) — N(H). The second equality is a consequence of the
linearity of ¢4,5 and the well-known fact that the unit ball of A (H) is the closure
of the convex hull of the rank-one operators of norm one. d

REMARK 2.2. Note that the proof works for any reflexive Banach space E for
which N(E)’ = B(E) under trace duality. We shall return to this in the last section
of this paper.

Proposition 2.1 suggests estimating the right-hand side of (4) in order to obtain
a lower bound for the norm of U4 g. Indeed, as shown by the second equality of the
proposition, in order to estimate the right-hand side of (4), it is enough to consider
rank-one operators. We point out that this idea underlies most of the results in this
paper. Also note that, for a rank-one operator X, the operator Ua,g(X) is always
of rank at most 2n.

Recall that, for Hilbert spaces H and K, the algebraic tensor product H @ K
is a pre-Hilbert space with the inner product determined by (h1 ® k1,he @ ko) =
(h1, ha) (K1, ka) (h1, ha € H, ki, ks € K). We write HK for its completion.

When H is a real Hilbert space, Ga(H) = H&H (here h® k is identified with the
rank-one operator § —— (£, h)k (¢ € H)). In this terminology, Uap =Y ,(AF ®
B;+ B} ® A;). We let A: H®H — H®H denote the flip operator, which is defined
on elementary tensors by A(h Q@ k):=k® h (h,k € H).

THEOREM 2.3. Let Ua,p: B(H) — B(H) be defined as in (3). Then
[ta,B: B(H) — B(H)| > |Ua,p : G2(H) — Ga(H)|. (5)
Moreover, in the real case we have
a5 &2(H) — G2(H)|| = v(A ol z),

where v stands for the spectral radius.
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To prove this theorem we need the following result on complex interpolation,
which is a consequence of [14, Satz 8] and [3, Theorem 4.1.2].

PROPOSITION 2.4. Let H be a complex Hilbert space, and let T': B(H) —
B(H) be a linear operator such that T(N(H)) CN(H). Then T(G2(H)) C S2(H)
and '

T &2(H) — Ga(H)|| < | T: N (H) — N(R)|2|T: B(H) — BH)[2.

Proof of Theorem 2.3. If H is a complex Hilbert space, then (5) follows
immediately from Propositions 2.4 and 2.1.

Let us consider the real case. It is easily seen that (Ao (B ® 4;))* = Ao (4] ® B;)
(1 < i< n). Thus, Aola, p: G2(H) — Ga(H) is a self-adjoint operator, and, since
A is an isometry, we obtain

[tha,p : Ga(H) — Sa2(H)|| = [|A o Ua,p : 62(H) — Ga(H)| = ¥(AoUap). (6)
This proves the second part of the proposition.

To show that (5) holds, we argue as follows. Suppose first that dimH < oo.
Since A olUa p is hermitian, there exist p € R and T € Ga(H) (T # 0) such that
lol = v(Aola,p) and AolUa g(T) = pT. It follows that

1
ol = |notias (77 7)| <lactnn N ) —NED)
1Tl / Il
= |[Uag : N(H)—NH)|.

This, combined with (6) and (4), proves (5) in the case when dimH < co.
Now let dimH = co. Fix € > 0, and choose X € F(H) such that so(X) < 1 and

HUA,BZGQ(H)—%GQ(HW < SQ(Z/IA,B(X)) +e. (7)

(Here we have used that F(H) is dense in &3(7).) Choose an orthogonal projection
P on H such that X = PXP and Ua p(X) = Pl p(X)P. Then, by the finite-
dimensional case, :

s2(Ua,B(X)) = s2Upapprer(X)) < Sup
YEG2(H):
Y=PYPands2(Y)<1

|Upap,per(Y)lIn < [Uas:NH)— NH).

so(Upap,perP(Y))

< sup
YEN(H):
) Y=PYPand|Y|n~<1 )
Combining this inequality with (7), we see that
tha, 5 : S2(H) — S2(H)|| < [Ua,z: N(H) — N(H)|| +e.

Letting ¢ — 0 and applying Proposition 2.1, we obtain the desired result. O

3. The Hilbert space case

In what follows, unless otherwise stated, H denotes a two-dimensional inner
product space over K. Whenever an orthonormal basis of H has been specified,
we identify an operator on H with its corresponding matrix representation in this
basis.
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LEmMMA 3.1. Let {e1, e} be an orthonormal basis of H, and let

T= (t“ t1’2> € B(H).

ta1 t22
Then

TR = D [tag]? +2ltsata2 — tratanl- (8)
1<i7<2 :

Proof. Let o1, o2 be the singular values of T'. Then
I3 = (01 + 02)? = (63 +03) + 20102

= s2(T) + 2+/det(T*T) = s3(T) + 2| det(T)|.

