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Chapter 0
Introduction and Notation

Let B be a real separable Banach space with norm || - || = || - ||z. Sup-
pose that X, X3, X5, ... € B are independent and identically distributed
(i.i.d.) random elements (r.e.’s) taking values in B. Furthermore, assume that
EX =0 and that there exists a zero-mean Gaussian r.e. Y € B such that the
covariances of X and Y coincide. Define

Sp =8 (X) =n"V2(X + - + X).

Let f : B — R (or more generally f : B — F, where F is a real Banach
space) denote a function such that the expectations EF(S,), Ef(Y) are well
defined. The central limit theorem (CLT) in this context requires

Jim Ef(Sn) = Ef(Y) (0.1)

for all functions f € F, where F is some class of functions f : B — R. In the
classical definition of the CLT, F coincides with the class C»(B) of bounded
continuous functions f : B — R. In recent approaches F can differ from Cy(B)
and the expectation is understood not only as the traditional Lebesgue and
Bochner integrals but also as other integrals. : ‘
Denote by p a semi~metric (i.e., p(z,y) = 0 does not necessary imply z = y)
on a class of probability measures on B. Another formulation of the CLT is
given by ‘ ' _ ‘
nh—E%O p([:(Sn),ﬁ(Y)) =0, (02)

where £(X) denotes the distribution of the r.e. X. If p is the Prokhorov metric,
then (0.2) is equivalent to the classical CLT In What foliows we shall consider
the CLT in the classical sense. :

The aim of the paper is to give a review of results and methods used to
estimate the rate of convergence in the CLT in infinite-dimensional spaces.
A review of results concerning asymptotic expansions. is also presented: It
is appropriate to remark that the earlier books by Sazonov (1981), Koroliuk
and Borovskikh (1984) and Paulauskas and Ratkauskas (1989) contain related
reviews. In this paper we restrict ourselves to the case of i.i.d. summands
and sums having a Gaussian limit. We do not try to give the most general
or accurate formulations (for-this we refer to original papers). Rather, we
shall stress the differences between the finite-dimensional case and infinite-
dimensional case, emphasizing new phenomena arising in connection with the
large class of geometrical structures in Banach spaces. Thus the paper contains
mainly sketches of proofs and many technical arguments are skipped. Our
intention was also to reflect an increasing number of applications of Banach
space results to certain asymptotic problems of mathematical statistics.

N
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We shall use the following abbreviations:

e=¢g(n)= ’1/2,77,—12
g9(e) = g(e, f) = Ef(Sn),
9(0) = g(0, f) = Ef(Y),
h(e) = hie, p) = p(L(Sn), L(Y))-

Then (0.1) means that the function g(g) of the discrete argument ¢ = n~1/2,
n=1,2,... is continuous at the point £ = 0:

lim g(<) = 9(0). o (0.3)

e—0

Similarly, (0.2) is equivalent to
lin% h(g) = 0. ' © (0.4)

A stronger assertion than (0.3) is to assume that g at the point € = 0 satisfies
a Holder condition (say, with an exponent o > 0 and a constant C' < co)

l9(e) — g(0)] < Ce®, (0.5)

(similarly, ‘
h(e) < Ce* » (0.6)

in the case of (0.4)). The inequalities (0:5); (0.6) are usually called estimates

of the convergence rate in the CLT. Clearly, one can rewrite (0.5) and (0.6)
as ' i ‘

[Bf(S2) - EfV) <Cn™2, (D)

p(L(Sn), L(Y)) < O™/, _ (0.8)

More precise approximations of g( ) than (0.5), (0.6) are given by the asymp-

totic expansion . :
g(s)—g(0)+als+---+aksk»+R o (0.9)

with coefficients a1,...,ax and the remainder term R = Ry (:—:) such that
Ri(e) = o(e*) as e — O Clearly, one can rewrite (0. 9) as '

Ef(Sn) = Ef(Y) +ain™? +---+ axn /2 + R. (0.10)

Relations like (0.10) are usually called asymptotic expansions in the CLT.

. In the first chapter of the paper we give a review of methods and results
concerning estimate (0.7) when f is the indicator function of a set A C B :
f(z) = xa(z). Then (0.7) yields an estimate for probabilities

|P{S, € A} — P{Y € A}| < Cn~%/2, (0.11)

When the space B has finite dimension one can prove (0.11) for relatively
large classes of sets A, for instance for the class of all convex sets (see, e.g.,
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Bhattacharya and Rao (1976), Sazonov (1981)). The situation changes dra-
matically in the infinite-dimensional case. In this case there does not exist a
uniform estimate of type (0.11) even for such relatively small classes as the
class of all balls or the class of all halfspaces (see Sazonov (1981)). Therefore
we have to consider special sets A. Let F' ;: B — R be a functional and let
A=A (F)={z € B:F(z) <r}. Then (0.11) yields

\P{F(S,) < r} — P{F(Y) < r}| < Cn=%/2. (0.12)

It turns out that in the infinite-dimensional case the estimate (0.12) depends
strongly on the smoothness properties of F. The Fourier method and the
method of integration by parts discussed in §§1.1, 1.3 are adapted to the
investigation of (0.12) for smooth functions F, while the Lindeberg method
and the method of finite-dimensional approximation discussed in §§1.2, 1.4 are
useful for the case of non—smooth functions F'. The last section of the chapter
discusses the results concerning the convergence rate in the CLT, estimated
by means of the Prokhorov and bounded Lipschitz (BL) metrics.

The second chapter is devoted to asymptotic expansions. In §§2.1 and 2.2 we
consider asymptotic expansions for the expectation Ef(S,) with f : B = R
a sufficiently smooth function or f a function having isolated points of non—
differentiability. The expectation E||[S,|[?, p > 0, with a sufficiently smooth
norm—function, is a typical example. The results discussed in these sections

are obtained with no explicit condition like the classical one of Cramér. In §2.3 -

asymptotic expansions for P{F(S,) < r} are reviewed. In §2 4 we consider
asymptotic expansions for the density function (d/dr)P{F(S,) < r}.

In the third chapter we present examples applying the methods and results
described in the previous chapters. We emphasize that our aim is to give
illustrations of applications only. Here we distinguish the following situations:

i) cases where a limit theorem for a statistical test can be interpreted as
a particular case of a general result in' Banach spaces. The w?-statistic is a
typical example of this kind (see §3 1). Every such statistic can be represented
as the norm of the sum of i.i.d.r.€’s in Ly space;

ii) cases where a problem can be reduced to known facts from probablhty
theory in Banach spaces. L—statistics (i.e. linear combinations of rank statis-
tics) are a typical example (see §3.2). Such statistics can be represented as a
sum of i.i.d. R—valued r.v’s with an additional remainder term. The remainder
term can be majorized by the norm of a sum of Banach-space-valued r.e’s;

iii) cases where methods and ideas from probability theory in Banach space
can be used in statistical problems. The typlcal examples here are the so—called
U-statistics;

iv) cases where it is necessary to use a combination of the previous ap-
proaches. The estimation of the convergence rate for empirical processes is an
example (see §3.3 and §3.4).

If not stated otherwise, we suppose that all random elements and random
variables under consideration are independent. We refer to Vakhaniya et al.
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(1987) and Araujo and Giné (1980) for the general information on probability

theory and the CLT in Banach spaces, respectively.
Let us introduce the notation we shall use throughout.

B, F real separable Banach spaces with norm ||-|| = || ||z, |- || = || || »-

B* the dual Banach space of B consisting of all linear continuous func-
tionals with the standard sup norm.

H a real separable Hilbert space. We denote the scalar product by
(;+) and the norm by || - [[ = || - ||z

R ‘the real line. :

RE the k—dimensional Euclidean space; (z,y) = z1y1 + - - - + Zxyr de-

‘ notes the scalar product. ’
£y, o the classical Banach spaces of sequences.

Ly(S,8,v), Ly, C[0,1], D[0,1] the classical spaces of functions.
a.s. almost surely.

iid. independent and identically distributed.
r.e. random elemént. ‘
B-r.e. r.e. with values in B.

I.v. random variable (R-r.e.)

c.f. characteristic function

X, X1, Xo, ... € B asequence of i.i.d. B-r.e.’s such that EX =0
Y, 1,Y,,...€ B a sequence of i.i.d. Gaussian B-r.e.’s such that EY = 0
and the covariances of X and Y coincide, ie. Ef(X)g(X) =
Ef(Y)g(Y) for all f,g € B*.
Sp =S (X) =n"23 (X + -+ Xp).
= L(X) the distribution of X.
(Y) the distribution of Y. ~
cov X the covariance operator of X. By definition cov X : B* — B,
cov X(f) = Ef(X)X for all f € B*.
= F||X||%, s € R the s—th moment of X.
Vs = vs(L(X), L(Y)) = [ ||=]|*|£(X) — L(Y)|(dx) the s—th pseudomoment.
lp—v| the variation of the signed measure p — v.
xa(?) the indicator function of a set A.
f®)(z)  the s—th Fréchet derivative of the function f at the point z.
FE(@)hy .. hs = £ (z)[h,- .., hs] the value of the derivative f()(x) as an
s-linear continuous form at the point (h1,...,hs).

fO @) = FO@)[h7] = FO)(@)h...h.

17 (@)|| = sup{|| £ (z)h2|| - ||hl| < 1} the norm of the s-linear form £(*)(z).

C® = C*(B; F) the space of all s-times continuously Fréchet differentiable
functions f:B—F.
= C{(B; F) the space of all bounded functions in C® having bounded
derivatives.
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Chapter 1
Rates of Convergence -

§1.1. The Fourier Method

The Fourier method has a long tradition in'mathematics and particularly in
probability. It is especially effective when used to investigate the distribution
of sums of independent r.v.’s. In number theory it was employed by Gauss
to obtain quadratic reprocity laws and to study the representation of integers
by sums of squares or higher powers (the Waring problem); for the latter, use
was made of the so-called Hardy-Littlewood circle method in analytic number
theory (Hardy and Littlewood (1920)). In two papers, Lyapunov (1900, 1901)
adopted the Fourier method to prove the CLT on the real line under the
so-called Lyapunov moment conditions. This method relies on inequalities
of the following type between the difference of probability measures and its
Fourier transform (called the characteristic function or c.f. for short). Let w
be a probability measure and v a measure. of finite variation on R. If v is
absolutely continuous with respect to Lebesgue measure and its density p'is
bounded: m = sup,p |p(z)| < 00, then for each T > 0. we have

[T A - ) m |
sup Ju((—0,2)) — ¥((=20,2))| £ O / I LA

where C; and Cs are absolute constants and the c.f.
D(t) = / exp(itz)v(dz).
R

This is the so-called Berry-Esseen lemma (Berry (1941), Esseen (1942)). It is
used to prove convergence rates and higher order approximations to a measure
i by a measure v with smooth density by means of their characteristic func-
tions. Here T is chosen so that 77! has a desired error size. The advantage
of the Fourier method in Lyapunov’s approach is apparent from the proof of
the classical Berry—Esseen estimate

suﬂ;; |P{S, <z} — P{Y < z}| = O(n~/?), (1.2)
z€ . )

where S, =n~Y/2(X; + -+ X,,) and X, X3, Xo, ... are i.i.d. real r.v.’s such
that ‘ '
EX =0, B3:=E|X®<o0

and Y denotes a Gaussian r.v. such that EY =0 and G := EX? = EY? >
0. Setting in (1.1) p = pn, = L(Sp), v = LY) and T = A/n for some
A= A(L(Y)) > 0 to be chosen later on, we can reduce (1.2) to the estimate

A"

T
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T ~ ~
t) —D(t
-7 :

Usually the estimation of the difference fin(t) — 2(t) is based on different
arguments for “small” and “large” values of |t| < T'. Clearly

. . k3
fin(t) = Eexp(itSy,) = <E exp(itn_l/zX)> .
Expanding the exponential in a Taylor series we obtain
Eexp(itn™Y2X)| < |1 — Ba2t?/2n| + Ba|t|* /6n>/? < exp(—Pat?/3n),

|fin(8)] < exp(—B2t/3) (14)
for |t| < An'/2? with A = min(B2/B3, +/2Fz). Relation (1.4) and the equality
(t) = exp(—Bat?/2) allow one to show that on every interval n® < [t| < Ay/n
the estimate (1.3) holds for each fixed € > 0. For “small” values of [¢| < n®
one should additionally take into account the coincidence of the moments of
X and Y up to second order, that is

.

g () = 9) | =0,

s=0,1,2.

For example, one can expand
In fin (t) = nln E exp(itn~Y/2X)

in a Taylor series in a neighborhood of zero,

r

nln Eexp(itn™/2X) = —B2t2/2 + O(Bs]t|3n~1/?),

and obtain o) — Dl :

|M@( )];' (t)| _ O(t? ‘exp(—t2ﬂ2/2)n_1,/2).
This guarantees the necessary estimate O(n~'/2) of the ihtegral (1.3) on the
interval |t| < n®. We refer the reader to Lyapunov (1900), Esseen (1945),
Ibragimov and Linnik (1971) and Petrov (1975) for more information on the
Fourier method in the one-dimensional case.

Similar argumentation is possible in the finite-dimensional case. Extensions
of the Berry—Esseen Lemma are obtainable there (see, e.g., Bhattacharya and
Rao (1976), Bhattacharya (1977), Sweeting (1977) and Sazonov (1981)). The
c.f. .

in(t) = Bexp(i(t, 50)) = (Bexp(in™/2(t, X)),

where (z,y) = T1y1 + -+ + TxYs, T,y € R¥, is the standard scalar product
and r.e. X € R¥, still has the multiplicative structure and, generally speaking,
one can repeat the one-dimensional arguments with certain, sometimes very
complicated, technical changes.
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Now let X, X, Xo, ...denote r.e.’s taking values in a measurable space
(X, B). Instead of sums one can study more general statistics

T =tn(X1,..., Xn), (1.5)

which are symmetric in Xi,...,X, and such that the influence of each X;
is asymptotically negligible. An example of (1.5) is provided by U-statistics
(see Gotze (1979), Bickel, van Zwet and Gotze (1986), Gotze (1987)). Another

example is

T= F(Sn)a
where the summands X, X3, Xs, ...of S, take values in a separable Banach
‘space B and are such that EX =0, E||X||* < 0o, s > 2. Here F': B = R
denotes a function that has enough Fréchet derivatives. Therefore T is no
longer a sum of i.i.d. r.v.’s and the c.f. of T" does not have a multiplicative

structure. Thus a new technique for analyzing the c.f. of T' has to be developed .

to still be able to use the Berry—Esseen lemma. Let us start with the simplest
infinite-dimensional case where B denotes a Hilbert space H and F(z) = ||z||2.
The following extremely useful symmetrization inequality allows one to reduce
the analysis of F exp(it||Sy||?) to that of a product of certain characteristic
functions (see Lemma 1.8 for generalizations). ,

The symmetrization U of a r.e. U is defined as U = Uy — Us, where U and
U, are independent copies of r.e. U. .

Lemma 1.1 (Gétze (1979)). For arbitrary independent r.e.’s U, V,

W e H and t € R, the inequality
Bexplitl|U +V + WP < Bexp(2it(T, 7))
holds.
Proof. Note that for any real-valued function f(u,v),
|Eexp(itf(U,V))|? < Eexp(itAq(Vi — Vo) f(U, V3)), (1.6)

where Vi, V. are independent copies of V and the difference operator
Aq(Rh) flu,v) = f(u,v+h)— f(u,v) acts on the second argument of f. Indeed,
applying Holder’s inequality and using the fact that V, Vi, V5 are iid., we
have

|Eexp(itf(U,V))]> < E|E(exp(itf([U, V))|U)]? -
= Eexp(itf(U, V1)) exp(—itf(U, V2)),

which coincides with (1.6). Applying (1.6) twice with f(U,V) = ||[U+V+W]||?
and using in this case that

Ay (h1)Az(h2) f(u,v) = 2(h1, ha),

where the difference operator A; acts on the first argument of f, we complete

the proof. S
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In order to illustrate how the symmetrization inequality works, we sketch
the proof of the following theorem.

Theorem 1.2. Let X,Y € H. Suppose that X is.a bounded r.e., P{||X|| <
M} =1, and X is not concentrated in o finite-dimensional subspace of H.
Then ‘

Ap :=sup |P{||S,]|* < 2} = P{|IY[]* < z}| = O(n™"/?).
B >0 :

In the proof of the theorem we assume that X is not concentrated in a
subspace of H, otherwise we can replace H by this subspace. Thus, there
exists an orthonormal basis {ex, k € N} of H such that

=S} } ©o
Y=Zak77k€ka Zoi<oo,
k=1 ! k=1 .
where 7, 71, 72, - . . € R are i.i.d. standard normal r.v.’s, En =0, BEn? = 1 and
o1 >09 >---20. .
Lemma 1.3. ForallteR andl=1,2,...,
|E exp(it||Y]|2)] < (1 + 4t%01) V4. )

Moreover,
|Eexp(it(¥1, Y2))| < (1 + o) ~V/2, (1.8)

Proof. It is easy to verify that
Eexp(itn®) = 1//1 — 2it.

Therefore -~

Eexp(itl|Y][?) = [ (1 — 2ito?) /2
k=1

and this clearly implies (1.7). Furthermore, since .
Eexp(it(z,Y)) = exp(—(Dz,z)/2),
where D = covY, we have -
Eexp(it(Y1,Y2)) = Eexp(—t*(DY,Y)/2) < (Eexp(—t*oin®))’
which obviously implies'(1.8).

Lemma 1.4. If P{||X|| < M} =1, then for allp > 0 and m, | such that
m+ 1 < n the following inequality holds:

E|In Y2 (X1 4 4+ X + Y1 + - + TP < Cp) MP.
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Proof. It is sufficient to prove that
Bl 3% + -+ )P < O, (19)
Eln 2 (X1 4+ X)|P < Clp)MP. (1.10)
The inequality (1.9) follows from £(Y1 + -+ Y;) = L(+/IY) and
E||Y][P < Clo)(BIY|*)?? = C(p)(B|IX|P)P/? < C(p)MP

To prove (1.10) we apply the Zygmund-Marcinkiewicz inequality (see e.g.
Vakhaniya et al. (1987))

E|Zy+ -+ Zn|P < CO)E(|Z1|? + -+ - + || Zm] |2)P/?

which holds for arbitrary iid. r.e’s Zi,...,2Z,, € H with zero mean.
Therefore (1.10) reduces to the obvious mequahty n"PRE(| X2 + - +
| Xml[?)P/? < MP.

Lemma 1.5. LetP{|[X||<M}_.1 Define U :=n=Y2(X; +--- + Xpn),
m < n. Suppose that the r.e.’s Z, U € H are mdependent Then for all s € R
and L > 0 such that
|s|[LM < v/n, | (1.11)
- we have
2

0< Eexp(is(Z,U)) < P{||Z|| > L} + Eexp (—82—;”'(DZ, Z)) ,  (1.12)

where D = cov X = covY.

Proof. Since ther.e. U is the symmetrization of U := n_1/2(X1+- X)),
the inequality on the left-hand side of (1.12) holds. To prove the inequality on
the right-hand side of (1.12), it suffices to show that for each (non-random)
z € H we have :

Eexp(is(z,U)) < x{|lz|| > L} +exp <—$;—ZL(Dz, z)> . (1.13)

If ||z]| > L, then (1.13) is obvious. Therefore we assume that ||z!| < L. Then
(1.13) reduces to

Eexp(is(z,U)) < exp (—%(Dz,z)) . (1.14)
We have ' , m
Ee:;p(is(z, 0)) = [E cos <%(S,X)>} " (1.15)

since X, X1, X, ...are i.i.d. and?? is symmetric. Put = = s(z, X)/v/n. Then
(1.11) together with ||z|| < L, ||X|| < 2M ensure that |z| < 2. Therefore in
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(1.15) we can apply the obvious inequality cosz < 1 — z?/4 valid for |z| < 2.
Noting that E(z, X)? = 2(Dz, 2) we have

- s m s Dz,
; <I1-— < =
Eexp(is(z,U)) < [1 o™ (Dz,z)} <exp ( 5 (Dz, z)) ,
which completes the proof. ~

Proof of Theorem 1.2. The distribution function r — P{l|Y]><r} has a
bounded density provided o3 > 0. Indeed it follows from Lemma 1.3 that the
c.f.

| B exp(it||Y]|%)] < min(1; 05 °[¢]7%/%)

is integrable. This allows one to apply the Berry—Esseen lemma with T = 1/n.
Therefore the estimate A, = O(n~*/2) will result from the following four

bounds:
L = / L lo®)dt = 0(nY/2);
e <ltl<um |t|

/ —|fn(t)| dt = O(n~Y/2);
ns<|t]<\/— |t

= _ — O(n-Y/2).
L= [ g0 - o@ld =06

Iz

= = - = O(n—1/2
fa: v/lgmgne |t||f”(t) gt)|dt = O(n~"*),

where 0 < ¢ < % is a number to be chosen later and
g(t) := Eexp(it||Y|[?), Ffult) = E exp(it||Sn|]?).
Let us estimate [; ﬁfst. It follows from Lemma 1.3 that '
lg(®) < 1/(of[t]"/?).

Therefore I1 < 2/(lotn/?) = O(n=%/2) if el > 1. But such an [ = [(e) exists
since g; > 0 for all {. '
Next we shall estimate I5. It is sufficient to show for 1 < [¢| < /n and a
sufficiently large fixed constant A > 0 that
Fal®)] = O(H=4 +n4). (116)

Write S, =U +V + W,. where

U=n"Y2X1+ +Xp), V=0 Xnpu++Xmir), W=8,~U-V

and k + m < n. Then by the symmetrization inequality (see Lemma 1.1},
(1.16) follows from

Eexp(it(V,0)) = O(jt] ™ +n~4). (1.17)
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Using Lemma 1.5 we obtain for all L >0 -

: 2
Eexp(it(V,U)) < P{||V|| > L} + Eexp (—Z—S(DV, V)> , (1.18)
provided [t|LM < +/n. Choose (noting that 1 < [¢] < \/_ )
=1/(Mt"*), k~n/@lt), m=n—k~n(l- 1/(21¢))-

Using Chebyshev’s inequality and Lemma 1.4, we have
P{||V]| > L} = P{||S|| > L/n/k} < C(M, A)(k/(nL?))*4 = O(Jt|~*).

(1.19)
Similarly, ‘
Eexp (—%Zi(pv, V)> < Fexp <—%(D5k,§k))
< P{(D3&y, Si) < 8//]t} + exp(—+/]t]). (1.20)
Estimates (1.18)(1.20) reduce (1.17) to
\ P{(D31, ) < 8/} = Ot~ + n=4), 1.21)

where k ~ n/(2]¢]), and 1 < |¢| < /n. But (1.21) is a consequence of the
following concentration 1nequa11ty (note that k& > +/n/2):

P{(D8, 5;) < €%} = O(e* + k1/?), (1.22)

valid for all & > O and [ = 1, 2, . Such a concentration inequality
for balls in Hllbert space can be reduced to the analogous statement in R!
via ||z[|? > Zs 1(z,e5)% In R! concentration inequalities of this kind have
been proved by Esseen (1968), Paulauskas (1973), Gétze (1979); etc. For the
infinite-dimensional case, see, e.g., Siegel (1981), Bentkus (1985b), etc. The
proof of (1.22) in R can be obtained as follows. For s > 0 we have

‘ 2
P{Isnl? < ) < exple’s? DB exp (-5 150117
If we denote by Z € R! a r.e. with the standard normal distribution, then

Eexp <—§||Sn|[2> = Eexp(is(Z, 5,)).

Now one can apply Lemma 1.5.
Let us estimate I3. Put G(z) = exp(it||z|[?>). Then G € C* and

G"(z)h® = —8t*G()[it(z, h)® + (z, h)(h, h)]. (1.23)

The estimate I3 = O(n~%/?) clearly follows from

oo
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|BG(S) — BG(Y)| = O(tln1/?). (1.24)

We shall prove (1.24) using Lindeberg’s method (see the begmmng of § 1.2).
Obviously
|EG(Sn) —EG(Y)| S 1+ + Jn,

where ‘
Je = |[EG(Wi + n~Y2X) — EG(W), +n~Y/?Y)|,

Wi =n""Y2(X1+ -+ Xpoy + Vg + - + V).

To estimate Ji, we use the Taylor formula
Gl +h) = G(z) + G (@h + 56" ()’ + L B(L ~ 7)°C"" (a + TH)A’

with £ = Wy, h = n72/2X and h = n~Y/2Y, respectively. Here the r.v. 7 is
uniformly distributed on [0, 1]. The terms containing derivatives of G up to
the second order vanish since the means and covariances of X and Y coincide
and we have

‘ Je S nS T4 D),
where
Ji = |BQA—7)2G" (Wi +mn~Y2X) X3, (1.25)

= |[BE(1 - 7)’G" (W), + mn~/2Y)Y?|.
It follows from (1.23) for [¢| < 1 that

16" (@)h% = O([t] - ||l (1 +[2][)-
Therefore

T = 0 (JHBIXIP(1 + IWe + 7n2X %)) = O(t)

since ||X|| < M and, according to Lemma 1.4, we have E||Wx|® = O(1).
Similarly, J;/ = O(Jt|) since all of the moments of the Gaussian r.e. Y are
finite. Therefore J, = O(n~3/2|t|), which yields (1.24).

It remains to estimate Iy. Here we shall combine the methods employed in
estimating I, and I5. Repeating the estimation of I3, we arrive at, for example,

the integral Jj, (see (1. 25)) and it suffices to show for [¢] > 1 and each A >0

that -
, T = O(HP (4 + 1)), )

It is clear from the explicit formula (1.23) for G that

G (Wi + Y2 X) X% = EP(t, X, Wi, Tn=Y/2X) exp(it||Wi, + n~>?7X||?),

where P(-,-,-,+) is a-polynomial not exceeding third degree in each argument.
Applying the triangle inequality, we can reduce the estimation of J;, to that
of a certain sum of quantities like |¢|3v, where
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v = |B(Wi, X)* exp(it|| Wi + 7o /2X|1%)],
and so (1.26) will follow from
y=0(t ™ +n4). (1.27)

Let us split Wy, = 11 + T + T5 + T into four sums in such a way, that each
sum T1, Ty, T3, Ty has approximately the same number (equivalent to n/4)
of terms X; or ¥;. Then

(WkaX)sz Z (2}17X)(Tl2‘>X)(TlaaX)

1<is,02,1354
and the estimation of v is reduced to estirating

T = |E(Tl1=X)(leaX) (,Tlsa X) exp(itHWk + Tn_1/2X|12)['

But among T3,, T3, Tj, (with fixed Iy, I3, I3) at least one of Ty, Ty, T3, Ty'ls

absent, say T7. Therefore
n S BIXP T 1T5 ] - 1T e,
where
Yo = |ET1 exp(it||T1 + WHZ)L W= Wk + T’I’L_l/QX - Tl,

and Er, denotes the expectation taken only with respect to the r.e. T3. We
can estimate the moments of the r.e.’s Tj,, T},, T}, by Lemma 1.4. To estimate

72, we repeat the arguments of the estimation of E exp(it||S,||?) used in the

proof of the relation I, = O(n~%/2). Here we replace Sy, by T} and use the fact

that Ty contains at least n/4 summands, and that 77 and W are independent.

In this way we arrive at vo = O(|t|~* + n~4), which implies (1.27). This

completes the proof of the theorem. :
Write

Anla,r) = |P{]1Sx —alF <} = P{IY —alf® <},
Ay(a) = Sup Ar(a, 7‘).'

Estimates of Ap(a,r) in Hilbert space were obtained in a number of papers
by various methods. For 85 = E||X||® < co.and fixed a € H, the bounds on
A, (a) were improved from logarithmic order in Kandelaki (1965) to O(n~%/6)
by Paulauskas (1976b) and to O(n~'/*) by Yurinskii (see Sazonov (1981)).
Assuming additionally that the coordinates of r.e. X are independent, Nagaev
and Chebotarev (1978) showed that A,(0) = O(n~%/2). To prove the same
bound, Borovskikh and Rackauskas (1979) and Rackauskas (1981) needed
only seven coordinates independent of the rest. The essential step is due to
Gétze (1979) who introduced the symmetrization inequality (Lemma 1.1) for
investigations of Ap(a,r) by the Fourier method. Gdtze (1979) proved the
bound An(a) = O(n~%2) for a fixed a € H for 85 < oo and the bound
Ap(0) = O(n7t*e), e > 0, for Bs < co. Yurinskii (1982) introduced in addition
a truncation technique and obtained the following result. ‘

hatdEly & e
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‘Theorem 1.6. There exzists a constant C = C(L(Y)) > 0 such that for
each a € H the following inequality holds: ’

An(a) < C(L+ all®)Bsn /2. (1.28)

The Fourier method was refined and various improvements and general-
izations were obtained by Zalesskii (1982, 1985), Nagaev (1983, 1985, 1988,
1989a)), Bentkus (1984d, e), Sazonov and Zalesskii (1985), Nagaev and Cheb-
otarev (1986), Senatov (1986), Sazonov, Ul'yanov and Zalesskii (1987a, b,
1988, 1989a), Aliev (1989) and Sazonov and Ul'yanov (1990, 1991). It is in-
teresting to note than in infinite-dimensional Hilbert space, one can obtain
better rates than O(n~%/2) without conditions like the classical Cramér con-
dition for the c.f. Namely, if E||X|[**%® < c0, 0 < § < 1, then Ap(a) = o(n~?%)
if a = 0 or X is symmetric (see §2.3 for details). This goes back to a result in
R* due to Esseen (1945) and has been proved by Zalesskii (1982) when a = 0
and by Bentkus (1984e) in the general case. However the following problem
remains open: is it true that for infinite-dimensional r.e. X € H the condition
E||X||* < oo implies Ap(0) = O(n~1)2

The structure of the ¢onstant C in (1.28) has been investigated by various
authors. The dependence of the estimate on the eigenvalues o2 of covY was
studied in particular. Here things have progressed from thirteen eigenvalues in
Yurinskii (1982) to seven in Nagaev (1983), Sazonov, Ul’yanov and Zalesskii
(1987) and to six in Senatov (1989b). Recently Nagaev (1989b) and Zalesskii,
Sazonov and Ul'yanov (1988) gave the estimate

C .
An(0) S =22 (6% 1 |jaff)n7, (1.29)
0'1 DAY 0'6
where 02 = E||X||2, whereas Senatov (1989a) gave the result
An(a,r) < ,Cli(r?’ + Bsn V)12 - (1.30)
' g1-'°06

In both estimates C; is an absolute constant. The proof of (1.29) it is now
1999-2000 appeared in Sazonov, Ul’yanov and Zalesskii (1989b).

Lower bounds of the convergence rate in Hilbert space were found by Sena-
tov (19852, b, 1986), Barsov (1987), Aliev (1987) and Bloznelis (1989). Senatov
(1986) proved the necessity of the first six eigenvalues of covY in (1.29) and
(1.30). Barsov has shown that A,(0) = O(n~(=2/2) for some s > 2 implies
E||X]||*~® < oo for each € > 0, & < s.

A truncation lemma adapted for nonuniform estimates for A, (a,r) was in-
troduced by Sazonov and Zalesskii (1985). Nonuniform estimates of A, (a, 1)
were obtained by Sazonov and Zalesskii (1985), Bentkus and Zalesskii (1985)
and Sazonov, Ul’'yanov and Zalesskii (1987b, 1988). The following bound pro-
vides an example of a nonuniform estimate
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where F||X||® < oo for some s > 3 and p = |/ — ||a||| denotes the distance
between 0 and the boundary of the ball {z € H : ||z — a|| < v/T}.

The case of non-identically distributed summands was considered in Ben-
tkus (1984e), Ul'yanov (1987) and Borisov (1989). For results concerning the
local CLT in H see §2.4.

We end the review of results obtained:in Hilbert space with the following
one on large deviations. ,

Theorem 1.7 (Yurinskii (1988)). Suppose that
Eexp(c]|X]]) < o0

for some constant ¢ > 0. Then there exist constants A; = A;(L(X)) > 0 such
that T
P{|ISul| > r} = P{|Y]| > r}I(r,n, L)1 + 6 Arrn"2)

for Ay <1< Agn'/?. Here |0| < 1 and I(r,n, £L(X)) denotes a certain analog
of the Cramér series in large deviations theorems. Furthermore,

P{||Sn]] > r} = P{||Y|] > r}(1 + 0 Asr®n~1/2)
ZfAQ S r S A5n1/6.

For details -concerning the construction -of - I(r,n,L£(X)), see Yurinskii
(1988). In the case of Hilbert space this improves results of Osipov (1978a, -
b), Bentkus (1986¢c), Bentkus and Rackauskas (1990), Zalesskii- (1989) and
Rackauskas (1988).

Consider now Banach spaces. Put

An,p(r) = |P{F(S,) <r} - P{F(Y) <},

where X and Y assume values in the Banach space B and a function F: B —
R. As in the Hilbert space case the estimation of A, g strongly depends on
the symmetrization inequalities. An example of such an inequality is provided
by the following lemma. :

Lemma 1.8. If a function f(us,...,ur) of arguments ui,...,ur € B is
real-valued and the r.e.’s Uy, ...,Uy € B are independent, then
X k
|E exp(itf(Us, - .-, Ux))|?

< Eexp(zAl(U{ - Ul) T Ak(Ul; - Uk)f(Ula ceey Uk))a
where U, denotes an independent copy of Us and the difference operator

Ag(R)f(o sy -o)=Flooyus +hyoo )= ooy Usy - - n)

acts on the s-th argument of f.

In particular, for oll independent Us,...,Ur+1 € B and every polynomial
7(z) = nx(z) + - - + mo(x), x € B, where ws(z) = 75(x,...,2), s=0,...,k,
denote symmetric continuous s-linear forms on B, the following holds:

T — -vvvw—l
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|Bexp(in(Uy + -+ + Uppr))*" < Bexp(iklme(T1, ..., Ur)), (1.31)
where U denotes the symmetrization of U.

Lemma 1.8 is an easy generalization of Lemma 1.1 if one uses an estimate
of the type (1.6) k times. Inequality (1.31) was given in a somewhat different
form by Weyl (1916) for polynomials m(z) where z has a uniform distribution
on the discrete set {1,...,N}. Here it was necessary to split = in the form
T = 2] + -+ Tk + Tkt1, Where z1,...,2x are uniformly distributed and
ZTx+1 is a function of these variables, so as to yield a uniformly distributed
sum. The generality of Weyl’s inequality made possible numerous applications
in analytic number theory (see, e.g., Schmidt (1984)). For polynomials in
one variable, there are sharper estimates due to Vinogradov (1934). These
seem not easily extendable to general probability distributions. The inequality
(1.31) for k = 2 was derived for the probability context independently in' Gotze
(1979). The immediate extension to k > 2 was used by Yurinskii (1983) to
prove the following result. ’ A

Theorem 1.9 (Yurinskii (1983)). Let B=14,,p=2, 4, ... . Then
[P{|[Sn —all <7} = P{||Y —a|| <} < CBso~3(1 + ||a/a[|*~*)n~ /2,
where 02 = E||X||? and C = C(L(Y)) is a constant.

To formulate the next result we need the following conditions.
Differentiability condition (Ds). There exists p > 0 such that

sup P(1+||z]|)"P[|F®)(z)|| < 00, s=0,...,5.
zEB : :

Variance condition (V). For sufficiently large M > 0 and for each fixed ¢
sup {o(Y +a) <8} =0(6™) as5 | 0,

lla]l<e
where o%(z) = E(F'(z)Y)32.

Theorem 1.10 (Gétze (1983)). If E||X||* < oo and (Ds) and (V) are
satisfied, then

sup |P{F(S) <r} = P{E(Y) <} — O(n~V?). (1.32)

Actually Gotze (1983) proved a slightly more exact result. Under certain
natural conditions Zalesskii (1985) made the estimate (1.32) nonuniform in
the Hilbert space B = H. The proof of Theorem 1.9 uses the Fourier method
and exploits a slightly more general symmetrization inequality as Lemma 1.8.
Gotze (1986) introduced the method of integration by parts (see § 1.3) which
allows one to prove more precise results than Theorem 1.10. Nevertheless;
generalizations and extensions of the Fourier method, used to prove Theorems
like 1.9 and 1.10, are useful for the construction of asymptotic expansions (see
§ 2.3).
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Remark 1.11. Tt seems that verification of variance condition (V) is not
simple in general. For example, it is still unknown whether (V) (or some other
suitable condition) is satisfied for each infinite-dimensional r.e. Y € B = L,
1 < p < oo, with F(z) = ||z|| or F(z) = ||z||® with an appropriate s > 0.

§1.2. The Lindeberg Method

Lindeberg’s proof of the central limit theorem, which appeared in 1920
and 1922, is very simple and can be easily extended to investigate the rate of
convergence even for B-r.e.’s. A similar remark applies to Trotter’s proof given
in 1959. Actually Trotter’s proof differs from Lindeberg’s only in terminology,
but the method is presented in an intuitively more understandable manner.
Besides the original papers of Lindeberg (1920, 1922) and Trotter (1959), we
mention the books of Billingsley (1968), Thomasian (1969) and Feller (1971).

In this section we shall concentrate our attention on some extensions of
Lindeberg’s method that have been used to investigate the rate of convergence
in the CLT in Banach spaces. Recall that X, Y are B-r.e.’s such that EX =
EY =0, covX = covY and Y is Gaussian. Furthermore, Sn =n1/2 (X1 +

-+ X,), where X, X;, Xo, ...are iid.

Briefly, Lindeberg’s approach is as follows. Suppose we have to estimate the

difference of the measures u, = £(S,) and v = L(Y") on a certain measurable
set A C B, i.e., we have to estimate the quantity

MAD—VM%{éXM@Wn—WM@-

The first step is to replace the discontinuous indicator function x4 by a
sufficiently smooth function say g = ga,., which coincides with x4 every-
where with the exception of an e-neighborhood (0A), = {z € B': infycoa
[lz — y|| < €} of the boundary JA of the set A. After this substitution (usu-
ally called the smoothing lemma) two terms are to be estimated: the integral
I = [59(x)(pn — v)(dz) and the quantity v((DA)c). The estimation of I is
based on the Taylor formula and the following identity:

= L(S(X)) = L(Sn(Y))

Z[,c e+ Y2 X — L‘(Wn,ﬁn-lﬂ}fk)], (2.1)
k=

—

where Wy, = n=%/? (Z X+ b1 ) If g can be chosen to be three-

times Fréchet differentiable such that sup ¢ ||g"(z)|| < Ce~3, we can expand
each g(Wy x +n~Y/2X}) and g(W,,, + n~/2Y)) around W, , and obtain
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1 _
IWae +n72X5) = g(Wn k) + ¢ (Wap) [Xeln ™2 + 59" Wr ) [Xgln ™"

+%9/II(WTL,I€ + ean—l/Z) [Xg]n_3/23
where |f] < 1. Due to the equality of the means and covariances of Xj and Y3
(see Lemma 2.2), the difference Eg(W,, x +n~2X}) — Eg(Wx +n~2Yy)
will contain only terms involving third derivatives and we easily arrive at the
bound '

I< C?’L_l/2€_37/3,

where

= .27‘3 hand XL}
w—énnwm £(Y)|(dz)

The quantity v((0A).) is usually of order Ce. Therefore, if 4 = n=/?u3, we
obtain the bound Cv2/*n=1/8 for the difference n(A)—v(A). Such a rate was
found for the first time using Lindeberg’s method in Hilbert space by Kuelbs
and Kurtz (1974). It is clear, however, that in order to derive better bounds
than O(n~'/%), one needs some additional arguments.