The rest is clear. O

LEMMA 3.2. Let A,B € B(H), and let {e1,ex} be an orthonormal basis of H
with respect to which A and B have matrix representations diag{l,u} and (* %)
. . y z
respectively. Then we have the following.
2)

)
(G )
e (2)

" Proof. (i) It is easy to see that ,
1 (1 1)\ _ o B—
Ua (2 (1 1)) " \y+ua wb )

e EFY ﬂ=z+% and szj_y__,i(w)_

2 z+yl | x+
> (1+|uf?) <‘w+——y' +Iz+ z
. 2 2

2

2 AN
. —x —_—
2(1+|M|2)<‘w+———y2 ‘ +‘z+-——x2y

2

= dfwf® + (=] + ly))*.
N

where

2 ?
Then by Lemma 3.1 we have

s (16 3),

N

= laf? + |y + pal® + 18 — 7 + 1B + 2lpaf — (v + pa) (8 — 7|
= [o)? + [7I? + 2R(Fua) + |l + |8 — 2R(6) + |

+1uBl* +2|7(8 — pa — 7))
= 1+ pP)(af® +181*) +2(7(8 — pa —7)| = RF(B — pa —7)))
> (14 [uP)(laf + 1613
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(ii) The proof is analogous to that of (i).
(iii) It is easily seen that

wa (b )= (G 3)

Now apply Lemma 3.1. U

(11 (1 1 10
5(1 1>’ 2(-1 ~1) =4 (o o

all have nuclear norm 1.

Note that

LEMMA 3.3. With the same hypotheses as in Lemma 3.2, if |u| > 1/+/3 and
s3(B) =1, then |Ua,s|| > 1.

Proof. Consider the operator -

T=3 ((1) \/%c>’
where ¢'= Ti/|u|. Note that so(T") = 1.-Now _
.UA B(T) = N : (%)
0= () e

When |u| > 1/+/3 we find that
| 1+3
3 a(T) = fu? + (if? + 14 '“') +3Ju?lef® > 5(B).
This proves that |Ua,p:G2(H) — 62(H)I| > s9(B). Now apply Theorem 2.3. O

LEMMA 3.4. Letw,z,y,z,u € K besuch that z > 3/4, z+|yl <1, z< 1/2
0<w<2z/V3 and | u[ < 1/\/" Then the following hold. ,
(i) 2wzz + |py|2? < 2®

(1) |ulz + |pyl <=z
(iil) 2wz + |p|lzz <22

Proof. Parts (i) and (ii) are straightforward and we leave them to the reader.
To see (iii), note that

2wz + |plzz < ﬁ(l + z),

so it is enough to show that

f(1+x) 22 (z>3/4).

This last is a simple exercise. . O

LemMA 3.5. Let z,y € K be such that |y| < z. Then - _
|* —?? < (2 + [y)* (= — R(y)?). )
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Proof. - Let y = re®. Then (9)is equivalent to
|22 — r2e?® |2 < (z + r)%(2® — r? cos? 6) (0<r<z). | (10)
It is clearly enough to consider the case z = 1. For z = 1, (10) can be written as
1—2r%c0s20 +r* < (1+7)2(1 = r2cos? ),

which, using the identity cos 26 = 2cos? § — 1, can be easily reduced to

rt+r?—2rg (3r —2r —r"‘)cos 6.
\
When 0 < 7 < 1, the left-hand side of the last 1nequa11ty is non-positive, while the

right-hand s1de is non-negative. ‘ _ O

PROPOSITION 3.6. Let A, B € B(H) (where dim H = 2). Then
[Ua,B : B(H) — B(H)|| > [|Alll|B].-

Sketch of the proof: By Proposition 2.1, it is enough to prove that
[Ua,B:N(H)—N(H)| > Al Bl. '

Firstly, we show that we can restrict consideration to operators A and B whose
matrix representations with respect to some fixed orthonormal basis of H are of a
certain form.

Secondly, using the information provided by Lemmas 3.2 and 3.3, we show that
if the desired inequality fails for some pair A, B of the form specified in the first
part of the proof, then B must be in a determined ‘neighbourhood’ of (0 1)

Lastly, we show that if B happens to be in the ‘neighbourhood’ of (0 1) from the
previous part, then there are operators T and T with nuclear norm l such that
either [[a,5(T5) |~ > 1 or [Ua,p(T)lv > 1.

Proof of Proposition 3.6. We give the proof for the complex case. In the real
case the proof is simpler and the simplifications are self-evident.

We can assume that [|A|| = ||B|| = 1. Since |[Ua,g|| = [Uwa,wsl| (W € B(H)
unitary) and [|Ua gl = |U-4,5]|, we can clearly restrict consideration to the case
when A is hermitian and 1 is an eigenvalue of A. In this case there exists an

orthonormal basis of H, say {ei,es}, with respect to which A has a diagonal.

representation, say diag{l,u}, where s € R and Ju| < 1. Let (Z 7) be the matrix
that represents B in the same basis. Since |[U4, 5|l = |[Ua+ 5|, We can assume that
|z| = |y|. Let U and V be unitary operators on H whose matrix representations