Firstly, there are several ways to construct a smooth approximation to an
indicator function such that the smoothing error is as small as possible. In
finite-dimensional space, one can use the convolution of the indicator function
with a Gaussian distribution. This type of smoothing leads to the convolu-
tion ‘method, which yields Berry—Esseen-type convergence rate results. This
method was applied explicitly for the first time by Bergstrom (1944). We
refer the reader to Sazonov’s book (1981) for more details on ‘the convolu-
tion method. Bentkus (19862) constructed directly the approximation of an
indicator function by a once-differentiable function whose derivative satisfies
Hélder’s condition with a constant independent of the dimension and ex-
ploited the smoothing properties of the Gaussian terms in the identity (2.1).
This resulted in a better dependence of the remainder term on the dimension.

However, neither the arguments of the convolution method nor those used
by Bentkus have a satisfactory -straightforward extension to the infinite-
dimensional case. This is due to the limited smoothness properties of Gaussian
measures and to the fact that there is no analogue of Lebesgue measure in
infinite-dimensional Banach spaces. Efforts to provide such an extension to
Hilbert space were made by Osipov and Rotar’ (1985). They considered the
rate of convergence on balls and obtained Berry—Esseen-type bounds with a
logarithmic factor. Optimal bounds had already been found by the methods
of characteristic functions (see the previous section). Nevertheless the argu-
ments used by Osipov and Rotar’ prove to be useful in the case of dependent
r.e.’s (see, for example, Ratkauskas (1990) for the martingale case).

If g is a smoothed indicator function such that g(z) = 1 if z € A and
g(z) = 0.if z € B — A., then one may use the simple fact that the deriva-
tives of g vanish outside an e-neighborhood of the boundary 8A. This idea
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has been exploited in several papers using in addition either iteration or
induction arguments. It yields bounds of at most order O(n‘l/ 6) by as-
suming a finite third moément. Despite the great difference as compared
to the finite-dimensional Berry-Esseen-type results, such orders are in gen-
eral unimprovable (see Theorem 2.6 below). Iteration arguments appeared in
Paulauskas (1976b) and under certain assumptions, he gave bounds on balls
of order O(n~'/%). Refinements and generalizations were given by Butzer et
al. (1979), Ul'yanov (1981), Bernotas (1980) and Bentkus and Rackauskas
(1982), (1983). Bentkus and Rackauskas (1982) applied different notions of
smoothness. This allowed them to prove rates for sets with very unsmooth
boundaries such as balls in the spaces C[0,1], ¢g, etc. These papers mostly
considered the convergence rate on balls under the assumption that for a € B
the function » — (d/dr)P{||Y + a|| < r} is bounded and admits certain es-
timates. Such an assumption can be verified in Hilbert space and some other
“cood” Banach spaces but it may fail in general Banach spaces (especially.in
C[0,1] and cp). Ratkauskas proved (see Paulauskas and Ratkauskas (1989))
that O(n~*/%) remains valid under the natural assumption that the density
r — (d/dr)P{]|Y]| < r} is bounded and the third moment is finite.
‘We shall consider the estimation of the quantity

An,g = sup|P{g(8n (X)) <r} — P{g(¥) <r}|

in detail, where ¢ : B — R is a contuous semi-norm. Without loss of generality,
we may assume that g(z) < ||z|| for all z € B. First we introduce some
conditions needed to formulate results obtained using Lindeberg’s method
with induction. : o
Smoothness condition (As). For each r > 0 and € > 0 there exists a function
gr.e 1 B — R such that
(a) for all z € B,

x(0(2) < 7) < 9re(2) < xla(z) <7 +2);

(b) the function g, is three times continuously Frechét differentiable and
there is a constant C' > 0 such that forallr >0, e >0andi=1, 2, 3,

sup (|98 (z)|| < Ce™".
zeB |
Density condition (D). There exists a constant C = C(g, £L(Y)) > 0 such
that for alle > 0 ‘

supP{r—e<q(Y)<r+e} <Ce.
r>0

Actually condition (D) is equivalent to the existence of a bounded density
of the distribution function P{g(Y") < r}.
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Theorem 2.1. Suppose that conditions (As), (D) hold and that the Gaus-
sian r.e. Y is infinite-dimensional. Then there exists a constant C=C(g, L(Y))
> 0 such that :
An g < Cu/®n~18,

Proof. Define for k =1, ...,n the quantity

Ankg = Sup [P{g(Uk,n) <7} —P{g(Y) <},

where Uy ,, = n‘l/Z(Zle X+ iyt Ya), with 37 5 = 0. We now proceed
to prove inductively the bound

= 1/3__1/6
Op := lrsnka%{n An kg < Covy'"n / ,
which of course yields the desired result since Apg < 6n.
Since Y is infinite-dimensional, we have §; < Coyé/ 3 (see, e.g., Theo-
rem 5.1.11 in Paulauskas and Rackauskas (1989)). So let n > 1 and suppose
that according to the induction assumption

by < Cora*(n—1)"1/8. (2.2)

Let € > 0 denote a parameter which will be specified at the end of the proof.
If r < 2¢, we have Ay, 1 4(r) < Ay kq(26) + Ce, where

Ankg(r) == [P{q(Ung) <1} = P{g(Y) <7}

Therefore it is sufficient to estimate A,k 4(r) for 7 > 2e only. Define g;(z) =
9r.e(2), 92(2) = gr—c,(x), where g, is the same function as in condition (43).
Define

G =L(Uni), P =L Wnz), H=LX)-LY).
One easily shows the following smoothing inequality (see Kuelbs and Kurtz

(1974)):

A qlr) < max +P{r—e< ‘q(Y) <r+e} (2.3)

i=1,2

/ 6(@)(Gr s — G)(de)
B

The last probability does not exceed Ce due to condition (D). To estimate
the integrals in (2.3) we proceed as in Lindeberg’s method. Using (2.1), we
obtain’ ‘

] [ (@)Gns - G)(aa)

K
<D
j=1

We now expand g;(y + zn~*/?) in a Taylor series in a neighborhood of y
obtaining

//gi(y+mn‘1/2)Pn,j(dy)H(dw).
BJB
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1 . .
gily +an™%) = gi(y) + GiW)laln T2 + Sn7rg] (y) 7]
1 1 '
+5n7 /0 (1= 6)2g7 (y +6n~1/22) 2% 6. (2.4)
Note that [z g;(y)[z]H (dx) = 0 since EX = EY = 0. Moreover,

/ 6!/ () 2] H (dz) = 0
B

since the covariances of X and Y coincide. This is not trivial because cov X =
covY implies Ef(X)g(X) = Ef(Y)g(Y) for all f,g € B* only. The second
derivative g} (y), which is continuous bilinear form on B, in general may not
be generated by linear functionals. But we have the following result due to
Borisov (1989).

Lemma 2.2. Let B be a separable Banach space. Let re.’s X, Y e B,
E||X||? < 00 and Y be Gaussian. If EX = EY =0 and cov X = covY, then
for each continuous bilinear form T on B the following holds:

ET(X,X) = ET(Y,Y).

We continue with the proof by integrating both sides of (2.4) Wlth respect
to P, ;(dy) and H(dz). We obtain :

// (y + n=/22) Py, (dy) H (de)

—n‘3/2/ (1-6)?

< [ [ o R @ E s (@)

Split the integral with respect to H (dz) into two parts over {| |z]| <'ey/n} and
{||z|| > ev/n}. Denote the first integral by I; 1 and the second one by I;». In
order to estimate I; 1 we use the following bound on the third derivative of
the function g;, which follows from the property (a) of condition (A3z) and the
assumption ¢(z) < |[z|] < en'/:
g/ (y + 60~ 22)[2%])] < Clz|[PeSx(r —e < qly + n~Y22) < r + £)
< Cllal’e™x(r — 2e < a(y) < 7 +22).
Therefore we have
|I;1] < Ce™3n 3203 P, ;{r — 26 < q(y) <+ 2¢}. (2.6)

Due to condition (D),

P, i{r —2e < q(y) <742} < 20,1 + P{(r — 2¢)(n/n — 1)*/2

< q(Y) < (r+2¢)(n/n—1)*/?} < 26,_1 + Ce, (2.7)
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and we arrive at the estimate
|Ij,1| < CE‘_3n_3/27/3(5n_1' + E). v (28)
For {||z|| > e+/n} we have ’ )

x(r—e<qly+6n~%) <r+e)
<x(r— _2||$||n—1/2 < qy) <r+2llz)jn?),

and, as above, we obtain an estimate of the integral of this indicator function
with respect to Py ;(dy) of order C(8,—1 + n~*/2||z||). Since we can use the
third pseudomoment only, one needs to reduce the third derivative of g; to
the second one. Integrating by parts, we can rewrite the remainder term in
(24) as

1 S
—59 a4 [ (L= 0)gl 5 + 60 20)la?)
0
and proceed as above. In this way we can prove bound (2.8) for I; » and finally
we arrive at the estimate

Ankg(r) < 05_37”0_1/2?3(571—1 +¢) + Ce,
valid for all » > 0; thus, we have the following recursive inequality:
Sn < Ce™3n7 2y3(8p1 + ).

In order to finish the proof we choose € = C’lz/;/ 3n~1/6 with an appropriate
constant Cy and use the induction assumption (2.2). '

Theorem 2.1 is taken from Paulauskas and Rackauskas (1989). We refer
the reader to this book for more information about the results obtained by
Lindeberg’s method combined with induction. Some generahzatlons of this
approach are described there in detail.

The same method can be used to obtain nonumform bounds on the con-
vergence rate and to investigate probabilities of large deviations as well. This
is possible due to the “good” estimates of the Gaussian measure of the set
{r —e < q(z) < r+e} for any continuous semi-norm ¢ on B. For instance,
when r.v. ¢(Y) has a bounded density, a well-known result of Fernique yields
foral A>0,e>0,r>0

P{r—e<q(Y) <r+e} < Ceexp(—Ar),

where C = C(), L(Y)). More precise results of this type are needed when con-

sidering large deviations. To this end the following lemma proved by Lifshits
is quite useful (see Bentkus and Ratkauskas (1990)).
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Lemma 2.3. Let g be a continuous semi-norm on B. Then
(a) there ezists a constant C = C(L(Y)) > 0 such that for alle >0, 7 >0

P{gY)>r—e} < C'exp(C’ré)P{q(Y) > r};

(b) for any ro > 0 there exists a constant C = C(ro, (Y)) > 0 such that
foralle >0, r 219

Plr—e<qY)<r+e}<Ce(r+1)P{g(Y)>r—c} (2.9)

Moreover, (2.9) holds for all 7 > 0, € > 0 with C = C(L(Y)) > 0 if and only
if the distribution of the r.e. ¢(Y) has a bounded density.

Now, if we examine the formulas (2.6), (2.7) and make use of Lemma 2.3,
we easily see the possibility of obtaining nonuniformity of power type in the
bounds on [I;;| and |I;2|. With some additional technical arguments the
following result can be proved (for details, see Paulauskas and Racékauskas
(1991)).

Theorem 2.4. Let m > 3. Suppose that the conditions (As) and (D) are
fulfilled. Then there exists a constant C = C(m, L(Y)) > 0 such that

(X)) <r}—P{g(Y) < r} £ Cmax(vm

suprm|P{q m/2+l7yg.n/mn—1/6)‘

Exponential nonuniformity is also available (see Paulauskas and Ractkauskas
(1991)). The validity of Lemma 2.3 in Hilbert space was pointed out by Ben-
_tkus (1986¢), who investigated P{||S,(X)|| > r} for 0 < r < r,, where

= O(n Y 6). This result was generalized to Banach space and improved in
Bentkus and Ragkauskas (1990) by Lindeberg’s method with induction and
iteration arguments. A typical result i is the following one.

Theorem 2.5 (Bentkus and Rackauskas (1990)). Suppose that ¢: B —R
is continuous semi-norm and E||X||? < co. Suppose that the conditions (As),
(D) are fulfilled. Then the following statements are equivalent:

(a) there exists h > 0 such that
Eexp(hg"/?(X)) < oo;
(b) there exist constants Cq, Cy < 0 such that
P{q(Sn) > r} < C1P{q(Y) >}

for 0 <1 < Cynt/S
(c) there exist constants C1, C2 > 0 such that

P{q(S,) >} =P{q(Y) > r}(1+0Cn Y51 + 'r))

for 0 < r < Con8, where |9] < 1;

R vt
<

i A i
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(d) for every function f: R — R such that f(z) — 0 as z — o0,
Pa(Sn) > r}/P{g(Y) >r} =1,

uniformly inr, 0 < r < f(n)nl/Ss.

asn— oo .

Remarks on the proof. Assuming (a) to be true and employing Lemma 2.3
(instead of (2.7)) to help estimate |I; 1| and |I; 2|, we obtain

[P{q(S

when 0 < 7 < Cyn'/®. This implies (b) which can be viewed as a first itera-
tion for proving (c). The proof that (d) = (b) proceeds by investigating the
sequence sup[P{q(S,) > r}/P{q(Y) > r}: 7 < f(n)n*/%], n € N. One shows
that if (b) is false, then this sequence fails to be bounded. To prove (b) =
(a), one applies Lévy’s inequality.

As mentioned above, the bound given by Theorem 2.1 is in general sharp.
The following result presents an example in Hilbert space.

n) > 1} = P{g(Y) > r} < CP{q(Y) > r}n~/5(1 +7)*/*

Theorem 2.6 (Bentkus (1986b)) Let a sequence by, 1 0. There exist a
zero-mean Gaussian ls-r.e. Y, a symmetric ls-r.e.. X and a continuous semi-
norm g on ly such that

(a) covX =covY, P{|X]| <1} =1;

(b) both conditions (As) and (D) are fulfilled;
(¢) Ang > byn~8 for infinitely many n

Sketch of the proof. Let I, s > 1, be blocks of natural numbers of length
ks, s > 1. Let \; = 273/2k72/3 i & N. Define

= Z)\S Z |xk|

s=1 kel

The condition (As) for the semi-norm ¢ can be deduced by means of the argu-
ments of the proof of Theorem 2.2.31 in Paulauskas and Ragkauskas (1989).
To determine X and Y, we first define r.e’s X&), j € N, by setting

P{XW =a;);"e;} = P{XW) = —a;07le;} = (2k;) 7Y, i € I,

where {e;, 1 € N} is the standard basis inls and a; = 27%9/3%; /% ; € N. Now
let X = Z 1 X ). It is easy to check that X is an [>-r.e. The corresponding
Gaussian 12-r e. is defined by Y = Zz: 03%ies, where v;, ¢ € N, is a sequence
of i.i.d. standard normal r.v.’s and &; = a;\ y lk Y2 fori e I;, 7 € N.Since Y
has independent coordinates, one can easily check that the distribution of r.v.
g(Y') has a bounded density. Therefore, the condition (D) follows. To prove
(¢) note, that

P{g(Sn(X)) <1} 2 P{g(Sa(X)) <7 —as},
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where X () = P Lx @), ay = nl/? Z s @;. Using the estimate of the rate
of convergence in the CLT in (k1 +- + ks—1)-dimensional space (e.g.,
Bentkus (1986a)), one deduces that

Apg > sup[P{q(?(s)) <r—ast—P{gY)<r}]
r>0 '
—Clly+---+ ]4,-5_1)277,—1/27

where Y(8) = Zf;ll ZkeI,- Grvrer. To finish. the proof one has to use the
properties of the Gaussian r.e. Y and choose an appropriate sequence k;,
1€ N. '

In the case where one of the conditions (As), (D) fails to hold, the rate
of convergénce may be arbitrarily slow. Appropriate examples have been con-
structed by Bentkus (1984a), Rhee and Talagrand (1984) and Borisov (1985).

The verification of conditions (Ag), (D) is a separate problem. For details

on the properties of the density of the r.v. ¢(Y") for various functions ¢ : B — R
we refer to the survey paper by Davydov and Lifshits (1985) and to Lifshits
(1983) and Rhee and Talagrand (1986). Smooth approximation of an indicator
function with various notions of smoothness are investigated in Bentkus and
Rackauskas (1983) and Paulauskas and Rac¢kauskas (1989), (1990).

We close this section with two results connected with conditions (As), (D).
The modulus of convexity of a continuous semi-norm ¢ on B is defined by

Tq(e) = inf{l —g(z —y/2) 1 q(z) = q(y) = 1, g(z —y) 2 €}.

Theorem 2.7 (Rhee and Talagrand (1986)). If there exist constants C >
0, B > 2 such that 7,(¢) > Ce® for each 0 < £ < 2, then the condition (D)
holds.

Note that the norm of the space Ly, p > 1, satisfies Theorem 2.7. The next
result is usually. used to construct a smooth approximation of an indicator
function.

Theorem 2.8 (Bentkus and Rackauskas (1984)). Condition (Asz) is equiv-
alent to the following one. For each € > 0 there exists a function f: B — R
such that

(a) forallz e B
’ la(z) = fe(z)| < &

(b) the function f. is three times continuously Fréchet differentiable and

sup || £ (z)|| < Ce™1, §=1,2,3.
z€B
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§1.3. The Method of Integration by Parts

The method of integration by parts was introduced by Gotze (1986). It
allows one to obtain the Berry-Esseen-type bound for the speed of convergence
in the CLT for sets {x € B: F(z) <r}, r € R, where F : B — R is a smooth
function. When F is a linear function, this method reduces to Stein’s method
of differential equations. Further developments of Gdtze’s approach are due to
Zalesskii (1988). In order to describe the method we introduce the following
conditions.

Differentiability condition (D,,). The function F' : B — R is m times
Fréchet differentiable and there exist constants Cr > 0, p > 0 such that

I1FO@)]| < Ce( +|lz|PP), i=1,...,m
To formulate the next condition, let
o?(z) = B(F'(z)(Y)).

Variance condition (V)..For any ¢ > 0 and for sufficiently large M > 0
there exists a constant C' = C(c, M, L(Y)) such that for all £t € R

stﬂp Eexp(—t?c?(Y +a)) < C’(l + )™

Theorem 3.1. If conditions (D3), (V) are fulfilled and E|| X || < oo, then
Ay, = supIP{F( < r} P{F(Y ) < r}| = O(n‘l/Q).

Gotze (1986) proved Theorem 3.1 under the additional condltlon that the
thlrd derlvatlve of F satlsﬁes

|1 (x ny) FU(y)l| < Cr1+ vallp + Ilyllp)llxlls

for somee > 0,p > 0, and under a more complicated variance condition. Theo-
rem 3.1 was proved by Zalesskii (1988). Actually Zalesskii proves a nonuniform
result. To state it, let p denote the distance from 0 € B to the boundary of
the set {z € B: F(z) <r}.

Theorem 3.2 (Zalesskii (1988)). Suppose that conditions (D3) and (V)
hold and E||X||® < co. Then for any.s > 0 there exists a constant C =
C(L(X),s) such that

IP{F(S,) < r} — P{P(Y) < r}| < On~Y2[(1 4 p)=° + (1+ [rl)~*].
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Now we give the main ideas of the proof of Theorem 3:1. For details, see the
papers of Gotze (1986) and Zalesskii (1988). The first step is to replace X; by
its truncation at the level n'/2. One easily deduces that A, < A, + Cn‘l/ 2
where

' A, =SU£1P{F(5n)'<?"}—P{F(Y) <r},
re

S, =n"2(X1 + -+ Xp); Xj = X; if || X;]] < n!/2, and X; = 0 otherwise.
Then one smoothes the indicator function of the set {F(z) < r}. To this
end, let f = fr, : R — R be a monotone non-decreasing function such that
f@®) =0ift<r—n~Y2 f(t)=1ift > r, f is three times differentiable and
[fO )] < Cn¥/?,i=1,2,3. Define f1(z) = f(F(x)), f2(x) = f(F(z)—n""/?).
Then we have

A< xsup!]]+supP{?“<F( )< r4+n7l2Y
1’ reR

where _
Ii=Ii(r) = Efi(S,) — BEfs(Y), i =1,2.
The next lemma proves the boundedness of the density of the r.v. F(Y").