‘in the basis {e1,es} are diag{l,u} and diag{l,v} respectively, and let ¢t € C

be of modulus 1. Define A:=V*AVU and B:=tV*BVU. It is readily seen that
[Ua,B|| = |tz 5ll. Note also that, in the basis {e1, ez}, A and B are represented
by diag{l,uu} and (t“’ “;””) respectively. We can choose ¢, u and v in such a way
that tw, tuvz and tuz are all real and non-negative.. Thus, by replacing A by A
and B by B if necessary, we can assume that A and B are such that there exists
an orthonormal basis {e1,es} of H in which A has the representation diag{l, u},
where p € C with |u| < 1, and B has the representation (w ), with w, z and 2

real, non-negative and z > |y|.
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It is clear from Lemma 3. 2(iii) and Lemma 3.3 that we just need to consider
those cases for which |u| < 1/4/3 and 4w? + (z + [y[)* < 1. Note that, since
s2(B) 2 |B|| = 1, the last inequality implies that

w<z/V3. (11)
Also, by Lemma 3.2 parts (i) and (ii),

s (4G 1),

2 2 o2

> (1+ |u?) |:(w+__x+2§%(y)> +<z+w+;R(y)> +\$(2)}

+ ) + 2z + R@))* + 33(©)

1z —R)? —%i‘f(y)’z]
_§|x_y|2]7

@

22+ (w+ 2)(z + R(
(w +2)(z + R(y)) —
(w+ 2)(z + R(y)

~—

+
_|_

~

=3§

and similarly

s (12 )

Consequently, there is nbthing else to do if (w+2)(z+ R(y)) > 3|z —y|* orif
(z—w)(z — R(y)) > 3|z + y|*. Thus, let us assume that

2

g s3(A) [s3(B) + (z — w)(z — R®W)) — 51z + 5]

1 jz—y
- —— 12
ztw<sy T RW) (12)
and
1|z +yf?
— - 13
Zmw< 5o R(o) (13)
Multiplying together (12) and (13), we obtain
/ v 1 |a? -2 :
2 __ .2 14
2 —w <4x2—§R(y)2 (14)
Since 4w? + (z + |y|)2 < 1, it follows from (14) and Lemma 3.5 that
1 |x —y [ 1 - 1
P Q- A Y 2) < - 15
zm < 4 72 — §R(y)2+4( (x+|y|)) 1 (15)

and in turn, from (11), that
w2 < (1+3)FP <3
Taking into account that s3(B) > 1, we conclude from the last inequality that
| 2+ ly? > 2. (16)

Inequality (16), together with =+ |y] <1 and z > |y|, implies that

>3 (17) .
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Thus, B must be in the ‘neighbourhood’ of (g é) determined by the inequalities
(11), (15), (17) and z + |y| < 1.

Let Tp = c(§ &), where ¢ = 1/vz? +22. It is clear from (8) that ||Ts|~ = 1,
and it is easily seen that .

- (2w +yz x? -+ pwz+ z2>
U Tg)=c .
4.6(T5) < yz pyz

(Note that, since || B|| = 1, we must have ¢ > 1.)
Using (8), and taking into account (17), we find that

|Ua,p (T8 = P4w?a® + dwaR(y)z + y*2* + [yI*e” + (@ + 2°)°
+ 2R(wwz(2? + 2°) + |pPw?2? + |u?y? |22
+ 2ly||uz(2wz + yz) — (z® + pwz + 2)]]
> Alaw?a? + 4wx%( )z + [y (22 + 22) + (22 + 22)?
+ 2R(p)wa (2’ ) ’
+ 2yl|pwrz + py2® —
> duw? — 4wzly|z + |y* + 2% + 2% + 22R(p)wz(z® + 2°)
+ 2%y (2% + 2% - R(p)wzz — R(uy)2?)
> s2(B) — 4ctwz|y|z + 2R (u)wz(x? + 22)
+22y|(x® + z2% — R(wwzz — R(uy)2?).

8 —xz2|]

If R(w)>0 then

e, 5(TB)II% > s3(B) — 4c*waly|z
+220y|(2° + 22 — R(p)wez — R(py)z?)
> 55(B) + 22 [yl[(#° — 2wzz — |py|2®) + v2(2 — |ulw)]
> 53(B),
by Lemma 3.4(1) and (11).
If R(u) <0 and w < |y| then

[Ua,B(T5)|3% = s5(B) — 4¢ w$|y|z + 28R (u)lylz(z” + 2°)
+ 2 yl(2® + 22® — R(uy)2?)

> s3(B) + 2% |y|((#® — 2waz — |ule®2) + 2% (z — |p|z — |uy))]

> s3(B)

by Lemma 3.4(ii) and (iii). -
For the remaining case, that is R(u) < 0 and w > ly/, consider the operator

(1/v2)(; 3)- Then

s {1 O\Y_ 1 ( 2wtz x
AB\VZ\1 0))” V2 \y+uw+z uz
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and, using (8), we find that

CIG)

> 12w+ ) + 2° + 2| 2w + z)uz — 2(y + pw + 2)|]

> 202 + 2wz + 2% — R(pwz + pa? — zy — zz)
> 2w? + 2wz + 2% — R(p)wz — R(u)z® + +R(y) + 22
>2u? 4+ 22tz + z(2w + R(y))

s

where the last inequality follows from w > |y|, together with (15) and (17). .
We have thus shown that ||l g :N(H)—N(H)|| = ||A|||B|. It just remains
to apply Proposition 2.1. -

Finally, we remove the constraint imposed on the dimension of H.