Lemma 3.3. Let m > 2. If the function F : B — R satisfies (Dp41) and
(V) and a function ¢ : B — R satisfies (Dy,), then for each e > 0 and all
a € R there exists a constant C = C(a,e,L(Y)) > 0 such that for allt € R

sub |Eexp(itF (Y +z))p(Y +z)| < C(1 + [¢])~™ .
llz]|<a ,

From Lemma 3.3 we easily obtain the estimate sup,cg P{r < F(Y) <
7+ ¢} < Ce. Therefore it remains to estimate I;, ¢ =1, 2.

If identity (2.1) and a Taylor series are employed, then the third der1vat1ves .

of the smoothed indicator function f would occur which are of order O(n 3/2),
This is much too large to obtain an error bound of order O(n~/2). The main
idea in integrating by parts is to insert factors in the integrals in I; in such a
way that integrating by parts helps to replace the derivatives f®), k = 1, 2,
3, by the function f. To determine such factors, we need some preparation.
Let Xp11, Xn+a, Xn+s (respectively Y,o1, Y10, Y,13) denote independent

copies of X (respectively Y). Let § be a r.v. uniformly distributed on [0, 1].

Define random functions

015(2) = F'(2)[Xns], 02,5(2) = F/(2)[Yasgl, 5 =1,2,3,

and functions
o3 (z) = B(F'(z +0n7Y2X)[X))?, o2(z) = B(F'(z + on~Y/2Y)[Y])%

Then h;(z) = H? 197;(@)(0f(z) +n7) 72, i = 1,2, a > 1/2, are the factors
mentioned above. Put
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Ui =0 2R+ + X+ Visr + - + Vo)
and
Zy = 1 Xny1 + 02 Xnqo + t3Xns3, Zo = t1Vnq1 + t2¥nqo + t3Y04s.
Lemma 3.4. For any [n/2] < k< n,
[Ef(F(Ukn)) = Ef (F(Ukm + Z1))1(Ukn + Z1)| = O(n™3).
Lemma 3.5. For any 1 <k < [n/2],
\Ef(F(Uin)) — Ef(F(Ukn + Z2))ha(Unn + Zo)| = O(n‘l/ %).
Now let us continue with the consequences of these results. We have
L <Jy+Jo+Cn7Y2

where

|Eh( n,;ne T Zl) Eh(Unm + Zl)l,
IEh( n,n0 +ZZ) (Un,0+Z2)|a

h(z) = f(F(2))hi1(z) and ng is the integer [n/2].
Now one proceeds as usual. One uses the identity (2.1) and then expands
the function h in a Taylor series up to terms of second order obtaining, e.g.,

n
n< > Ie |+|J< |+ 730,

k=ng
where |
IR = [ [ xlell > Vi) Qun(dy) H(da)
12 = [ [ xtial > VR ()i Qs dy) H (),
78 = /B /B Ry + An=Y22) (220" Qy n (dy) E (d2), X € [0,1],

H=L(X)-LY), H=L(X)-L(), .
’ : k—1 n v
Qne = L), W =0/ (Z X+ Y Y) |
The following lemma is important for the further estimations. Put

05 (z) = E(F’(x)[Xl])Q-
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Lemma 3.6. Foranyc>1/2,b> 0, a € R there exists a positive constant
C such that for any k=1,2,...,n

sup E(0Z(Wpr+2z)+n7%) "< C.
llzll<a -

Integration by parts is applied after rewriting

Gy + Z)F (Fly+ 22)) = - F(F(y + 20);

20+ Z)gsoly + 20) (Fly+ 20)) = g FF 0+ 22),

etc., and using the fact that the factors g1 ;(y+Z1) are always attached to the

derivatives of the function f. Now one considers J. (z) fo fo fo @) i dty dtg dis
and integrates by parts to estimate these integrals .
Integration by parts is also useful when investigating the probabilities of

large deviations. As an illustration, we state the following result (cf. Theo-

rem 2.5 and Theorem 1.7).

Theorem 3.7 (Rackauskas (1988)). Let X, Y be H-valued r.e.’s. The fol-
lowing statements are equivalent:

(a) there exists A > 0. such that
Eexp(\|X[['/?) < o0;
(b) there exist constants C; = C(L(Y)) > 0, i = 1,2, such that
P{|ISl| > 7} = P{Y[| > r}(1 + C20(L + r)n™/?),
when 0 < r < Cyn/S. Here |6] < 1.

Earlier Zalesskii (1989) proved (b) under the slightly stronger moment con-
dition Fexp(\||X]]) < oo. ‘

§1.4. The Method of Finite-Dimensional Approximation

This section discusses the method of finite-dimensional approximation in
the context of estimating the convergence rates in limit theorems in infinite-
dimensional spaces. At the end of the seventies, it seemed that this method
yields less accurate results compared with other methods. The first estimate
in the CLT in infinite-dimensional Hilbert space, due to Kandelaki (1965) (see
also Vakhaniya and Kandelaki (1969)), by means of finite-dimensional approx-
imation, had only an inverse logarithmic order of decay. Sazonov (1968, 1969)
used finite-dimensional approximation in the CLT in Hilbert space for sum-
mands having a special structure (for the w?-test) and he achieved the rate
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O(n~/%+%), ¢ > 0. Giné (1976) and Paulauskas (1976a) used this method to

- find the convergence rate in the CLT in C(S), where S is a compact met-

ric space. For § = [0,1] and the limiting Wiener process, they obtained
the rate n=*/2% or even less. These papers studied-the special compact set
§ =1{0,1/2,1/3,...} under very strict conditions on the terms: sub-Gaussian
increments and a very slow rate of growth of the metric entropy, etc. The rate
found in these papers was n=/6%¢ ¢ > 0. In a later paper, Paulauskas (1984)
came up with n~1/2+¢ ¢ > 0.

There are more papers where the method of finite-dimensional approxima-
tion has been applied under different settings. But a general feature of all is
the rather slow rate of the bounds obtained. This can be explained by the fact
that the estimates such as

sup |P{Sn(X) € A} = P{Y € A} < C(k)C(L(X), L(Y))n~ /2
€

on some class A of Borel sets in R* (for example, the class of rectangles or the
class of convex sets) depend rather heavily on the dimension k. The present
estimates of the constant C(k) are of the form C(k) < CkP for some absolute
constant C' and some exponent 8. They depend on the form of the constant
C(L(X),L(Y)) and on the class of sets .A under consideration. For the class of
convex sets and the identity covariance operator of X, Nagaev (1976) and Sen-
atov (1983) proved the estimate with 8 = 1 and C(£(X), L(Y)) = E||X|}3.
Bentkus (1986a) improved this result to 8 = 1/2. We note that for the method
of finite-dimensional approximation usually one needs estimates in R* over the
class of rectangles only without assumptions about the covariance structure
of random vectors. To this end, there is a useful result due to Bentkus (1984c,
1990). Namely, he constructed smooth functions approximating well the indi-
cator functions of balls in z’go with precise estimates of the derivatives of these
functions (see Lemma 4.6 below). This allowed him to obtain new bounds on
the remainder term in the CLT in (%, for the class of balls with worse depen-
dence on n but with much better dependence on k, namely, logarithmic. This
resulted in a better convergence rate in the CLT in the space C(S), S a com-
pact metric space (see Bentkus (1982) and Paulauskas and Rackauskas (1989)
for full information on this topic) and even in other infinite-dimensional : spaces
(see Paulauskas and Jukneviziené (1988) for a generalization to the Skorokhod
space D[0, 1] and Norvaisa and Paulauskas (1990) for the case of general em-
pirical processes).

Now we describe this method in detail. Suppose that our r.e.’s X, X1,
X2, ...are random processes, defined on a probability space (2, A, P) and
indexed by some parameter set T, which we assume to be a compact metric
set, ie., X : @ x T — R. We shall view X as a map from Q to loo(T), the
space of all bounded functions on T with supremum norm or to some smaller
subspace such as C(T). For z € loo(T), ||2|lcc = ||Z]|7,00 = SUPer |2(2)];
let EX(t) = 0 and EX?(t) < oo for all £ € T. Suppose that the corre-
sponding Gaussian random element ¥ = {Y (¢),¢t € T} with EY(£) = 0 and
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EY ()Y (s) = EX(t)X(s) forall s,t € T, is in loo (T") (or'in a smaller subspace
if X is concentrated in it). Finally, (in order not to use outer measure and
integrals) suppose that both ||S,, ( oo and ||Y||cc are measurable. Therefore
the quantities

Ap(r) = An(T,7) = |P{||Sn(X)|loo < 7} = P{||¥]loc <7}, (4.1)
A, =sup Ay (T, 1)
r>0

are well defined. Before proceeding to estimate (4.1), we give the main exam-
ples which fit into this framework. '

(a) T = [a,b], X and Y, as processes on [a, b], are a.s. continuous. Here an
estimate of A (r) yields the rate of convergence in the CLT in Cfa, b].

(b) T = [a,b], X and Y have no discontinuities of the second kind a.s. Here
An(r) measures the rate of convergence in the CLT in Dia,b] on balls with
respect to the supremum norm. Later on we shall consider this example in
detail (see §3.3).

(c) Tt is possible to generalize (b) and to consider the space D(A) of
functions z : A — R, indexed by some class A of closed Borel subsets of
I¢(= [0,1]%), which are outer continuous and have inner limits. This space
was introduced by Bass and Pyke (1985, 1987) where general limit theorems
for a triangular array were proved. If one takes T' = A in (4.1), it should be
interesting to find estimates of the convergence rate in these general theorems.

(d) Let Z, Z1, Zs, ... beiid. r.v.’s with values in a measurable space (X, A)
and with a distribution m. The empirical process associated with m is given

by
1 n
—\/ﬁ<’l_’£ __Elézi—m>'

We consider the process E,(f), f € F, indexed by some class F C La(x, A, m)

of real—valued measurable functions f : x — R. Here and in what follows we .

put u(f f f(z)p(dz). In particular, the class F can consist of the indicator
functlons of some class of sets. Let {Gm(f), f € F} denote the limiting Gaus-
sian process (see Giné and Zinn (1984) for details). For simplicity, assume that
F is countably generated (for m), that is, there exists a countable subclass
Fo C F such that supsez |En(f)| = supser, |En(f)| a.s. for alln > 1. A pos-
sible way to estimate the convergence rate in the CLT for empirical processes
E.(f), f € F, is to bound the quantity

8n(F,r) = |P{sup |En(f)| <} = P{sup |Gm(f)| <T}-
feF feF

This coincides with A,(T,7) in (4.1) if we choose X =z —m and T = F.
Rates of convergence for empirical processes will be described in the last
chapter. This important example has an ‘additional theoretical aspect. It is
known that in any Banach space an estimate in the CLT on balls can be
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obtained by estimating the remainder term in the CLT for the empirical pro-
cess with class F being the unit sphere of the dual space B* (due to the fact
\lz]] = sup{|f(z)| : f € B*, [|f]| = 1}).

.We now return to estimating the quantity A, (7T,r) in (4.1). Suppose that
0 1s some pseudometric on T under which T is totally bounded. Usually o is
connected with the process X. The pseudometric 7(s, t) = E/2(X (s)—X (¢))?,
s,t € T, provides such an example. Let § > 0 be arbitrary and N = N,(9)
be the number of elements of a minimal d-net T'(§) = {¢1,ta,...,tx} of the
totally bounded set (T, ¢). For z € {o(T) and § > 0, put

wo(,8) = sup{|z(t) — z(s)| - t,s € T, oft, 5) < 3};

lally = max =(6) = max [o(t)];

AY(r) = An(T(6),7) = | P{||Snllw > 7"} P{HYHN >r}.
Obviously, for each n and any 0 <e<r,we have

P{[|Snlloo > 1} — P{IIYHoo>r} P{||Snlleo > 1} — P{IIS Iy >r—¢}
+P{||Sully > —e} = P{|[Y|Iy >r —¢}

+P{|Y|ln > 7 —e} = P{||Y]|ec >}

< P{[|Salloo > 7, [|Sn]|lv <7 —¢}
+AJ(r—e) + P{IY||y > —¢&,||Y]|oc <7}

< P{wy(Sn, 6) > &,[[Snlloo > 7}
+AN(r—e) + P{r—e < ||Y]loo <7}

Analogously we have the lower bound

PlllSnlloo > 7} = P{l[Y [loo > r}
> —A7(r) = P{r <|[Y]loo S 74} — P{wy(Y;6) >'¢, [ ]oo > 7}

These estimates lead to the following lemma which presents the core of the
method of finite-dimensional approximation. .

Lemma 4.1. Foralln and alle >0, r > ¢, § > 0,
An(T,7) S A (r— &) + AN (r)

+P{wy(8n,0) > €,1|Sn]|oo > 1} + P{w,(Y,6) > &, ||V ]| > r}
+P{r—e< HYHOO <r+e} (4.2)

Remark 4.2. The last term in (4.2) is the Gaussian measure of an e-strip
straddling the boundary of a ball in o (7"). Such terms appear in all methods
used to estimate the convergence rate (see §§1.1, 1.2). In what follows we as-
sume additionally that for each m > 0 there exists a constant C = C(L(Y"), m)
such that for alle > 0, r > 0

P{r<||[Y|leo r+e} < Ce(l +7")‘"". v (4.3)
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Remark 4.3. The bound (4.2) has been proved for r > €. If we want to ob-
tain a general estimate of A, (7, r) involving uniform and nonuniform bounds
simultaneously we need to estimate sup.>o(1+7)™An(T, 7). It is easy to see
that this can be reduced to estimating over r > £ only. Indeed, utilizing (4.3),
for any 0 < r < g, we have

(1+7)"AL(T,7) < (1+€)™An(T,e) + 2P{||Y]|cc < €}
<sup(l +7r)"AL(T,r) + Ce.
r>e
Remark 4.4. Sometimes it is better to bound P{||Sn||lc > 7,|[Snllv <
r—e} by

P{ sup sup [Sn(t) = Sn(t:)] > ¢ ||Snllec >}
1<i<N o(t,t:) <8 R

We now discuss briefly the estimation of the terms in (4.2), except for the
last one, for which we require (4.3). The terms

P{w,(Sn,8) > &,1|Snlleo > 7}, P{wy(Y;6) > &,]|Y]lee > 7}

in (4.2) control the oscillation of the processes S, and Y, respectively. Using
the elementary inequality

P{AN B} < (P{A})(P{B})'™",
valid for all 0 < v < 1, we reduce the estimation of these quantities to that of
P{w,(8n,8) > e}, P{w,(Y,6) > €}, (4.4)

P{[|Snloo > 7}, P{[[Yllec >} (4.5)

To bound the terms in (4.5) the Chebyshev inequality suffices. Since we are
assuming that the Gaussian process Y, as a process on the parameter set T,
is bounded, we can use an exponential bound for the tail of the distribution
of the Gaussian process (see Fernique (1971) and Marcus and Shepp (1972))
there exists a finite positive constant C such that for all €,6.€ RT

P{wy(Y,6) > e} < Cexp(—&>/405(8)),

where 02(8) = sup{ E(Y (t)—Y (s))? : o(s,t) < 6}. The only term for which we
are unable to recommend a general approach is P{w,(Sn,d) > €} since under
different assumptions on £(X) different bounds for this term are available.

The estimation of AYN(r) and AY (r — ) is equivalent to estimating the
convergence speed in the CLT in the finite-dimensional Banach space I¥. In
estimating Al (r), one must keep in mind that N (through its dependence
ond=dy ! ) will grow with n. Another feature in estimating AX (r) is the
appearance of the probability

P{r< X Y (¢)] <r+e} (4.6)
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We can bound the quantity (4.6) by Ce using (4.3) and the term controlling
the oscillation of the process Y.
We shall state an estimate for AY (r) when E||X||2, < co. Write

WQ(‘C(Y)u 5a t) = Sup(l + T)gp{wQ(K 5) > ta HY”oo > 'r},

Ms(n) = '1/6(1V(EHXJ|3 +B[Y|%)Y?),
Dn(8) = Ms(n) vV Wo(L(Y), 8, M3(n)),
Hy(u) = log No(u),
aVb=max(a,b), a Ab=min(a,b).

Theorem 4.5. There exists an absolute constant C < oo such that for all
0>0,n €N, r>0 the following estimate holds:

AN (r)y < C(1 +7) 3 HZ(6)(Dn(5) V.D3(3)), (4.7)
where Ny, = N,(6).

This result is taken from Norvaisa and Paulauskas (1990). Earlier results
of this kind (roughly speaking, giving an order n=%/® for A,) were proved
by Paulauskas and Rackauskas (1989) (see Theorem 5.2.6), and Paulauskas
and Jukneviciené (1988). In the formulation of (4.7) we did not seek the best
possible accuracy. It is easy to see that instead of the moments E||X|[3, +
E||Y]]3, in (4.7) one can use

/ sup [o(8) F£(X) — £(Y)|(da).
teT

But in estimating the oscillation of the processes S, and Y, at present one
cannot avoid using the moments E||X|E and E||Y|Z,, p > 3. Therefore we
had to restrict ourselves to (4.7). A more important question concerns the
power with which the metric entropy H,(d,) occurs in (4.7). It is possible
to show that this power can be lowered from 2 to 2/3 in two cases: if we
confine ourselves to uniform estimates of AY = SUP,>0 AN (r) or if we allow
sup,, B||Ss||2, to appear in the final estimate of A, (T, 7).

The proof of Theorem 4.5 runs along the lines of Lindeberg’s method,
described in the previous section. Therefore we shall give only a sketch of the
proof. Define

é-j = (Xj(tl)a"‘>Xj(tN))u = (Ya'(tl)v'“?}./}(ti\f))?

where Y, Y1, Y3, ... are i.i.d. r.e.’s. Instead of AY (r) it is more convenient to
estimate the quantity

N _ simr 1 , |
o, = e supr IP{n~Y||er 4 + &+ mjpr+ -+ [y S 7}
—P{|nllx <7},

which majorizes AL (r)r3. The first step is usually called smoothing and uses
the following result due to Bentkus (1990) (see also Bentkus (1984c)).
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Lemma 4.6. For all™ >0, € > 0 there exists a function f,c : 1N —[0,1],
fre € C*, such that

x{llzlly <7} < fre(@) < x{llzlly <7 +¢},
£ (@)]] < C(m)e™™ ™ (N +1), m=1,2,....
Furthermore, the constant C(m) depends on m only.

The further steps in the proof are standard: one uses the identity (2.1) and
the Taylor expansion up to the third order. The only change is that one has
to apply the estimate

Plr—e<llly <r+e} <
P{ir—e—t<||Y|loo <7 +e+t}+ P{w,(Y,0) > t,[|Y]|lew > 7 —€}

for any ¢t > 0. This results in the following recursive inequality:
8N < MB(n) {c + CH2(S)t™ [aan it WY, t)]}
+Ct+ 13 + W, (Y, 6, ).

A standard induction argument completes the estimation of 55 > r3AN (r).
The bound for sup,>o A} (r) is obtained in an analogous way.-

It is worth mentioning that the method of finite-dimensional approximation

can be used not only for the supremum norm. For example, if we want to
estimate the remainder term in the CLT in the space lp, 1 < p < o0, on balls,
then as a finite-dimensional approximation it is natural to take the first NV
coordinates and to estimate the remainder term in the CLT in lé\’ for balls,
combining this with estimates of the tails of the coordinates. Such an approach
has been used by Paulauskas (1981) and in [5 by Sazonov (1968, 1969).

In the paper due to Asriev and Rotar’ (1985) an estimate in I¥, for paral-
lelepipeds was obtained (having the order n~1/2 with a logarithmic factor).
The estimate is expressed in such a form that it allows one to pass to the limit
as k — oo and to get a bound (of the same order) in RY. Unfortunately we
are unable to apply this result in the context of finite-dimensional approxima-
tion since it is obtained under the assumption that the covariance matrix of
the random vector X under consideration is diagonal. This assumption is not
restrictive at all in R* in the case of the class of convex sets since by means
of an orthogonal transformation, the covariance matrix can be diagonalized.
But this is impossible for the class of parallelepipeds with sides parallel to the
coordinate axes.

We shall now demonstrate how the general scheme of finite-dimensional
approximation applies to the CLT in the Skorokhod space D0, 1]. But before
we do this we shall give a short (and therefore not full) review of what is known
about the CLT in the space DI0,1] itself, since this topic is not covered in
the literature so thoroughly as the CLT in Banach spaces (see, for example,
Araujo and Giné (1980) and Paulauskas and Rackauskas (1989)).
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Let X, X, X, ...be 1i.d. r.e’s with values in D[0,1]. We assume that
D[0,1] is equipped with the Skorokhod topology and metric under which it
is' a separable and complete metric space. Let us assume that EX(¢) = 0,
EX?(t) < oo, for all t € [0,1]. We say that X satisfies the CLT in D[0,1]
(X € CLT(D) for short) if there exists a Gaussian zero-mean DI[0,1]-
valued r.e. Y such that EX(t)X(s) = EY(t)Y(s) for all s,t € [0,1] and
S, = n~1/? i, X; converges in distribution to Y (see, e.g., Billingsley
(1968)). The CLT in D was considered by Fisz (1959), Hahn (1978), Bass
and Pyke (1985), Jukneviciené (1985), Paulauskas and Stieve (1990), and
Bézandry and Fernique (1990). Many applied problems lead directly to the
CLT in DJ0, 1]. One such example is in a paper of Phoenix and Taylor (1973)
where the asymptotic strength distribution of a general fibre bundle was in-
vestigated. As a matter of fact this investigation goes back to an early paper of
Daniels (1945). Pheonix and Taylor (1973) did prove the CLT in D[0, 1] (with-
out stating it explicitly for i.i.d. random processes with a special structure.
Influenced by this result, Hahn (1978) proved the following theorem.

Theorem 4.7. Let X be a r.e. in D[0,1], EX(t) = 0 and EX2(t) < o0
for allt € [0,1]. Assume that there exist nondecreasing continuous functions
F1 and Fy on [0,1] and numbers ay > 1/2, as > 1 such that for all 0 < s <
t <u <1 the following two inequalities hold:

BE(X(t) - X(s))* < (F() = Fu(s))™, (4.8)
X(s

B(X(u) = X0 (X(t) - X(5))* < (Fa(w) —Fa(s))>2. " (4.9)

Then X € CLT(D) and L(Y')(C[0,1]) =1, where Y is the limiting Gaussian
process for Sp,(X).

Condition (4.9) requires the finiteness of the fourth moment EX 4(s) for all
s € [0,1]. This shortcoming is eliminated in the following theorems.

Theorem 4.8 (Paulauskas and Stieve (1990)). Suppose that X is a r.e. in
D[0,1] and EX(t) = 0, EX?(t) < co for all t € [0,1]. Suppose that (4.8) is
satisfied for some oy > 2/3 and the following inequality holds for some cig > 1:

E((X()) - X(5)) A1) (X(u) — X(9)° < (Fal) - Fo(s))™ . (4.10)
Then X € CLT(D) and L(Y)(C[0,1]) =

‘Theorem 4.9 (Bézandry and Fernique (1990)). Let X be a real-valued ran-
dom function on [0,1], defined on some probability space (Q, A, P). Suppose
that there exist continuous increasing functions 8, n, and 6 from [0,1] to R
such that 8 is concave and 6(0) = n(0) = 6(0) = 0. Moreover, let the following
conditions hold for all0 < s<t<u<1and all A€ A:

E|X(0)]? < 00, E|X(t) — X(s)]? < 6*(t —s), (4.11)
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1 .
/0 w34 (log(1 + 1/u))**6(w) du < oo, (4.12)
B(|X(s) - X2 A X (2) = X(w)P)xa < n?(u— 5)8(P(4)), (4.13)
/01 u™320Y2 (ylog, (1 + 1/u))n(u) du < co. (4.14)

Then X € CLT(D) and L(Y)(C[0,1]) = 1.

It seems that Theorems 4.7-4.9 are not comparable. It is worth mentioning
that if we require the boundedness of a random process X, then a very mild
condition on the increments of the process is sufficient for the CLT. This is
demonstrated in the following result.

Theorem 4.10 (Giné and Zinn (1984)). Let X be a centered stochasti-
cally continuous and uniformly bounded process with sample functions in
D[0,1]). Assume that there exist a positive C and a nondecreasing function
F € D|0,1] such that for all s,t € [0,1]

E|X(t) - X(s)] < C|F(t) — F(s)]-
Then X € CLT(D). Furthermore, if L(X)(C[0,1]) =1, then
X € CLT(C[0,1)).

In fact, this theorem is a consequence of a more general result which, in
turn, is derived from the general CLT for empirical processes (see Giné and
Zinn (1984)).

‘We mention that another result (also apparently uncomparable with others)
on the CLT in D[0, 1] can be derived from Bass and Pyke (1987).

Remark 4.11. A final result on the CLT in DI0,1] for i.id. summands,
formulated in terms of moments of increments of a process, was obtained
independently by Bloznelis and Paulauskas (1994) and Fernique (1994).

Next we shall state and give a sketch of the proof of a result due to
Paulauskas and Stieve (1990), which provides an estimate of the convergence
rate in Theorem 4.8. As usual, the modulus of continuity of a function f is
defined by wy(6) = sup{|f(¢) — f(s)| : |s —t| < }.

Theorem 4.12. Let X satisfy the conditions of Theorem 4.8. Additionally,
assume that there exist a nondecreasing continuous function Fs, numbers ag >
1, 81, B2, B3>0 and 0 < kK < 1 such that for all0 <5<t <1

E|X(t) — X ()3T < (F3(t) — F3(s))°, (4.15)
wr,(8) < C6*, i=1,2,3. (4.16)

Suppose that Esupté[o’l] X(®)|® < oo and condition (4.8) holds with T =
[0,1). Then there exists a finite constant C = C(m, L(X), L(Y)) such that

I1. The Accuracy of Gaussian Approximation in Banach Spaces 63

Ap = |P{[|Sn(X)lec <A} = P{|[Y]|eo < AJ|

< Cn~?W (14273 (Inn + In(1 4+ V)%, (4.17)
where 1/6 s . > )
if @ ;
wlk) = { 1/6V (1+k)/10 ifaz =1.

Sketch of the proof. To avoid certain technicalities, we shall sketch the
proof under stronger conditions then those stated in the theorem. Namely,
we shall assume instead of (4.10) the conditions (4.9) and (4.15) with kK = 1
(therefore in (4.8) we can assume that o > 1/2). Under such conditions an
estimate of the remainder term was given in Paulauskas and Juknevi¢iené
(1988). Moreover, we assume that oz > 1 and Esup,eoq) | X (¢)[P < oo for
some p > 3. Let 0 < § < 1 be a number to be specified later on and let
N=[1/6]+1and 0 =1t <ty <--- <ty = 1 be such that t; — tx—1 < 4. As
earlier ||z||x = sup;<;<y |2(t;)| and subscript N refers to the corresponding
quantities in the space Y. Applying Lemma 4.1 and Remark 4.4, for any
0<e<Xand 0 <6 <1, we have the estimate

AN <L+ L+ +ANN—g)+ AN (), (4.18)
where

Ii=P{ sup  sup [Sp(t) = Salti)l >&, [|Snllec > AL,

1<iSN—-14;<t<ti41
I, = P{ sup sup [Y(@&) =Y (&)| >¢ ||V > A},
1<iKN—=1t;<t<t4a

Is = P{A—e < |[Y]lo < A+e).

By some straightforward computations, we arrive at having to estimate the
quantities

L1 =P{ sup sup  |Sn(t) — Sn(t:)| > e}y
1<i<N~1 ¢ <t<t41

Ly = P{ swp |[Y(t)=¥(s)| > <}
[t—s|<6

To estimate I ; it is sufficient to use the following result (see, for example,
Marcus and Pisier (1981)).

Lemma 4.13. Let 1 be a zero-mean Gaussian C|0,1]-valued r.e. and let
r2(s,t)-= E(n(t) — n(s))%. Then for any e > 0 and 0 < § < 1 the following
inequality holds: ‘

P{ sup |n(s) —n(t)] > ¢}
T(5,6)<8

)
< Ce™? (/ (H(0,1),7,2))**dz + 6 In™ 1n(4d(5'1)1/2> ,
0

where d = Sup, 4c(0,1) 7(8; ) and Intu=1In(1Vu).
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In the case under consideration
7(s,t) = (B]Y (t) = Y(s)]*)/> < (Fi(t) — Fi(s))*/? < Clt — 5|/,
After some rather rough estimates we obtain
I; < Ce1hroal/4,

To estimate 17,1 one needs the following lemmas. The first two may be found
in Billingsley (1968) and the third in Hahn (1978).

Lemma 4.14. Let [a,b] C [0,1]. For z € D[0,1] the following inequality
holds:

sup |z(t) — z(a) < sup min{|z(t) — z(a)], |2(b) — z(t)[} + |z(b) — z(a)l.
t€(a,b] t€[a,b]

Lemma 4.15. Let &1,...,&, be r.v.’s and let S = 0 and S = Zi;l &,
k = 1,2,...,m. Suppose that there exist non-negative numbers ui,...,Umn
such that for any A > 0, 0 < i < j < k < m the inequality

k [+
P{S; =S| 2 A, |8k =S| 2 A} <A77 (Zun> ‘

n=t

holds for some v >0 and oo > 1. Then for all A >0

P{ max min{|Syl, |Sm— 5} 2 X} < Ko aX ™7 (Z u) ,

=1
where K o 5 o constant depending on v and o only.

Lemma 4.16. Suppose that X satisfies the conditions (4.8) and (4.9).
Then for all A >0,0<s<t<u<1 '

XeP{|Sn(t) = Sa(8)] 2 X, [Sn(u) — Su(®)] > A} < (G(u) — G(s))™,
where iy = ag A 200 > 1 and G(u) = 2181 (n= Yk By (u) + 3V/m Fy (u)).

Applying Lemmas 4.14-4.16, we deduce that

N-1 .
L1< Z (P{R; > €/2} + P{|Sn(tix1) — Sn(ts)| > €/2}), (4.19)
P{R; >¢/2} < Ce™*(G(tsr1) — G(t:))",

where R; = supy, <<y, , Min{[Sn(t) = Sn(t:)l, [Sn(ti+1) —Sn(t)|}. To estimate
the second term on the right-hand side of (4.19) we use (4.15) with k¥ = 1 and
obtain
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P{ISn(ti41) = Sn(ts)] > €/2} < Ce™* B(Sn(ti+1) — Sn(t:))*
< Ce™* (n N (Fs(tign) — Fa(t:))* + 3(Fu(ties — (Fu(t:))**).

Finally, applying (4.16) for all F;, ¢ =1, 2, 3, we have
I < Cs_‘l((éﬁzn_l/“l + 6Pl 5,@3(043—1)%—1).

In order to apply Theorem 4.5 to estimate AY()\) and AY (X —¢) we can
use the estimate for I, obtained above to bound D, (¢). It is not difficult to
deduce that
Dp(8) < Cmax(n~Y6, nt/i2§h10a/8)

It remains to collect all estimates which we have for the quantities entering
inequality (4.18) and to choose the parameters € and § in an appropriate way.
It is easy to see that if we put € ~ n~1/% and § ~ n~? with some positive
constant p depending on G;, «;, @ = 1, 2, 3, and p, then all terms will not exceed
n~1/6)~3. It is worth mentioning that p — oo in any of the following cases:
if min; B; — 0, or if the a; tend to their least possible values, or p — 3. Also
one can notice that under these stronger conditions which we had assumed
for the final estimate of the remainder term there will be no term In(1 + )

§1.5. Rates of Convergence in Prokhorov and BL Metrics

Let P(B) denote the set of probability measures on B. We recall that the
Prokhorov metric 7 and the boundeéd 'Lipschitz (BL) metric gzr, on P(B) are
defined as follows: for u,v € P(B)

7(u,v) =inf{e > 0 : u(F) < v(F.) + ¢ for all closed sets F C B};
[ @)@ <117l <1,
where F. denotes an e-neighborhood of the set F' C B and

A B »= sup [£(z)] + sup |f(z) — F@)I/llz — vl
z€B zHy

0BL (M, V) ‘= sup {

for f : B — R. For the sake of brevity we shall write w(£,7) and 05r(£,7)

instead of w(L(£),L(n)) and ppr(L(§),L(n)), respectively. Recall that both
metrics 7 and ppr, metrize the weak convergence on P(B). Therefore the rate
of convergence, estimatéd by means of these metrics, is of great interest. Re-
sults on the rate of convergence for the Prokhorov metric in finite-dimensional
spaces may be found, for example, in Yurinskii (1977), Dehling (1983), Zait-
sev (1987), and Bentkus (1984f). In the case of infinite-dimensional spaces we
have the following negative result.

Theorem 5.1 (Senatov (1981)). For any monotone sequence by, | 0 there
exist a Gaussian fa-r.e. Y and fo-r.e. X such that
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(i) EX=EY=0,covX=covY;
() PUX| <1} =1

(iii) liminf,— e m(Sn(X),Y)b; > 0;
(iv) liminf, o0 081 (Sn(X),Y)b;t > 0.

Note that conditions (i), (ii) guarantee the CLT; therefore 7(S5,(X),Y) — 0
and ¢pr(Sn(X),Y) — 0 as n — oo. Theorem 5.1 tells us that in order to
have a convergence rate either in the Prokhorov metric or in the BL metric in
infinite-dimensional spaces one needs stronger assumptions than the finiteness
of the usual moments. The following results provide such conditions. Recall
that the r.e.’s X, Y € B are such that EX = EY =0, covX = covY and
that Y is Gaussian.

Theorem 5.2. Let r.e.’s X, Y € {5. Suppose that
BlIX|J < oo,

where ||z]|3 = Y2 (xi/X)? and the sequence A\ = (A, Xa,...), A\ > 0, is
such that

doM<oo (5.1)
=1
Then
m(Sn(X),Y) = O(n~*/8)
and

081(Sn(X),Y) = O(n~2/9).
Theorem 5.3. Let r.e.’s X, Y € ¢y. Suppose that
E||IX[]3 < oo,

where ||z]|2 = Y20, 22. Then
2 i=1 "1

T(Sn(X),Y) = O(n™%)

and
08L(5(X),Y) = O(n™/9).

Therefore the finiteness of the third moment under an appropriate semi-
norm, stronger than the original one, is sufficient to derive a convergence
rate in the Prokhorov and BL metrics. Theorem 5.2 is due to Bentkus and
Rackauskas (1984). Theorem 5.3 was proved by Bentkus (the proof is con-
tained in Paulauskas and Rackauskas (1989)) and, in fact, is stronger than
Theorem 5.2. Now we shall state more general results than Theorem 5.2. To
this end, let a Hilbert space H C B be linearly and continuously imbedded
in the Banach space B (therefore, without loss of generality, one may assume
that ||z||z > ||z||p for all z € H). The imbedding operator H < B is said
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to be y-radonifying if the Gaussian measure v of the cyliﬁder sets in B with
characteristic functional

[ exmia(u)w(dy) = exp(~alf/2
forz € B* C H* = H is a o-additive measure (see, e.g., Badrikian and Chevet
(1974)). Put
v = [ [l[BIEC0) — £ (o)
Theorem 5.4 (Bentkus and Rackauskas (1984)). Suppose that the imbed-

ding H — B is y-radonifying. Then there exists a finite constant C such
that

T(Sn(X),Y) < Cugfgn~V/8; (5.2)
QBL(Sn(X),Y)’)S C max(vg an~ Y2, V}I/’gn_l/e). (5.3)

‘We note that the corresponding Hilbert space H for the space B = £3 can

be taken as

i=1

H= EQ()\) = {x €ly: ll’l%{ = i($z//\z)2 < OO},

where the sequence A = (A1, Ag,...) of positive numbers is such that (5.1)
holds.
In Hilbert space, Yurinskii (1977) obtained

7(Sp(X),Y) = O(n=%/6+8) Jog )

under the assumption of a finite third moment, where o is a positive parame-
ter characterizing the behaviour of the eigenvalues of the covariance operator
covY. Conditions, guaranteeing some logarithmic order of 7(S5,(X),Y) in
the case X, Y € {5, may be found in Kukus (1981, 1982). Lapinskas (1978)
investigated the convergence rate in the CLT in the Prokhorov metric in

Banach spaces with a Schauder basis. He imposed certain assumptions on the.

coordinates of X, ¥ and obtained the rate O(n=/2!). For X, Y € ¢y and
E|IX||3 < oo, where || - || is the £;-norm, a result of Senatov (1981) yields
the estimate (S, (X),Y) = O(n~1/81log®* n) (compare with Theorem 5.2).

Note that both estimates (5.2) and (5.3) are in general unimprovable. Ap-
propriate examples are constructed by Bentkus (1987) (see also Senatov (1981)
and Theorem 26 in Bentkus and Ratkauskas (1984)). It should be noted that
the condition vy 3 < oo is rather restrictive. For example, it can be shown
that when the limiting Gaussian element Y is a Wiener process in B = C|0, 1],
we automatically have vy 3 = oo if L(X) # L(Y). Bentkus and Rackauskas
(1984) proposed a method which enables one to obtain estimates under less
restrictive assumptions. However, the order in n obtained by this method is

- -
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somewhat worse. We shall not go into detail but confirie ourselves to a par-
ticular example concerning the space B = C[0,1]. If w is the modulus of
continuity, then we denote by H,, the space of all functions z on [0,1] such
that
lzlle := sup |z(¢)] + sup |z(t) — z(s)|/w(]t — s]) < 0.
te[0,1) t#s ‘

In the case w(s) = s%, we write || - ||, Hy instead of || - ||,, H., respectively.
Theorems 5.5 and 5.6 below assume instead of EX = EY =0, cov X = covY
that EX(s) = EY (s) =0, EX(t)X(s) = EY (¢)Y (s) for all s,t € [0,1]. The
next result is a slightly improved version of Bentkus and Racékauskas (1984)
(see Paulauskas and Rackauskas (1989)).

Theorem 5.5. Let X,Y € C[0,1]. Suppose that the following conditions

are fulfilled:
P{XeHy,}=P{Ye€eH,}=1

and

vag = [ elI2IE) - £(V)](d) < o
C[0,1]

’

If1/2 < a < 1, then there ezists a constant C(a) such that
7(Sn(X),Y) < Cla)rylsn™%,

and
081(Sn(X),Y) < Cla)/in1/8,

o7

If 0 < o < 1/2, then for each € > 0 there exists a constant C(a,€) such that
m(Sp(X),Y) < C(a, €) max (z/i{?f’n"l/ﬁ, (Ua,3n_l/2)4°‘/(9_2°‘)“5), (5.4)
and ‘

081(5-(X),Y) < C(a, €) max (yl/g’n_lm, (vaygn_l/z)%‘ﬁ_s). (5.5)

@,

In the case where Y is a Wiener process on [0,. 1] and E||X||2 < oo with
a=1/2+46, § <0, consequences of Theorem 5.5 are

m(Sn(X),Y) = o(n~1/8%¢),
and
081(Sn(X),Y) = o(n~/0%),

where e = £(6) | 0 when 6 7 0.