THEOREM 3.7. Let H be an arbitrary Hilbert space, and let A, B € B(H). Then
| [tha,5: F(H) — F(H)| = [AlIBI

Proof. 'We reduce the problem to the case when dim H = 2. The argument is
analogous to that of [16] for Jordan algebras of operators. We include its proof here
for the sake of completeness.

To simplify the notation, we assume that ||A| = || B|| = 1. Fix € > 0, and choose
&§,n € H such that ||A]| > 1 — ¢ and ||Bnj| > 1 — e. Since [Ua,a]| = |Uwaws]
(W € B(H) unitary), we can assume, by multiplying by a suitable W if necessary,
that there exists a subspace of H of dimension 2, say Hi, such that £, 71, A¢, Bn € H;.
Let P:H — H; be the orthogonal projection onto Hy, and let ¢: B(H) — B(H)
be the linear map defined by ¢(X):=PXP (X € B(H)). Then

Uap: F(H)— F(H)|| = sup [AXB-+BXA|
XEF(H): :

fixl<1

> sup |P(APXPB-+BPXPA)P|
XeF(H):
IX|<1

= _sup |[Usay,o) (VI = [6(A)lllS(B)II;
Yergo:
Iri<i

where the last inequality follows from Proposition 3.6, since the range of ¢ can be
isometrically identified with B(I2). Moreover, since ||¢(A)|| > ||A¢| and ||¢(B)]| >
| Bn||, we have shown that

[Ua,5: F(H)— FH)|| > (1—¢)2.

Since this inequality holds for arbitrary ¢, the desired result follows. O

As an immediate consequence of the last theorem we have the following corollary.
(Recall from Section 1 that, by an operator algebra on a Banach space E we mean
a subalgebra of B(E) that contains the ideal F(F).)

COROLLARY 3.8. If% is an operator algebra on H endowed with the ‘operator
‘norm’ (in particular, B(H) itself), and A, B € &, then |Ua,p: A —2A|| > ||A|||| B].
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In another direction, we have the following result. We are grateful to Martm
Mathieu for pointing it out to us.

COROLLARY 3.9. Let 2 be an arbitrary C*-algebra, and let A,B ¢ AU Let
La:2A— 9, X+— AX and let Rp:2% — 2, X — XB. Then nuAB A9 >
ILaRz|.

In particular, if 2 is prime, then |[Ua, 5 : 2% ~— A|| > | Al|||B]|.

Proof. Let 2, A and B be as in the hypotheses. By [1, Theorem 5.3. 12], we
have

s s A — A = sup U a).m(8) 7 (W) —w@), (18)

where 7 runs over a faithful family of irreducible representations of 2. .
Let 7 : 2 — B(H,) be an irreducible representation of 2. Since C *-algebras have
metric approximate identities, we have

o), (B : () — ()| = U a),m(my 1 7(A) + CLy — 7(A) + CL ||, (19)

where I, denotes the identity of B‘(H,r). Moreover, since 7(21) is irreducible, the
bicommutant of () + CI is precisely B(H,), and so, by the double commutant
theorem and the Kaplansky density theorem [5, Theorems 5.3.1 and 5.3.5], we have

U (), m(B) : (W) + Cle — 7(A) + CLe|| = [Un(ay,m(z) : B(Hx) — B(Hz)]. (20)
Combining (18), (19) and (20), and then applying Theorem 3.7, we obtain
a5 : 2 — 2| > WSiEI:dAHTr(A)H [[m(B)]|- (21)

It is known (see [12, p. 364]) that, for every C*-algebra 2, the right-hand side of
the last inequality equals ||L4Rp||. This proves the first part.

If 2 is prime, then || L4 Rp|| = ||A|||| B|| [8, Proposition 2.3], and the last assertion
follows. O

4. Jordan algebras of self-adjoint operators

It was shown in [16] that, for Jordan algebras of self-adjoint operators, the
greatest possible value of ¢ in the inequality (2) is 1 (see also [7] for a different
proof). In this section we give a new short proof of this result.

We denote by By, (respectively A3) the linear space of bounded (respectively
nuclear) hermitian operators on lp. Also, we write J:1ls — [}, for the conjugate-
linear isometry defined by (Jh)(k):= (k,h) (h, k € Iy).

Our next lemma may be thought of as a self-adjoint version of Proposition 2.1
above.

LEMMA 4.1. Let A,B € By,. Then

HZ/{A,B . Bh _"BhH = HUA,B :Nh ———>Nh||

= sup |Uap(JE®E)|N (22)
gela: figl=1 -
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Proof. Let 2 be a self-adjoint subspace of B(lz), and let o be a norm on 2
satisfying o(T) = o(T™) (T € A). Weset A, ={T € A:T =T"*}.