‘Combining the method of Bentkus and Ratkauskas (1984) with the results
due to Bogachev (1988), one can strengthen (5.4) and (5.5) for a = 1/2.
Namely, the following result holds.
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Theorem 5.6. Let X, Y € C[0,1] and w(t) = t*/?(log(1/t))~?, B > 3/2.
Suppose that the following conditions are fulfilled:

P{XeH,}=P{YeH,}=1

and
vaai= [ [elI2IE0X) - £1)](do) < o
co,1)

Then there exists a constant C = C(8) such that
7(Sa(X),Y) < Cvlgn=8;

and
052(Sa(X),Y) < Cvlan=48.

The convergence rate in the CLT estimated by means of other distances
than the Prokhorov metric or BL metric was considered by Zolotarev (1976a,
b, 1977), Bentkus and Rackauskas (1984), Sakalauskas (1983), Liubinskas
(1987), Rachev and Yukich (1989), and Rachev and Riischendorf (1990).
Bounds of the convergence rate in the infinite-dimensional invariance prin-
ciple in the Prokhorov metric and other metrics were studied by Borovkov
and Sakhanenko (1980), Borovkov (1984), Sakhanenko (1988) and Bentkus
and Liubinskas (1989).

Chapter 2
Asymptotic Expansions

§2.1. Short Expansion

Throughout this chapter we shall use the notation € = (n) = n~%/2. Let
f : B — F denote a function on a Banach space B such that the expectations
Ef(Sn), Ef(Y) are well defined. We set

g9(e) = g(&; f) = Ef(Sn),
- 9(0) = g(0; f) = Ef(Y)

We shall describe the general idea for constfucting asymptotic expansions of
the type
9(e) =9(0) +are +--- +axe* + R (1.1)

or, equivalently,

Ef(S,) =EBf(Y)+an 2 +.. .+ aqn *2 + R (1.2)




70 V. Bentkus, F. Gé&tze, V. Paulauskas and A. Ratkauskas

(the so-called asymptotic power series). Here ai,...,ax are “known” coeffi-
cients and the remainder term R = Ry(¢) usually satisfies e *Ry(e) — 0 as
g€ — 0. By choosing various functions f in (1.2), one can obtain asymptotic
expansions for moments, probabilities, etc. We remark that the structure of
our asymptotic expansions depends neither on the structure of f and Y nor
on the dimension and the structure of Banach spaces B and F.

The following lemma is obvious.

Lemma 1.1. If the remainder term R = Ry(g) satisfies a_kRk () =0 as

e — 0 then the coefficients a1, ..., ax in the ezpansion (1.1) are unique and
fors=1,...,k
= 1”%5 *(g(e) — g(0) —are — - — as—1e"1).
PR d

We shall demonstrate in detail the complete construction only in the case
of the short asymptotic expansion

Ef(S,)=Ef(Y)+aie+R.

The general case differs from this only in cumbersome technical details and
more complicated notation. Also we restrict ourselves to the case of functions
f + B — F with bounded derivatives. This restriction is essential and con-
siderably simplifies the estimation of the remainder term. However, we point

out that, roughly speaking, to estimate the remainder term for non-smooth -

£, one has to apply additionally the methods developed for estimating the
convergence rates in the CLT.

Theorem 1.2. If f : B — F is a function of the class C¢ and E||X||* <

oo, then

Bf(S,) = Bf(¥) + 3eB/"(¥)X* + R, (1)
where
IRI| < 2C(f) (BIIX|1* + BI[Y|[* + (BIIX||* = Bl|Y||*)? +E|EXH3EIIY|1)

C) =11 Ploo + 1FOlloos [Iflleo = sggllf(w)ll'
If B is o Hilbert space, then .
IRl < C2([|F¥loo + [1F9]le0) (1 + EIIYP)E|X |14,
where C is an absolute constant.

The proof of Theorem 1.2 involves several steps (see Lemmas 1.3-1.6). To
_ estimate the convergence rate, the following obvious algebraic identity is very
useful (see §2.1):

M1l =11 Vn+Z/J'1 i1 (s — V) Vig1 - - Un, (1.5)
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where f1,..., fbn, V1, .., Vs are arbitrary measures and the multiplication is
understood to be convolution of measures. For asymptotic expansions one
needs to apply (1.5) iteratively several times. The number of iterations de-
pends on the desired estimate of the remainder term. In the case of the short
asymptotic expansions it is enough to use (1.5) twice, i.e. the identity

M1 =V Vn-l-ZVl Vi1 (s — Vi)Vig1 - Un + R, (1.6)

where the remainder

n 1—1
R = ZZM C MG — 1( g = Vj)Vj+1 Vo1 (i — Vi) Vig1 - V.
i=1 j=1 s
In the case of identically distributed summands, y =1 =+ = fin, v =11 =
-+ =y, and (1.6) reduces to
p" =v" +n" N u—v) + R, (1.7)
with
n—1 ) ]
R=) (n—iu ™ (u—v)?/ it
d=1
Integrating f with respect to the measure u™, choosing u = L(eX), v = L(eY)

and applying (1.7), we obtain
Ef(S,) = Ef(Y) +n / Ef(evn—1Y +ex)H(dz)+ R,  (18)
B o

where
H=r,(X)-°L(Y)

and

R:Z_l(n—i)/B/Bf(ai+6x+sy)H(dx)H(dy),

and where r.e. a; has the distribution of e X +--- +eX;_1 +evn—1—1Y.

Lemma 1.3. Foralla € B and € > 0-the foﬂowz’ng estimates hold:

/ fla+ex)H(dz) ~ —és3/ " (a)z®H (dz)
B

4 IF Do (BIX I + ElIY]*), (1.9)

< 2=l o (BUXIP + ¥ (1.10)

_24

/ f(a + ez + ey) H(dz) H(dy)
BJB
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Proof. To prove (1.9) it is sufficient to apply Taylor’s formula (see, e.g.,
Cartan (1971)) '

hu+v) = Xs: RO (w)vd /51 + /01(1 — 7R (u + o)t T /8!
/=0

~

with h = f, u=a, v =€z, s = 3 and to note that the means and covariances
of X and Y coincide. For the proof of (1.10) it is sufficient to apply Taylor’s
formula twice with s = 2 and v = ez and v = ey, respectively.

Lemma 1.4. The following relation holds:
Ef(Sp)=Ef(Y)+eEf"(evn—1Y)X%/6 + R,
where
IRI < (159 loo+]FO|oo) (BIIX|[*+EI|Y|[*+(E|| X |+ E|[Y|]*)?/3) /24.

Proof. The lemma is a consequence of the representation (1.8) and Lemma
1.3. We apply the estimate (1.9) to the integral in (1.8) with a =ev/n —1Y.
The remainder term R in (1.8) is estimated with the help of (1.10) with a = a;.
Finally, we have

/]Bf”’(a)xg’H(dx) =Ef’”(a)X3

due to the symmetry of Y.

Lemma 1.5.
|Ef"(V)X3 — Ef"(evn—1Y)X%|| <&l f ¥ E|| X[ | E|Y]].

Proof. Ther.e. Y has the same distribution as ev/n — 1Y +£Y7, where Y; is
an independent copy of Y. Therefore it is sufficient to apply Taylor’s formula
to Ef"(V)X3 with h=f", u=¢ev/n—1Y,v=¢Y; and s =0.

Lemma 1.6. If B is a Hilbert space, then E||X||? = E||Y||*>. Furthermore
ElY|F < Clp)E/X][P, p>0.

Proof. The equality E||X||? = E||Y||? is obvious since |||/? in a Hilbert
space is a quadratic form and the covariances of X and Y coincide. There-
fore the well-known inequality E||Y||? < C(p)(E||Y]?)?/? and the Holder
inequality help to complete the proof of the lemma.
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§2.2. The Smooth Case

In this section we shall consider the results obtained without (explicit)
conditions similar to the classical Cramér condition

limsup |Fexp(itX)| <1

|t]—o0

for the characteristic function of a r.v. X € R. In the “smooth case” the
formulations of results are not that overloaded by conditions and technical
details. Therefore we shall consider different forms of expansions and certain
technical aspects. We begin with the description of the coefficients ay, ..., ax
in the general asymptotic expansion. We shall show that ‘

as = EP,f(Y), s=0,1,2,..., ' (2.1)

where the P; are certain random differential operators. Let us repeat once
more that the construction of P, is universal and does not depend on the
specific structure of X, Y, f or the spaces B, F. The coefficients as have the
form (2.1) even when f is not differentiable, for example, when f(z) = xa(z)
is the indicator function of a set A C B. The only difference in the case of
a non-smooth function f is that formula (2.1) has to be interpreted in an
appropriate way (see §2.3).

The Edgeworth-Cramér polynomials Er, = Ei(ma,...,mg+2) of formal
commuting variables mg,...,mgro (the so-called “moment” variables) are
determined as the coefficients in the formal power series expansion

o0 o0
exp <t_2 l:ln (1 + katk/k'> — m2t2/2jl> = ZEk(mQ, ceey mk+2)tk.
k=0

k=2
For instance,
Ey =1, By = m3/6,
Ey = —m2m2/8 -+ m3m3/72 + m4/24,
E3 = —maoms/12 — mamaomsg /48 — mgmgms /1296 + mgmy /144 + ms/120.
Write
: Ek=Zak(i1,...,is)mil---mis,

where the sum is taken over all integers 41, .. .,%s such that 2 < i4; <--- < i,.
Clearly, only a finite number of coeflicients ag(...) are non-zero. Define the
polynomials

Pk . Pk(zl, cee ,Zk) = Zak(il, ces ,is)zfl i -Zis (2.2)

of commuting variables 21, ..., zx. For instance,

—
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1 1 1
P = ——S-zfzg + ﬁzfzg + ﬂzi".
If » € B, then one may introduce the differential operator D(h) as follows:

D(h)f(z) = f'(2)h = limt™*(f(z + th) - f(2))

(the so-called directional derivative). The differential operators D(h), h € B,
and 1 € R, generate a natural commutative algebra over the field of real
numbers. Therefore one can define the random differential operators

Py = Pp(D(X1),...,D(Xg))

and coefficients a; = EP, f(Y). For instance,

1 1 L
Py = —2D*(X1)D*(X2) + 5 DY (X1)D*(Xa) + 5, D*(X1).

Lemma 2.1. Let E||X||**2 < oo and let function f € C®*%(B; F). Then
there exists an a = a(L(Y)) > 0 such that the coefficients

as =EP;f(Y), s=0,1,...,k,

are well defined when
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We now make some comments about Theorem 2.2 and provide some refer-
ences. We are not concerned with the finite-dimensional case (see, e.g., Petrov
(1975), Bhattacharya and Rao (1976), Gétze and Hipp (1979), etc.). We men-
tion here only that the formal power series expansion with Edgeworth—-Cramér
polynomials is contained, e.g., in Bikelis (1973). The definition of the terms
EP,f(Y) of the asymptotic expansions via random differential operators P
may be found in Gétze (1981). The expansion (2.5) in the case k = 0 (i.e.,
the estimate of the convergence rate) under the condition f € C3(B;R) was
obtained by Paulauskas (1976b) and Zolotarev (1976b). Gétze (1981) proved
(2.5) under the assumption f € CF¥*3(B;R). Bentkus (1984b) proved that
the short asymptotic expansion (2.5) is valid under the weaker moment and
differentiability conditions E||X||* < oo, f € CZ(H;R) (H is a Hilbert space),
while the estimate of the remainder term becomes worse: R = o(n~%/?) in-
stead of R = O(n~'). Theorem 2.2 in the case of a Hilbert space is contained
in Bentkus (1984d). In the general case Theorem 2.2 follows from more gen-
eral and more precise results due to Bentkus (1986d). It should be remarked
also that all papers, just ment1oned contain more or less explicit estimates of
the remainder term. :

The construction of asymptotic expansions is usually based on the formula
obtained by iterating (1.6), that is,

Or<n%>§ supexp(—oszH HFD ()| < 0. o (2.3) U1l =vi-~Up+Ar+---+ A+ R, (2.7)
t .
‘ where uq,... ,V1,...,Vp are arbitrary measures and
Since we want to avoid complications connected with measurability we il " 4 ‘ '
assume separability of B and F. The condition E||X||**2 < co allows one to A, = Z H( i — v;) H v;. (2.8)
interpret expectations in the sense of Bochner instead of more complicated card a=s i€a ' ida . : -

definitions. Condition (2.3) is connected with the well-known integrability
properties of the norm of a Gaussian r.e. (the Skorohod — Fernique — Landau -
— Shepp Theorem). The condition f € C%* is unnecessarily strong and will be ts—1 < -

The summation is over all possible sets o = {i1,...,%s} of integers 1 < i; <
- <41 < n and the second product is over all integers j € o such

weakened later on. that 1 <j <mn;
Theorem 2.2. Suppose that a r.e. X & B satisfies the CLT. Let R= Z H“i H(/.Lj Z) Hyl,
E||X||**+3 < oo, function f € C3**3(B; F) and carda=k+1 i  je€o Iga
’ sup(1+ ||x||)—k—3|] f@)|| < oo. (2:4) where the summation is similar to that in (2.8), the first product is taken over
z€B all integers t > 1, %4 < igq1 and the third product is over all integers | € o
Then there ezists o = a(L(Y)) > 0 such that the asymptotic expansion such that i1 <1 < n. In the identically distributed case p = py =+ = tn,
_ i V=y; ==y, the formulae for A; and R reduce to
% .
Ef(S,)=Ef¥Y)+ Zn—S/ZEPSf(Y) +R ‘ (2.5) A, = <7;) Vn—é(u - ), (Z) =nl/[sl(n — 8)],
s=1
is well defined and ||R|| = O(n=*+1)/2) provided and e
; n—1 i Nemi—l—
sup exp(—aial )]0 @] < o0 2.6 S
z€ i=1 '
foralli=1,...,3k+ 3. In the i.i.d. case, integrating (2.7) we obtain
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k n :
B8 =Ef0)+ Y (7)) + R 2.9)
s=1
where

0s(e) = E/B--./Bf(eWs—i-sxl+---+exs)H(dxlﬂ)---H(dxs),
n—k
we ()
Ri = E/ / FeT + e+ + emper) H(der) - - H(daran),
B B

and the r.e.’s W and T have the following distributions:

LWs) = L(n—sY)=LY 1+ +Yn_s),
LIT) = L(Xy+-+Xi+ Y1+ 4+ Yo p1)

It seems that expansions of type (2.7), (2.8) were éxplicitly published for
the first time by Bergstrém (1951). In any case, they are traditionally called
“Bergstrom’s expansions”.

Let us discuss the method and results presented in the paper of Gotze
(1981). The main idea of his paper is that to construct the asymptotic expan-
sion for Ef(S,), one does not need the differentiability of f. It is sufficient
to have the differentiability of the functions v, and R; in (2.9). The gain is
based on the interchanging of the order of integration and differentiation and
on the property of integration as a “smoothing operation”. Put

U(T]l)" . :nq) = Ef(Y+an1 + '”anQ)7
Ui(et,--,€q|My---yng) = Ef(eEW; + &1Y1 + -+ +eYo + m Xy + ...y Xy),

where the r.e. W; satisfies
LW)=L( X1+ +X;+Yia+-+Y,), 1<i<n

Theorem 2.3. (Gdtze (1981)). Suppose that the functions U; are differ-

entiable. Let
ai 8 J1 8 Jq
— R e | — U’L 70,...,00, yrevy 9
() (5) ~(a) veno 00t

where sup is taken over all1 < i< n, all0 < e1,m2,...,My < n~Y2 and all
8y 515y dq S k+3 such that k+3 < i+j14...+j, < 3(k+1). Furthermore,
suppose that

Cp, := sup
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P i1 F) ig 8 J1 9 Jq

5 i1+71 8 iq+Jg .
== = U;(0,...,000,.:.,0
<3m> (3%) ( | )

when i1j1 = - = igJq = 0 for all 1 < i < n, all 4y,...,ig < 2 such that
i1+ <k+3,..,0g+ig<k+3andii 4+ +ig+i+ - Jg <3(k+1).
Then

koo
’Ef(Sn) =Y 0 PRU(0,...,0)| < c(k)Cpn~*F1/2,
s=0

where the differentiable (non-random) operator

0 0
Pi=Ps| —,...,—
<6771 a'f7s>

is defined via the polynomials Ps of (2.2).

It is possible to generalize Theorem 2.3 to apply in situations which are not
directly connected with sums of independent r.e.’s. It occurs that the proof
of this result is not probability-theoretic at all. This was noted by Gétze
(1985). Suppose that a sequence hn, n = 1,2,..., of numbers is given, for
example, h, = Ef(S,), or the h, are probabilities related to n observa-
tions, etc. Furthermore, suppose that it is possible to introduce “weights”
€1,...,En for the observations and to determine a sequence hy(£1,...,&n),
0<e1,...,8qa <n~Y2 of functions such that

Bp = hn(n™Y2, .. 072 £ O(n~(B+1/2),

For example, if h, = Ef(S,), it is natural to set
ho(g1,..ren) = Ef(e1 X1+ - + e, X0)-

Gotze (1985) has shown under certain natural conditions (in particular, dif-
ferentiability conditions similar to that in Theorem 2.3 in case k = 0) that the
“central limit theorem” holds. That is for fixed 7, ..., n, there exist limits

hoo = lim hn(n~Y/2 ... n7%/2),

n—oo

hoo(nla s 7777') = lim h'm-l-?"(nl? <oy Tirs n_1/27 s 7n_1/2)’
. M=o

Using the functions hn(e1,...,6,) and he(11,...,7-), one can define func-
tions similar to the functions U and U; in Theorem 2.3. Under differentiability
conditions similar to those in Theorem 2.3, this allows one to obtain an asymp-
totic expansion of h,(n™%/2,...,n~1/2) analogous to that in Theorem 2.3. For
further details in this direction and some applications to mathematical statis-
tics, see Gotze (1985).
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Theorem 2.3 is valid for non-differentiable f, too. It has been proved with-
out an explicit condition similar to the classical Cramér condition which is
replaced here by differentiability conditions. In applications the verification of
these conditions is the difficult task.

Asymptotic expansions with the Edgeworth-Cramér polynomials have the
classical structure of asymptotic power series. A disadvantage of these expan-
sions is that their existence is guaranteed only when X has all moments up to
the order k + 2. Furthermore, the structure of these expansions is not simple
and convenient in all cases. For instance, the obvious fact that EP,f(Y) =0
when L(X) = L(Y) needs a special proof when using the definitions of the
Py, only. Most general and simple are the Bergstrom expansions (2.7), (2.9).
Unfortunately, these expansions are not too informative. Bentkus (1984d) in-
troduced certain expansions of intermediate type

Ef(Sp)=Ef(Y)+ai(e)+---+ar(e) + R, (2.10)
where the functions a,(¢) satisfy

las(e)| < Cse®

with some constants Cs < oo. These expansions have the following proper-
ties. They exist more frequently than Edgeworth expansions. They arise in a
natural way from Bergstrém expansions. The closeness of £(X) and L(Y) is
taken into account and therefore it is possible to pass to the case of stable Y-
They can be used to derive Edgeworth expansions and they lead to more gen-
eral and exact results. But a drawback of these expansions is that the terms
as(e) are not uniquely determined in contrast to the power series expansion.
In order to describe the construction of as (), consider the random differential
operator :

Qi = Qi(I9) = (D" (X2) — D (1) -+ (D*(X:) - DH()),

where I® = (I3,...,1;) is a non-negative multi-index. If a mapping f has
sufficiently many bounded derivatives, then one can define

as(e) = i Z (n_i (?) /l(i)!> n"*2EQ;f(rY),
i=1 1) |=2i+s
where |I)] =1y +---1;, 7 = (1 —i/n)*/? and the second sum is ‘over the ()
satisfying I > 3,...,1; > 3. Here 01 =3!--- ;! and (7;) = nl/[il(n —)1].
Put X=X {||X|| < vn}, X = X - X7,
L, =n~®-DE||X!p, A, = n~ @D/ X, .

Note that
Apyo + Lpys < e*TLE|| X573,
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Lemma 2.4. Under the conditions of Lemma 2.1,

llas(e)]] < Ce* B[ X[|**2,
k

Z[GS(E) - SSEPsf(Y)}

s=1

where the constant C = C(k, L(Y)).

< C(Akt2 + Lits),

Sometimes it is very useful to apply a truncation procedure, i.e., to replace
Ef(Sn) by Ef(SE), where St = n=Y/2(X} + --- X?%). Usually the difference
Ef(Sn) — Ef(SL) can be easily estimated. As an example we state the fol-
lowing almost obvious Lemma 2.5 for bounded f (see Sazonov and Zalesskii
(1985), and Bentkus (1986d) for the results concerning the case of unbounded

-
Lemma 2.5. The following estimate holds:
IE£(Sn) — Ef(Sp)II < 20l fllee P{||X]| = v/n}.

Lemma 2.5 (and its generalizations) allows one to replace the analysis of
asymptotic expansions for Ef(S,,) by the analysis of the asymptotic expansion

Ef(SE)=Ef(Y)+al(e)+---+ak(e) + R, (2.11)

where the af(e) are determined by replacing X1, Xo, ...in the definition of
as(e) by X, X3, ...

Lemma 2.6 (Compare with Lemma 2.1). There ezists a = a(L(Y)) > 0
such that the condition

sup exp(—allz|*)[|F®) (z)|| < 00, 0 <i < 3k,
zEB

ensures the existence of the asymptotic expansion (2.11). Moreover,

[Ef(Y)]| <C,
llai(e)|| < C(A2+ Lsya), 1 <5<k,

where C = C(k, L(Y)).

Theorem 2.7 (Compare with Theorem 2.2). Suppose that a r.e. X satis-
fies the CLT and that E||X||? < co. Then there ezists o = a(L(Y)) > 0 such
that the condition

sup exp(—a|X[])||f® (z)|| < 00, 0 <4 < 3k+3,
zEB .

ensures the estimate
IR]| < C(L(X), k)(Az + Li+s)
of the remainder term in (2.11). If in addition E||X||**% < oo, then
llat(e) — as(e)|| < CAsqa, L <5< k.

\
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Further details and results concerning expansions (2.10), (2.11) may be
found in Bentkus (1984d, 1986d).

We say that a Banach space B is of the class C§ (briefly B € Cf) if the
norm function g(z) = ||z|| is s-times continuously Fréchet differentiable on
the open set B — {0} and sup{||g®(2)| : ||z|| = 1} < 00, 1 < i < 5. In the
next theorem concerning expansions for moments we assume that a r.e. X
(or Y) is not finite-dimensional. This means that P{X ¢ E} =0if E C B
is a finite-dimensional subspace of B. This assumption does not restrict the
generality since otherwise we may apply finite-dimensional results.

3k+3
Cb

Theorem 2.8. Suppose that a Banach space B € . Then the asymp-

totic expansion

k
Ef(Sx) = Ef(Y)+) e"EP.f(Y) +R

s=1

is well defined and the remainder term satisfies R = O(n=(*+1)/2) in the
following cases:

(i)  f(x) = ||z||P for somep >0, p < k+3, and E||X|*+3 < oo;

(i) f(z)=||z||? for somep >k +3 and Ef(X) < oo;
(iii) f(z) = exp(allz||*) for some a >0, 0 < a <1, and Ef(X) < co.

The first estimate of the convergence rate for the moments in an infinite-

dimensional Hilbert space was given by Zalesskii and Sazonov (1984). Their
proof includes integration of a nonuniform estimate for the probabilities and
is based on the use of characteristic functions. Rhee and Talagrand (1984)
constructed an example showing that even in a Banach space with very smooth
norm, moment conditions alone cannot guarantee any convergence rate for the
probabilities. Hence it turns out that the method of Zalesskii and Sazonov
(1984) cannot be generalized directly to the case of Banach spaces. Using
another method Bentkus (1984g, 1986d) generalized the result of Sazonov
and Zalesskii to the case of a Banach space with sufficiently smooth norm
and removed certain unnecessary restrictions. The asymptotic expansion of
Theorem 2.8 is a consequence of more general and more exact results due to
Bentkus (19864).

§2.3. Asymptotic Expansions for Probabilities

Let A be a subset of a Banach space B. This section is devoted to asymp-
totic expansions for the probability P{S, € A}. If we choose f(z) = xa(z),
then in the i.i.d. case we can rewrite the short Bergstrém expansion (1.8) in
the following form
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P{S, € A} = P{Y € A} + n/ Ef(Z +ex)H(dz) + R
B
= U(4) +n / $(A—ex)H(dz) ~ R, (3.1)
B

with Gaussian measure ® = L(Z), Z =ey/n—1Y, and H = L(X) = L(Y).
The construction of asymptotic expansions in the case of smooth f was based
on transforming nFE [, f(Z +ez)H (dz) into eED?(X) f(Y)/6 (if we leave the
problem of estimating R aside). This, in turn, was based on expanding the
smooth function z — f(Z +ez) in a Taylor series in powers of ex. If f is non-
differentiable, then such direct expansion is impossible. But assuming that

the function
z— ®(A —ex) (3.2)

is sufficiently smooth, we may repeat this argument with respect to the integral
on the right-hand side of (3.1). Differentiability of the function (3.2) naturally
leads to the notion of differentiable measure (see Averbuch, Smolyanov and
Fomin (1971) and Daletskii and Fomin (1983) for more information concerning
differentiable measures).

Suppose that & : A — R is a set function (not necessarily additive or o-
additive) defined on a class A of subsets A C B. Let us suppose also that A
is invariant under translations, A € A, h € B = A+ h € A. Then we can
define (if it exists) the (directional) derivative

D(h)®(4) = lim{®(4 — th) — ®(4)}/2. (3.3)

We mention that the traditional definition would require ®(A4 + th) in (3.3).
We did choose ®(A — th) to keep the same notation for asymptotic expan-
sions as in the previous sections. The first derivative D(h)® : A — R is a
set function. Hence we can define the successive derivatives D(h1) - -- D(hs)®
iteratively. This allows one to well define such quantities as, e.g., EP,v(A),
where Ps = Py(D(X3),...,D(X;)) is the random differential operator deter-
mined via the Edgeworth—Cramér polynomials. In the same way all formulas
from the previous section can be correctly interpreted for the case of the
non-smooth function f(z) = xa(x).

Concerning asymptotic expansions in the infinite-dimensional case, it is
generally accepted to define the set A through a function ¥ : B — R, ie., to
let A=A, r = {z € B: F(z) < r}. The results obtained so far concern cases
where F is sufficiently smooth or F(z) = ||z||?, p > 0, in a Banach space with
sufficiently smooth norm. Let us start with the case F'(z) = ||z||, the norm of
Hilbert space H. Let Vo, ={z € H:|lz —al| <r}.

Theorem 3.1. Suppose that r.e. X € H and is not finite-dimensional. If
E||X|P < 0o for some 2 <p< 3, then forallac€c H, r €R

P{Sn € Vr,a} = P{Y € V;",a} +R (3'4)

I ' ' Q@S
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with R = o(n=(=2)/2), If E||X||P < oo for some 3 < p < 4, then
1
P{Sp€Via} =P{Y €V, o} + —sED3(X)y(V;,a) +R, (3.5)

with R = o(n~®=2/2). Furthermore, ED?(X)v(Vy,) =0 zfa =0 orif X is
symmetric.

We note that the theorem is valid without conditions like Cramér’s con-
dition for the c.f. The paper by Bentkus and Zalesskii (1985) contains an
example with an infinite-dimensional X € H which shows that the distri-
bution function r — P{||S,(X)|| < r} has a jump bigger than C/n with
some C.> 0. Therefore the asymptotic expansions longer then those in Theo-
rem 3.1 should contain additional discontinuous (with respect to r) terms or
one should impose a condition similar to Cramér’s condition. The following
condition was introduced by Bentkus (1984e), and Nagaev and Chebotarev
(1986).

The Cramér-type condition. There exists an operator K > 0 such that the
operator K cov X is not finite-dimensional and

11msupsup{|Eexp( (z, X)) : (Kz,z) =7} < 1. (3.6)

Remark 8.2. All of the results below hold if the range of the operator
K cov X is of finite but sufficiently large dimension.

‘We note that one can never choose K to be the identity operator since it is
easy to show that every r.e. X in an infinite-dimensional H satisfies (for each
r > 0)

sup{|E exp(i(z, X))| : ||lz|| =r} = 1.

Consider the condition -
1 . .
/ | Bexp(it]|Sa(X)|B)ldt = O(1/T), (3.7)
n3ra<pti<T It

where T will be chosen later so that 1/7 has the order of the desired error.

Usually one can verify (3.7) if Cramér’s condition (3.6) is fulfilled (see
Bentkus (1984e) and Nagaev and Chebotarev (1986)). Condition (3.7) is ex-
pressed in terms of the whole sum S, (X). Generally this is not accepted as a
solution of the problem. Usually an estimate of the error is preferable when it
is expressed in terms of one summand. We formulate the results while impos-
ing (3.7) because it happens to be more convenient in applications (see, e.g.,
§ 3.1 concerning w? statistics); we are able to verify (3.7) but not the Cramér
condition (3.6). ‘

Theorem 3.3. Let ¢ r.e. X € H and let integer k > 2. Suppose that
E||X|{|**% < co. Then the asymptotic expansion

s
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k
P{Sn € Vol =P{Y € Voo} + > e*EPw(V;a) + R (3.8)
s=1 .

is well defined. Here the P, are the random differential operators deter-
mined via Edgeworth-Cramér polynomials. Furthermore, suppose that con-
dition (8.6) is fulfilled. If E||X||**2%® < 0o, where 0 < a < 1, then

R = o(n~(k+e)/2)
and if E||X|[**2 < oo, then -
R= O(n_(k+1)/2).

Moreover the result remains valid if instead of (8.6) condition (3.7) is fulfilled
with any T = o(n*+2)/2) 0 < a < 1, or T = O(n*+1/2) respectively.

The method of proving Theorem 3.1 and Theorem 3.3 was developed by
Gotze (1979, 1981, 1984), Yurinskii (1981, 1982), Zalesskii (1982), Nagaev
(1983) and Bentkus (1984e). In these and later papers, various estimates of
the remainder were obtained. Let us give a short review not concerning the
first part of Theorem 3.1 (see § 1.1 for the convergence rates). The paper
of Gotze (1979) contains the very important symmetrization inequality (see
§ 1.1) which allows one to estimate the c.f. Eexp(it||S, + al|?) for |t| <
n'=¢, e > 0. Also this paper gives bounds for the remainder term exact with
respect to m but under somewhat restrictive moment conditions. Zalesskii
(1982) proved Theorem 3.1 for ¢ = 0. Theorem 3.1 and Theorem 3.3 follow
from the results due to Bentkus (1984e). In that paper Theorem 3.1 and
Theorem 3.3 are generalized to the case of sets V., = {z € H : w(z+a) <7},
where w : H — R is a polynomial, second-degree and under appropriate
conditions, the estimate

R=0, ((1+lalP***)(n~ + B X.|[? + n~ 2B x4+%)  (39)

is obtained, valid for every s > 0. We recall that Xt = Xx{||X]| < n'/2}
and X; = X — X*. Sazonov and Zalesskii (1985) developed truncation tech-
niques adapted to the nonuniform estimates of the remainder. Using these
techniques Bentkus and Zalesskii (1985) inserted the factor (1+p)~™, m > 0,
in the estimate (3.9) provided E||X||™ < oo, where p denotes the distance
between 0 € H and the boundary of the set V; ,. Nagaev and Chebotarev
(1986, 1987, 1989a, b) considerably sharpened the estimate of the remainder
in Theorems 3.1 and 3.3. These papers contain also the Bergstrom expan-
sions in Hilbert space (see also Bentkus (1984e) and Bentkus and Zalesskii
(1985) for expansions of an intermediate type). Papers of Sazonov, Ul'yanov
and Zalesskil (1987a, b), Sazonov and Ul'yanov (1991) are devoted to a de-
tailed investigation of uniform and nonuniform estimates of the remainders
in Theorems 3.1 and 3.3. The case of non-identically distributed summands
was investigated by Bentkus (1984e). Ul'yanov (1987) removed certain unnec-
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essary restrictions from Bentkus (1984e) and obtained a more exact estimate
of the remainder. Asymptotic expansions are also treated by Koroliuk and
Borovskikh (1984).

We now state one result concerning asymptotic expansions in Banach
spaces. Let A, = {z € B: F(z) < r}, where F is a functional F : B — R. Let

0ty = B 1 (FE (Y)Y - Yieyn)?,

where the symbol Fy; means that the expectation is taken only with respect
to the r.e. Yg11.

Theorem 3.4. Suppose that a r.e. X € B satisfies the CLT. Let a number
v > 0 and an integer k > 0 be fized. Assume that F is 3k + 3 times Fréchet
differentiable and that there exists a constant M > 0 such that

sup(1 + zl)= ™ |FD ()] < oo

forall7=0,...,3k+3. If
P{o241 < 8} = O(6™)

for sufficiently large m = m(e, k) as 6 | 0, then E||X||**? < co ensures the
existence of the asymptotic expansion

k
P{Sn€ A} =P{Y € A,}+ > *EP.w(A,)+R.

s=1
Furthermore, if E||X|[*+% < co, then R = O(e*t177).

The theorem is contained in Gotze (1989), where more general and more
exact results are obtained. Earlier G&tze (1983) proved the theorem for k = 0.
In Gotze (1984) the theorem is proved for F(z) = ||z||*™* and B = Lg41-
Vinogradova (1985) showed that the theorem is valid for symmetric F' and
k=1

§2.4. Asymptotic Expansions in the Local Limit Theorem

Let us consider the following Cramér-type condition: there exist a non-
negative operator X : H — H and constants p < oo, § > 0 such that for
r>0

sup{|E exp(i(z, X))| : (Kz,z) >} < pr~°. (4.1)

Clearly, this is stronger than the Cramér condition (3.6) of the previous sec-
tion. Put A, ={z € H: ||z +a]|? <r}.
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Theorem 4.1. Suppose that E||X||**? < oo for some k =0, 1, ...and
that for some € > 0 the integral

Jo= / | B exp(it]|Sn + al[?)|dt
[t|>ni—¢

exists. Then the asymptotic expansion
d d k. d
T P{Sn € g} = P{Y € A} + éeS%EPS(Aa,T) +R

is well defined. If

Je = O((1 + [a]|**3)n-*+D/2) (4.2)
and BE||X||**+® < o, then
R =0((1 + ||a]|F+3)n=(*+1)/2) (4.3)

If Cramér’s condition (4.1) holds with an operator K > 0 such that the range
of the operator K cov X is of sufficiently large or infinite dimension, then the
integral J. exists for n sufficiently large, (4.2) holds and the remainder R
therefore admits the estimate (4.3).

From this result one can also derive an asymptotic expansion for P{||S, +
al| < r}. The theorem is a consequence of more general and more exact re-
sults due to Bentkus (1985a). Earlier Chebotarev (1982) proved under certain
conditions that

£ (P{ISAIP <} = P{IYI? <)} = 0?)

if E||X||*> < oo and the coordinates of X are independent. Recently Bentkus
and Zitikis (to appear elsewhere) have generalized Theorem 4.1 to the case of
a Banach space B and sets A, = {z € B:w(a+2) <r}, wherew: B =R
is a polynomial of arbitrary degree.
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Chapter 3
Applications

§3.1. Cramér—von Mises Statistics

This section considers the statistics
1
2(g) = n?/? / Fa(t) — tPg(t)dt. (1.1)
0

Here p > 0 is an integer, ¢ : [0,1] — [0,00) denotes a Lebesgue measurable
weight function, and F,(¢) denotes the empirical distribution function based
on an independent random sample z1,..., %, from the uniform distribution
on [0,1],

Fo(t)=n"1 zn: X{z; < t}.

We shall use the name “the Cramér-von Mises” statistics for w?(q). Denote
the corresponding distribution functions by

Ui(z;q) = P{w}(g) < =},
and let :
UP(z;q) = lim UZ(z;q).
n—co

Note that the statistics of the type

w2 [ IR - FOPAF@EF),

based on an arbitrary continuous distribution function F', can be reduced to
(1.1) by changing variables. ,
We start with the discussion of results concerning the well-known w2-test,

wi = n/l(Fn(t) —t)2dt (1.2)
: 0

since in this case we are able to derive an almost complete set of convergence
rate results from the general results obtained in Banach spaces. It is well
known (see (Smirnov (1937)) that w2 converge weakly to

W = / S W) — W)
0

< t £ 1, is the standard Wiener process. Prokhorov and
h

where W (t ) 0
69) had noted that the following representation holds:

Sazonov (19
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wy = 18all?,

Here X, X1, ... € Ly(0, 1) is a sequence of 1.i.d. r.v.’s takmg values in the
Hilbert space LQ(O, 1) and

Sp=n"2(X) 4+ + X,,). (1.3)

X)) =x{z<t}—t, (1.4)

where z is a r.v. uniformly distributed in [0,1]. Clearly the X in (1.4) as
ar.e in Ly(0,1) has mean zero and is bounded: ||X|| < 1/3. Therefore we
may apply the general results obtained in Hilbert space. Indeed, the following
theorem is a consequence of these general results (it is sufficient to apply the
result due to Gotze (1979)).

Theorem 1.1. There exists an absolute constant C such that

An = sup |Up(z) — U(z)| < Cn Y, (1.5)
z€eR

where UZ(z) = P{w2 < z} and U?(z) = P{w? < z}. Moreover,

U2(z ) + Zas

where the as(z) are certain known functions and |Ry| < C(k)yn=*1,

% + Ry, (1.6)

The proof of Theorem 1.1 depends strongly on the following estimate. For
sufficiently large positive A,

|E exp(itw?)| < C(k, A)(1 +|t))~4 (1.7)

for [t| < n and k = 0 in case (1.5), and for [¢| < n*+! in case (1.6). Now it is
known (see Bentkus and Zitikis (1988)) that for every positive A there exist
constants C1(A), Ca(A) such that ‘

|Eexp(itw?)| < C1(A )(1 + ¢4 (1.8)

for all t € R and n > Cy(A).
The remainder term Ry in (1.6) is nonuniform in |z|, i.e. for all A > 0

|Bi| = |Re(2)] < Clk, Ay 71 (1 + | )4

This follows from known estimates similar to (1.7) for the derivatives of the
characteristic function E exp(itw?) (see, e.g., Bentkus and Zitikis (1988)) and
general results in Hilbert space concerning nonuniform estimates (see Sazonov
and Zalesskii (1985), Bentkus and Zalesskii (1985)).

It should be noted that the proof of Theorem 1.1 has a long history. Papers
by Sazonov (1968, 1969), Rosenkratz (1969), Kiefer (1972), Nikitin (1972),
Orlov (1974) and Csérgd (1976) contain results of the type A, = O(n=*)
with various B < 1/2. The statistics w2 were also investigated by Koroliuk
and Borovskikh (1984).
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Theorem 1.2. There exist absolute positive constants C1, Co and a func-
tion I(n,t) (an analog of the classical “Cramér series” in large deviations
results) such that '

1-U2(z) = (1= U*(2)I(n,2)(1 + C1O(1 + vz)/V/n) (1.9)
when 0 < z < Cyn. Purthermore, if £ < Can'/? then
1-U2(z) = (1 - U%(2))(1 + C10(1 + 2%/3) //n). (1.10)
The quantity 0 satisfies 6] < 1.

The pioneer papers of Osipov (1977, 1978a, 1978b) had a strong influence
on the investigations of large deviations for w2 and in Hilbert space, as well.
Theorem 1.2 is a special case of a general result in Hilbert space due to
Yurinskii (1988). That paper contains a construction of the Cramér series
I(n,t). Inequality (1.10) also follows from Zalesskii (1989), Rackauskas (1988)
and with a less precise estimate O((14+/2)n~/6) of the remainder term from
Bentkus (1986¢).