Recall that 2 linear functional p: A — K (K = C or R) is said to be hermitian if
o(T*) = p(T) (T € ). It is easily seen that, if p is hermitian, then |[p]| = ||pla, [|-
Indeed, let € > 0, let T € 2 with a(T) = 1 be such that [|p|| — e < [o(T)], and let
a be a complex number such that |p(T)| = ap(T). Define L = aT". Then

ol < < o) = (D) = 5(6(8) +6(2°)) = (255

and o((L+ L*)/2) € a(L) = o(T). 1
It is easy to verify that the linear functionals

pr i N(ls) — K, X — tr(Ua 5(T)X),

where T' € By, and
PX fB(lg) — K, T+— tI’(UA,B(X)T),

where X € Ny, are both hermitian. Moreover, it is well known that ||T||x = |77~
(T € N(I2)), and that ||T|| = || T*|| (T € B(l2)) (see for instance [20, II1.G.5]). Thus,
from the previous paragraph, we have |or| = |or|n: || and [[px|| = llox|s, || It
follows that

U,z : Ny — Ny = sup [Ua,5(X)]~
XeN, | X|In<2
= sup sup |px(T)| = sup sup |px(T)|
XENy: TeB(l2): XENL: TEBy:
X~ <7<t [Xlix<LITIS2

= sup sup |pr(X)| = sup sup |pr(X)

TERBL: XEN;: TEBL: XeN (l2):
ITI<1IX v <1 ITI<T || Xxlin <1 ‘

=  sup |Uas(D)| = [Ua,B:Br— Ball.
TeBy:ITI<T

This proves the first equality.

To prove the second onme, recall that, for X & Nj, we have the Schmidt
decomposition X =Y 2, 03(X)Jz;®z;, where (z;) is an orthonormal system on Iz,
and (o;(X)) is the sequence of singular values of X. Moreover, || X||xy = >, 0:(X).
Thus, if X € Ny is such that || X||x < 1 and ||[Ua 5(X)]| = |[Uaz : N — Nul|—¢,
then for some i (possibly depending on &) we must have [[Ua z(Jz: ® z5)|| >
a5 : Ny — Ny || — €. As this holds for every e,

|Uag Ny —Np|| < sup  [[UaB(JERE)|N-
gelz: |€|l=1

The opposite inequality is obvious. O

REMARK 4.2. The same result holds for n-tuples A = (Ai,...,4,) and
B = (By,...,By) of elements of By, and the elementary operator U, g : Bp — Bn
defined by Ua,5(X) = Y,(A:XB;+ B; X A;) (X € Bp). The proof is verbatim that
‘of the previous lemma.

THEOREM 4.3. Let A, B € By. Then
[Ua,5:Bn— Brl = Al B
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Proof. We can assume that ||A| = [|B]| = 1. As shown in [16], it is enough to
prove the result for A, B € By (H), where H is a Hilbert space of dimension 2. Since
A is hermitian, there exists an orthonormal basis of H, say {ei, ez}, in which A
has matrix representation diag{l,u}. By multiplying es by a scalar of modulus 1,
if necessary, we can also assume that the matrix that represents B in the basis
{e1, e}, say (¥ 7), is real. Moreover, by multiplying e; by —1 if necessary, we can
further assume that sign(z(w + z)) = 1. To see this, recall that w = (Bey,e;),
z = (Beg,e;) and z = (Beg,ez), so only the sign of z changes if we multiply ez
by —1. Now Lemma 3.2(i), applied with the basis {e1, ez}, gives

s ¢ D)

It is readily seen that

> (4w +2) + (2 +2)]

= 53(A4)[s3(B) + 2z(w + 2)].

N

HZ/{A,B :Nh —>Nh|| > SQ(A)SQ(B).

The desired result now follows from this and Lemma 4.1. O

5. Operator algebras on arbitrary Banach spaces

Throughout this section, unless otherwise stated, E denotes an arbitrary Banach
space. As is customary, we identify (algebraically) F(F) with E'® E. In particular,
A®z € E' ® E is identified with the rank-one operator e — A(e)z (e € E).

In this section we consider operator algebras on E which are endowed with a
norm ¢ that satisfies the following.

(A1) o(T) > ||T (T € ).

(A.2) a(A®z) = |A[z]| (A @z € F(E)).

We shall need the following theorem. In the case of a Hilbert space, it can be
deduced from results of Magajna and Turnsek [7, Propositions 3.1 and 32] In fact,
their proofs extend without difficulty to the case of dual Banach spaces, and, with
a little more effort, to arbitrary Banach spaces. However, rather than describing all
the details, we prefer to give a simple, direct proof. '

THEOREM 5.1. Let A,B € B(E), and let o and 8 be norms on F(E) that

satisfy conditions (A.1) and (A.2) above. Then
[tha, 5 : (F(E), @) — (F(B), 0)]| > 2(v2 - 1) || Al[|B].

Proof. First note that, if z,y € F and \,7 € E’ are all vectors of norm 1, then
[Ua,B : (F(E),0) — (F(E),B)|| 2 BUAB(T®Y) = [Uas(t®y)

= [|A'T ® By + B'T ® Ay
> |m(Az)A(By) + m(Bz)A(4y)|- (23)
Without loss of generality, we can assume that ||A| = ||B|| = 1. Fix £ > 0, and

choose z,y € E and 2,y € FE’, all of norm 1, such that z/(4z) > 1 — ¢ and
y'(By) > 1 —e. It follows from (23), with A = 2’ and 7 =/, that

a5l = (1 - €)* =y (Ay)ll+’ (Bz)]. - (24)
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By (23) again, this time with A = 7 = 2’ and y replaced by =z,

a5l > 2(1 ~ &)l (Bz)|.- (25)
Similarly,

4,51 > 21 - )ly/ (4v)]

Set ¢ = (1 — &)~ 2||Ua | Then (24), (25) and (26) combined give ¢ > 1 — ¢?/4,
whence ¢ > 2(v/2 — 1). On letting € — 0, we obtain the desired result. O

(26)

s

COROLLARY 5.2. Let 2 be an operator a]gébra on E, endowed with a norm «
that satisfies (A.1) and (A.2), and let A, B € 9. Then

[tha, 5 : A — A >2(vV2 - 1)]A[|IB].
Proof. This is immediate from Theorem 5.1. . O

Note that if 2 is an ideal of B(E) and o has in addition the ideal property (that
is a(VT) < |V ||a(T) and o(TW) < o(T)||W|| whenever V,W € B(E) and T € )
then we clearly have the uppet bound 2||A||||B|| for the norm of U4, 5.

It turns out that for certain Banach spaces E, the constant 2(v2 — 1) of
Corollary 5.2 is best possible. Indeed, we have the following.

PROPOSITION 5.3. Let
(1 0 ,_(1=v2 0
A= (\/5_1 O) and B._( 1 0)

be operators acting on [2,, where the matrix representations are with respect to the
unit vector basis. Then

[tha,5: B(1Z,) — B(i%,) || = 2(v2 - 1)|| Al B] (27)
and

[thar 5 BOZ) — B(B)|| = 2(v2 - || 4[| B'|. (28)

Proof. Exactly the same argument as in the proof of Proposition 2.1 (see

-Remark 2.2) shows that

i, : B(1Z) — BUZ)| = a5 N (1%) — N (1)

= sup [Uap(A@2)
A®@zEN(IZ,):
[All=ll=ll=1 ‘

= sup [A’A®Bz+B'XQ® Az|n.
ARzEN(I2,):
[All=ll=]l=1

Recall that, if T is a linear operator from /2, into a Banach space X, and {e1, ez}
is the unit vector basis of 12, then ||T||x = || Te1|x + || Tez||x, where | . ||x stands
for the norm on X (see [19, Proposition 8.7]). With the help of this formula, and
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taking into account our definitions of 4 and B, we find that

sup  |[A'A® Bz + B'A® Az|y

A®zeN(12,):
IAl=]lz]l=1
= sup  [|A(4e1)Bz + A(Bep)Az|;2
RIS )
=|z||=1

= sup  sup |A(Ae1)é(z1Ber) + A(Beip)é(zy Aey)|
Negei?: zel?:
Ix=llgl[=1 [lz]l=1

= sup |A(Ae1)é(Ber) + A(Bei)é(4ey)|

Agels:
[All=lgll=1
W7 et [A(Ae1)é(Ber) + A(Bey )é(Aey )|
= max{m(\/i— 1)|, |1 + (\/5— 1)(1 _ \/5)‘}
=2(v2-1).

(Here z; stands for the first coordinate of z in the basis {e1,e2}.) Since lA]l =
| B|| = 1, this establishes (27). :

To prove (28) we argue as follows. As with I2_; we have
[to,p: B(1f) — Bl = |to,p : N () — N ()| (C,D e B(2)).
Then, for A and B as above, and taking into account the previous part, we obtain

[tz : B() — B@E)|| = [tdar 5 : N (1) — N (@)

= sup [Az®@B'A+Bz® A )\|x
Z@AEN(12)

= sup |[|B'A® Az+ A'A® Bz|n
ABTEN(12,) .

= a5 N () — N ()] |
= |ltda 5 : B(2,) — B(2)| = 2(v2 - 1).

Note that ||A’|| = ||B’|| = 1. The rest is clear. O

COROLLARY 5.4. Let E be either [;(T) or lo(T"), where I is an arbitrary set
with at least two elements. Then

Iﬁfn%%r%f): |ta,5: B(E) — B(E)|| = 2(v2 — 1). (29)
=||B|=1 )

Proof. 'We give the proof for E = [;(T'), the proof when E = loo(T') being

’ completely analogous.

Let E = [;(T). Plainly, F contains a I-complemented subspace, F' say, which
is isometrically isomorphic to I3. Let P:E— F (respectively 1: F — F) be a
norm-1 projection onto F' (respectively the natural inclusion map). By
Proposition 5.3, there exist A, B € B(F) such that

a5 : B(F) — B(F)| = 2(v2 - 1) Al||| B!. - (30)
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Define A:=10 Ao P and Bi=10 B o P. Then |4 = ||4] and |B| = |B|.
Moreover, it is easily verified that

Uy 5: B(E) — B(E)|| = [Ua,5: B(F) — B(F)|.

This last, combined with (30), shows that the left-hand side of (29) is no greater
than 2(v/2 — 1). The opposite inequality follows from Corollary 5.2. O

REMARK 5.5. Clearly, essentially the same proof applies to any Banach space
E with the property that, for every & > 0, there is a (1+¢)-complemented subspace
of E, say F., whose Banach-Mazur distance to 12 (respectively [2) is no greater
than 1+¢. Examples include the C(K) spaces (with K a compact Hausdorff space),
the Tsirelson space, and [,-sums of sequences of finite-dimensional Banach spaces
of the form (I7*) (respectively (IZ¢)), where (ny) is a sequence of positive integers
and 1 < p < 0.

We end the section with a result that underlines the relationship between
the topology considered in an operator algebra and the norm of the elementary
operators under study.

PROPOSITION 5.6. Let

A= (1 o 1) and Bi= (1 "0‘/5 ‘1))

be operators acting on the Hilbert space 3. Then

|[UaB:62(12) — 62(2) || =2(vV2 - 1).

Proof. It is easily seen that Ua p:&2(13) — G2 (13) is represented il'.l the
orthonormal basis {e; ® €;}1<i,j<2 of &2(13) by a diagonal matrix whose entries in

the main diagonal are all of modulus 2(v/2 — 1). The rest is clear. O

6. Some questions and remarks

Let E be a Banach space and let % be a subalgebra of B(F). In the previous

. sections we have considered the problem of finding lower estimates for the norm of

elementary operators of the form: Uy p:2A—2A, X— AXB+BXA (A,Be).
The following questions have arisen in a natural way while investigating this
problem and we believe they deserve further consideration.

There is an obvious lack of symmetry in the statement of Theorem 2.3. This is due
to the fact that we have not found in the literature an analogue of Proposition 2.4
for real Hilbert spaces, and also because we have not succeeded in extending the
argument given in the proof of Theorem 2.3 for real Hilbert spaces to the complex
case. It seems natural, however, to expect the norm of U4 g to be the same as
the norm of ) ,(Af ® B; + Bf ® A;), also in the complex case. (Note that, in the
complex case, Go(H) is no longer the same as H®H.) This would provide a way to
estimate |[Ua, 5 : G2(H) — Ga(H)||. Thus, we are led to ask the following question.
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QUESTION 6.1. Let H be a complex Hilbert space. Is it true that
a5 :G2(H) — (1)l = | (47 ® B + B} ® 4) HEH — HEM|

(A;, B; € B(H),1<i< n)?

It is expected that, for Banach spaces E with ‘few’ 1-complemented subspaces,
a formula like (4) could play an essential role in studying the norm problem for
elementary operators on the algebra B(E). For then, an argument like the one
given in the proof of Theorem 3.7 might be no longer applicable. Thus, we formally
raise the following question.

QUESTION 6.2. Does the equality
[ta,p: B(E) — B(E)|| = [Ua,z : N (B) — N(E)| - (3D
hold for every Banach space E?

It seems likely that the last question has an affirmative answer, but we have been
unable to prove this result in its full generality.

In a brief remark after Proposition 2.1, we pointed out that the result of this
proposition could be extended without any additional effort to the case in which E
is reflexive and NV(E)" = B(E). Here we establish (31) for Banach spaces E with
the metric approximation property (see the definition below).

We first recall that a Banach space F is said to have the approximation property
if the identity operator on E can be uniformly approximated on compact subsets
of E by continuous finite-rank operators. If, in addition, the finite-rank operators
can always be chosen with norm no greater than some constant ), then E is said
to have the bounded approximation property. When X\ = 1, E is said to have
the metric approximation property. If E has the approximation property then
N(E) = E'®E holds isometrically. Recall also that for any pair of Banach spaces,
X and Y, there is a linear isometry ¢:B(X,Y’) — (X&Y)’ which is defined by
H(T) (X :®yi) = > (Tzs)(yi) (O; z:®ys € X&Y). Thus, in particular, (B'QE)
can be isometrically identified with B(E') and B(E, E”). (All this can be found, for
instance, in [4, Chapter VIII; 13, §1.7.10 and §1.7.11].) -

THEOREM 6.3. Let E be a Banach space with the metric approximation
property, in particular, any reflexive Banach space with the approximation property
(see [4, Corollary VIIL.4.2]). Then (31) holds.

Proof. Recall that the unit ball of E'®F is the closure of the convex hull of the
elementary tensors of norm one. It follows from this fact and the duality (F'QE) =
B(E') (see above), that

Ua,B:B(E) — B(E)| = o, [Uar 5 (T

171

= sup  sup |(Ua,p/(T)N)(2)]

TeB(E): \QzcE' @ E:

TN [a®e|<1
= sup sup [(A'X)(T'Bz) + (B'\)(TAz)|.
A\RzeE' Q®E: TEB(E):

A®zl|<1 [T
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On the other hand, taking into account the same fact about the unit ball of E'QF
and the duality (E'®FE) = B(E, E") (see above), we obtain

|Uap: E'QE — E'QF| = sup  [|[A'A® Bz + B'A® Axl|a
AQzEE' QE:
[A®@z|<1
= sup sup |[(TBz)(A'A\) + (T Az)(B'))].
\RzcE' QE: TeB(E,E"):
rezl<1 I7l<1

To finish the proof, we just need to show that, for any set of vectors e;,es € E
and fi, fo € E/, we have

sup  [(Te1)(f1) + (Tex)(f2)| < sup [fi(Ter) + fo(Te2)|.  (32)
TeB(B,B"): TEB(E): ‘
I171<1 ITiI<T

Let M denote the left-hand side of the last inequality. Fix € > 0, and choose
7 € B(E,E") such that |7|| < land M —e < |(Te1)(f1) + (T e2)(f2)|. Since E has
the metric approximation property, there is P € F(FE) such that Pe; =¢; (i = 1,2)
and ||P|| < 1+e¢. Let e = Te; (i = 1,2). By the principle of local reflexivity [20,
IL.E.14], there exists a linear operator W:rg7P — E Wit%ﬂWH < 1+¢ such that
e (fi) = fs(We}) (i = 1,2). Define T:= (1 +¢)>W o T|%5" o P. Then T € B(E),

ITII <1 and :

M —e < |(Ter)(f1) + (Te2)(f2)l < (1 + )| f1(Ter) + fo(Te2)l-
Since ¢ is arbitrary, this proves (32). O

A closer look at the proof of Proposition.3.6 reveals that we actually have the
better estimate: :

sl > max{|Alls2(B), s2(A)BI} (A Be B(lﬁ\))' A

We conjecture that the following is true.

CONJECTURE 6.4.

|ha, B

| > s2(A)s2(B)  (4,BeB(B)). (33)

It should be pointed out that (33) cannot be generalized to higher dimensions
(consider, for instance, a pair of orthogonal projections P and @ such that P+Q = T
and PQ = QP = 0). However, the results of Section 3 suggest that, at least
for Hilbert-Schmidt operators A and B, a lower estimate for |[{{4 | of the form
V/(02(A) + 02(A4))(0?(B) + 03(B)) might be possible.

QUESTION 6.5. Do there exist Banach spaces for which the inequality (2) holds
with a constant c strictly larger than 17

We believe not. This belief is supported by the results of the previous section,
and the following proposition.

(

PROPOSITION 6.6. Let E be an infinite-dimensional Banach space. Then the
largest possible value of the constant ¢ in the inequality (2) is never greater than 1.

7
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Proof. Let A\,¢ € E' and z € E be all vectors of norm 1. Then

thos.oes : B(E) — B(E))

=_sup sup [(A®2)T(p®z)+ (v @) T(A®2))(2)|.
TR
= _sup sup [A(Tz)p(z) + ¢(Tz)A\(2)]
TEB(E): 2€E:
IT=1 ll=li=1

= s A@)e(2) + o(y)A(2)],
lyll=fzl=1

from which it follows that

inf Uap:B(E BE) < i ALz)].
A, [Ua,5:B(E) — B(E)| < A,fé% . IA»)e(2) + e(y)A(2)]
Il All=|Bll=1 A=llell=1 ||y[|=]z]=1

(34)

S
i

If H =13 and {e;, e} is the unit vector basis then

inf su A A
iy S AWe(2) + o))
IXI=llel=1 |y[=[z]|=1

< osup [(y,en)(z,e2) + (y,e2)(z,€1)]

y,z€H:
llyli=l=ll=1
<3 sup. {l{y )P + [z, €2) [ + [{y, €2)[2 + (7, €1) 2}

Y,z :

llyll=lizll=1 v

=3 sup. {Jyl®+ 2} = 1.

y,zEH: .

llyll=il=|l=1

By the version of Figiel, Lindenstrauss and Milman of the theorem of Dvoretsky ’
on spherical sections of convex bodies (see for instance (19, Theorem 7.1]), for every
€>0 there exists a subspace F. C E whose Banach-Mazur distance to 12 is not
greater than 14 . Combining this fact with the last result it is readily seen that
the right-hand side of (34) (and hence c) cannot be greater than 1. O

Assume it is true that-the largest possible value of the constant ¢ in the
inequality (2) is never greater than 1 (otherwise restrict consideration to infinite-
dimensional Banach spaces). The results of the previous section suggest that it may
well be the case that the (largest) value of the constant, ¢ = 1, in the inequality (2)

occurs'only in the case when F is a Hilbert space. This motivates us to ask our last

question. \

N

QUESTION 6.7. Let F be a Banach space for which (2) holds with c = 1. Is E
necessarily a Hilbert space?

Finally, we point out that the norm problem itself, which consists in finding a
formula for ||l 5| in terms of A and B, remains unsolved, even in the case when
E is a Hilbert space.
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- WEIGHTED COMPOSITION OPERATORS
ON THE BERGMAN SPACE

‘ i REMARK 6.8. After this paper had been submitted we learned of a different
‘ proof of Theorem 3.7 by Timoney [18]. In the same paper he also proves
\ I Conjecture 6.4.

l
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