Recall that CF denotes the class of functions having & continuous and
bounded derivatives.

Theorem 1.3 (Bentkus and Zitikis (1988)). Let k = n/2 —1 if n is even
and k = (n—1)/2 if odd. The distribution function U2 € C¥, but U2 & CF**.
Moreover, for allm >0,p=0,1,...,n>2(p+1) andk=0,1,...,

(%)p {Ug(x) _U%(z) - gas(x)n‘s}

The proof of Theorem 1.3 (i.e., the local limit theorem for w? with an
asymptotic expansion) is based on a detailed analysis of the characteristic
functions and strongly depends on estimates such as (1.8). The result that
U2 eCE, U2 ¢ C’é”'l, slightly improves the corresponding result due to Csorgd
and Stacho (1980).

The condition F||X||?> < oo is necessary and sufficient for the CLT in
Hilbert space (see, e.g., Araujo and Giné (1980)). In the case of w3(g) the
condition

sup(l +z™) < C(m,p, k)n~F1.

z>0

/ 41— Dg(t)dt < oo (1.11)
0

is clearly equivalent to E||X||? < oo for the r.e. X in (1.4) considered as an
element of the space

La(g) = Lo((0, 1), a(®)dt), ||a|? = /O 2 (£)g(t)dt.

Thus (1.11) guarantees the existence of

lim U2(z,q) = U?(z,q).
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This result is wellknown and was proved by Chibisov (1964) using other meth-
ods. If (1.11) is fulfilled, then the condition E||X||*™ < oo, m > 0, is equiva-
lent to (see, e.g., Zitikis (1989)) '

/01 {/Ow tq(t)dt}mdx < oo,
/01 {/;(1 - t)q(t)dt}md:c < 0. (1.12)

On the other hand, one can easily show that the existence of the integrals

/01/2 (/:/2 q(t)dt)mdx < 00,
/1;2 </1j2 q(t)dt)m dz < o0 | (1.13)

is equivalent to (1.11) and (1.12) if m > 1. For example, if the function g is
symmetric about the point ¢t = 1/2 and g(t) = ¢~° with some ¢ for 0 < ¢ < 1/2
then (1.13) is fulfilled if and only if § < 1+ 1/m.

Theorem 1.4. Suppose that (1.13) holds for some 1 < m < 2. Then

An(g) = sup [U2(z; ) — U*(z; )| < Cg, m)n*~™.

Moreover, Ap(q) = o(n*™™) as n — oo.

Theorem 1.4 follows from the known estimates. of the convergence rate in
Hilbert space (see Gétze (1979), Zalesskii (1982)). One has to verify that the
corresponding r.e. X € Ly(g), or equivalently, the limiting Gaussian process
Y (¢) = W(t) — tW(1), where W(t), ¢t € [0,1], is the standard Wiener pro-
cess, is not concentrated in a finite-dimensional subspace of Ly(g). It suffices
to show that W is not finite-dimensional since tW (1) is concentrated in a
one-dimensional subspace. Clearly, to this end it is enough to construct linear
measurable functionals l1,...,0, : L2(¢g) — R for every integer m > 1 such
that the Gaussian r.v.’s I;(W),..., 1, (W) are independent and nondegener-
ate. Without loss of generality we may assume that meas{t : ¢(¢) > 0} > 0.
Therefore there exist pairwise disjoint intervals (a;, b;) C (0,1), 1 < i < m,
such that [ : q(t)dt > 0. Thus we can put

b;
L) = [ OVE) - Wa)a(o.
(<73
Consider the condition

inf{q(t) : ¢t € (0,1)} > 0. (1.14)
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We shall assume that ¢ satisfies the following condition: there exist a finite
number of points tg = 0 < #1 < --- < ty < ty4+1 = 1 such that the func-
tion ¢ is monotone and either convex or concave on every interval (tim1,ts).
Moreover, we suppose that there exist numbers o > 0 and ¢(a) < oo such
that

max{g(ti-1 +¢€); q(ti —€)} < c(e)e™ (1.15)
for all € > 0 such that 2e < t; —t;—1.

Theorem 1.5 (Zitikis (1989)). Suppose that conditions (1.13) withm =2
and (1.14), (1.15) hold. Then

An(g) < c(g)n™™.

Moreover, if (1.13) holds with m = u(l +¢€) > 2 for some e > 0 and p =
1,2,..., then
sup z#|U2(z; ) — U*(z; ¢)| < elg, 8, m)n "
x>0
The paper of Zitikis (1989) also contains asymptotic expansions for U2(-q)
and its derivatives. Estimates of the remainder term obtained are uniform and
nonuniform. These expansions are found under the additional condition that
¢ satisfies (1.15).
Concerning the large deviations results, one can replace U2 by UZ(-;q) in
Theorem 1.2 if the following condition is satisfied: there exists a positive C

such that
1 T 1/2
/ exp | C [/ q(t)dt} dr < o0,
1/2 1/2

1/2 i/z 1/2
/ exp | C [/ ' q(t)dtil dr'< o0. o (1.16)
0 T

This replacement is possible since the general result of Yurinskil (1988) is
valid when E exp(c||X|]) < oo for some ¢ > 0, which in our case is equivalent
to (1.16). ’

Let us now discuss the situation when p 5 2. Similarly to the representation
(1.3), one can write '

wr(g) = [[Sn? (1.17)

with the same r.e. X of (1.4) but considered as an element of the space L, =
Ly(q), p > 1, of functions f : [0,1] — R with finite integral

I711P = /0 FO)Pat)dt.

The weak convergence of the distributions UZ(z; q) to UP(x; q) was investi-
gated by Csérgé and Horvath (1988) and Norvaisa (1990). Corresponding deep
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and general results on the convergence rate in the CLT in Banach spaces (see,
e.g., Gotze (1989), (1984) and Zalesskii (1988)) were obtained under certain
“variance” conditions (see § 1.3). Unfortunately up till now this condition still
has not been expressed in terms of the weight function ¢, with the exception
of certain special cases, for example, ¢(t) = 1. In this particular case we have
the following result.

Theorem 1.6 (Gotze (1984)). Suppose that p > 4 is even and that g(t) =
1. Then

sup |U7 (z:1) = U(z;1)| < Clp)n ™"

Moreover, one can expand UE(z;1) in an asymptotic series with a remainder
term of the order O(n°~?/2), ¢ > 0.

For further details and results, see Gdtze (1984).  Thus, for UZ(z, q), p
2, we have the Berry—Esseen estimates and large deviations results with a
remainder term of order O(n~%/) only.

Theorem 1.7. Ifp > 3 and

/0 llti"(l — 4)Pq(t)dt < oo,

1 z 3/p
/ </ q(t)dt) dz < oo,
12 \J1i/2

1/2 [ p1/2 8/p |
/0 (/ q(t)dt) dx < o0, (1.18)

then : ‘
sup(1 +2%/7)|UE(z; q) — UP(z; q)| < Cg)n™/°. (1.19)

z>0

When 1 < p < 3, estimate (1.19) is valid if there exists o > 0, a < p/3, such
that

/01 1%(1 —t)%q(t)dt < oo.

The theorem is found in Paulauskas and Rackauskas (1991) for p € (1,3).
For p > 3 the result follows from Paulauskas and Ragkauskas (1991) provided
that the distribution funetion z — (UP(z;¢))/? has a bounded density and
that the corresponding random variable X € L, has a third moment. The first
condition follows from general results of Davydov and Lifshits (1984) and Rhee
and Talagrand (1986). The second one is a consequence of the identity

Bo(lIxI) = | ‘o ({ / “qg(t)dt + / - t)%(t)dt}l/p) dz,  (1.20)
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valid for every ¢ : [0,00) — [0,c0). When the function @(t) = 3, (1.20) is
equivalent to (1.18).

The following theorem is a consequence of more general results due to
Bentkus and Rackauskas (1990) (if 1 < p < 3, one must use additionally the
result of Paulauskas and Rackauskas (1991) about differentiable functions in

Ly).
Theorem 1.8. If .
/ t(1 —t)g(t)dt < oo
0
when p > 3 and .
/ £(1 — £)%q(£)dt < o0

0 .
for some a > 0, a < p/3, when 1 < p < 3, then the limiting distribution
function UP(z;q) exists and the following three statements are equivalent:

(a) there exists h > 0 such that

1 T 1/2p
/ exp | h / q(t)dt dz < o,
1/2 1/2

1/2 1/2 1/2p
/ exp | h / q(t)dt dx < o0;
0 z

(b) there exist constants M; = M;(p,q) > 0, i = 1,2, such that

’1—U£(fc;q)

—1! < My(1+ 2Y/?)n =18,
1-UP(z;9) 1" e

when 0 < z < Mon?/S;
(c) for each function f:R — R such that f(n) — 0, as n — oo,

1-UR(z;9)

1 asn— o0,
1-Ur(zq) ~ °

uniformly for 0 < z < f(n)n?/s.

§3.2. L-Statistics

This section discusses only recent work on large deviations for L-statistics
since these results were obtained by reducing the problem to results in Banach
spaces or by applying appropriate techniques. We refer to Stigler (1974), Ser-
fling (1980), Helmers (1982), Bhattacharya and Denker (1990), Norvaia and
Zitikis (1991), and Zitikis (1991a) for other results concerning L-statistics.

o ——
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Let Xi,..., X, be independent copies of a r.v. X € R with distribution
function F'. Consider the L-statistic

n
-1
bn=mn _5_ CinXiin,
G=1

where X5., < --- < X,,., are the order statistics of X1,...,X, and ¢ip, .. -, Can
are certain real coefficients. ’

When the coefficients are generated by a weight function J : [0,1] — R
(see, e.g., Stigler (1974)), that is

i/n
Cin = C, = n/ J(u)du,
(i—-1)/n
we shall denote the corresponding L-statistic by £3. We shall assume that
there exists an L > 0 such that '
[J(u) = J(v)] < Lju = v|

for all u,v € [0,1]. It is known (see Stigler (1974)) that if EX? < oo, then
there exist finite limits ‘

_ 0 2_ 1 0 _ N2
W= nlil)zgo E¢,, o= nlgx;o nE(l, — u)*,
where

u=/mxﬂnmwn@,

—_00 .

= [ [ I F) FE A - FE)Fw)ady
We shall assum;o‘:ha;o; > 0. This guarantees that the limiting distribution of
the r.v. n™Y/2(¢8 — u)/o is the standard normal distribution ®(z).
Theorem 2.1. If for some h > 0 |
Eexp(h|X|*?) < o0, (2.1)
then for each sequence b, — 0
P{/n(f2 — ) >oz}/[1-®(x)] =1 asn— oo, (2.2)
uniformly for 0 < z < b,n1/S.
Note that the theorem (and the results below) remains valid for the quotient
P{Vn(ly — p) < 0w}/ ®(x)

when —b,n*/® < z < 0. Indeed, it is sufficient to replace J by —J.
Assertions (2.1) and (2.2) are equivalent when J = const. # 0. In this case
the statistic £2 reduces to a sum of i.i.d. r.v.’s and the equivalence is proved,
for example, in Bentkus and Rac¢kauskas (1990). The same remark applies to
Theorem 2.2 below.
Let us fix a number a, 0 < a < 1/2, and put z, = n%/(4=2a),
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Theorem 2.2. If there exists h > 0 such that
Eexp(h|X|*) <oco, (2.3)

then for each sequence b, — 0
P{v/n(£y — p) > oz}/[1 - &(z)] — 1

uniformly for 0 < z < bpxn.

as n,— o0,

Theorem 2.1 and Theorem 2.2 are stable with respect to small perturba-
tions of the coefficients cJ;, ..., c2,, in the following sense.

Theorem 2.3. Theorems 2.1 and 2.2 remain valid if the coefficients

Sy -y 0, are replaced by Cin, ..., Cnn Such that
Z [Cm znlg (n—l) . (2'4)
in the case of Theorem 2.1 and
n
D lein = cha| @7/ 0= = O(n®/ (D) (25)
=1

in the case of Theorem 2.2. In both cases the statistic £ should be replaced by
L. ‘

The application of Holder’s inequality shows that (2.4) implies (2.5). Theo-
rems 2.1-2.3 were proved by Bentkus and Zitikis (1990). The proofs are based
on the representation £, = S, + w2 + R, where S,, denotes a sum of i.i.d. R-
valued r.v.’s, w2 is an w?-statistic and R is a remainder term. The estimation
of S,, is based on the well-known one-dimensional results (see, e.g., Ibragimov
and Linnik (1965), Petrov (1972), and Bentkus and Rackauskas (1990)). The
estimation of w2 is based on large deviations results in Hilbert space by Ben-
tkus and Rackauskas (1990) (see also § 3.1). Using the same techniques Zitikis
(1991b) showed that the speed of convergence in Theorem 2.1 and 2.2 is of the
order (1 + x3)n_1/ 2Inn. Combining the methods and techniques developed
to obtain convergence rates and large deviations theorems in Banach spaces,
Zitikis (1991a) proved the next result.

Theorem 2.4. Condition (2.3) guarantees that there exist constants C =
Cl(a,J), and A = A(a,J) > 0 such that

11— P{V/n(& — p) > ox}/[1 — ®(2)]| < C(1 + 2®)n~ /2
for 0 <z < Az,

Cramér-type large deviations for L-statistics were investigated by Van-
damaele and Veraverbeke (1982), Puri and Seoh (1987), and Aleskeviciené
(1989).
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§3.3. Kolmogorov—Smirnov Statistics

Let F,, be the empirical distribution function based on a sample z1,...,%, -

of observations from a uniform distribution on [0,1] and let

Dy (t) = n*?(Fy(t) — t).

In the previous sections we have seen that it is useful to consider {D,,n >
1} as a sequence of r.e.’s in L,. Here we shall con51der D, as ar.e. in the
Skorokhod space D[0, 1],

Co n
t) =n"1/2 Z,Xi(t),
3=1

where X, X1, X, ...areii.d. r.e.’sin D[0,1] having the same distribution as
the process X (t) = X{z < t} —t, ¢t € [0,1], with r.v. z uniformly distributed
on [0, 1]. Therefore the weak convergence of D,, (that is, the classical Donsker
theorem) is nothing more than the CLT in DI0, 1] for i.i.d. summands having
the special structure. Any of Theorems 4.7-4.10 of Chapter 1 can be easily
applied to D,,. For example, to apply Theorem 4.7 the follovvmg two conditions
are sufficient:
B(X(t) - X(s))* <t s,

B(X(u) = X()*(X(t) = X())* < (u—s)?,

Of course, this app'lication has only methodological importance. Here we shall

0<s<t<u<l

apply the results of § 1.4 to weighted empirical processes. To this end some"

new definitions are required. Let @Q be the class of functions ¢ : [0,1] — R*
continuous and increasing on [0,1/2] and symmetric about the point 1/2 :
qt) =¢(1—1¢),0<t<1/2. Let

Wol(t) = W(t) —tW (1), 0<t <1,

be the Brownian bridge, where W is the standard Wiener process. The
weighted empirical process and the weighted Brownian bridge are given by

) =0Ty Xig(t)
=1

Wo,e(t) = Wo(?)/q(9),

respectively, where X; o(t) = X;(t)/q(t). Chibisov (1964) (see also O’Reilly
(1974)) proved that for ¢ € @ the distributions £(D, 4) converge weakly to
L(Wyq) if and only if :

Drq(t) = Dn(t)/q(t

/Mszmmym*ﬁ<w (3.1)
0
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for all € > 0. We shall compare this result with the one obtained by applying
Theorem 4.8 of Chapter 1. Suppose in addition that t*/2/¢(t) is a nondecreas-
ing function. Performing some simple estimates (for details, see Paulauskas
and Stieve (1990)), we have forall 0 < s<t<u <1

BXu(0) - X,(0)? < C | "2 (), (3.2)

U 2
B (30 X(6))? A1) () = X0 < © [ o7 laan) - 33

where X (t) = X(t)/q(t). Therefore, if

1/2
/ v™Y2 Jg(v)dv < oo, (3.4)
0 ,

then the condltlons of Theorem 4.8 are satisfied with a3 = 1, ap = 2 and
Fi(t) = =C f v=%/2/q(v)dv and this implies the weak convergence of
L(Dy,q)- It follows that condition (3.4) is very close to the optimal O’Reilly—
Chibisov condition.

We close this section with a result implied by Theorem 4.11 of Chapter 1
applied to weighted empirical processes. Let

Anq(z) = |P{||Dngllec <z} — P{||Wo,qllcc <}-

Theorem 3.1 (Paulauskas and Stieve (1990)). Suppose that ¢ € @ and
for some 0 < § < 2/3 and 0 < v < 1 the function t*/G+9) /q(t) is increasing

and

sup tV/ G0 /(1) < C.
0<t<1/2

Then there exists a constant Co = Cy(q) such that _
A o(z) < Con~ /101 L ) =3(Inn + In(1 + z))2. (3.5)

To prove this one needs to verify the conditions of Theorem 4.12 of Chap-
ter 1, among them condition (4.3) for Wy, See Paulauskas (1990) and
Paulauskas and Stieve (1990) for details.

Here it is necessary to note that there exists a vast literature on weighted
empirical and quantile processes (see, for example, Csdrgs et al. (1986) and the
references therein). Most of these papers employ the so-called Hungarian (or
KMT) construction. Using these results, one can easily deduce the following:
if g(t) =%, 1/4 < o < 1/2, and condition (4.3) is fulfilled for Wy 4, then

sup A, 4(z) < Cn~/2+e, (3.6)
z€R

Hence the rate n =%/ in (3.6) corresponds to the rather natural weight function
t1/3 while in (3.5) for the same rate we have to choose the function ¢3/11.
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§3.4. Empirical Processes

In this section we shall state two estimates of the convergence rate in the
CLT for general empirical processes. There exist a large number of papers
devoted to the CLT itself. We refer the reader to survey papers by Dudley
(1978), Gaensler and Stute (1979), and Giné and Zinn (1984).

Let X, X1, X5, ...beiid.r. e s taking values in a measurable space (X, A).
Let p = L£(X) and pf = u(f) = [4 f . Let p, and E, denote the
empirical measure and emplrlcal process, respectlvely, associated with y, i.e.,

n
Mon, = n~! 26Xi7 b, = \/ﬁ(/in - /J'>7
i=1

where §, denotes the point mass at z € X. We shall consider the empirical
process E,(f), f € F, indexed by some class F C Lo(X, A, u) of measurable
functions f : X — R. Let us define the pseudo-metrics p,-and e, p, 1 < p < o0,
on F as follows:

pu(frg) = (u(f — 9)% — 3(f — )2,

e/J:P(fag) = (lu;f _g|p)?/p7 lf 1 S D < co,
eu,0(fr9) = ess suplf — g/,

where the ess sup is taken with respect to the measure u. We suppose that the
class F is u-pre-Gaussian. This means that there exists a zero-mean Gaussian
process B,(f), f € F, with covariance

EB,(f)Bu(g) = u(fg) — u(Hulg), f,9€F,

which has a version with bounded and uniformly continuous sample functions
with respect to p,. In order to avoid measurability problems we suppose that
the class JF is countably determined (for w). That is, we suppose that there
exists a countable subclass Fy C F such that ||En||7 := supser [En(f)] =
||Enl| 7, a.e. for all n > 1. If the class F is totally bounded under a pseudo-
metric d, then the covering number N4(u) and the metric entropy Hg(u) of
F are defined as

Ny(u) = N(F,d,u) == min{k : 3f1,..., fx € F: min d(f, f;) <uVf e F},
1<i<k ,

Hy(u) =log Ng(u), uw > 0.

The last notion that will be needed to formulate results is the Vapnik-
Chervonenkis class. A class N of subsets of X is said to shatter a finite subset
To of X if every I* C I'g is of the form C NIy for some C € N. N is called
a Vapnik-Chervonenkis class (VC for short) if for some n > 1 no n-element
subset of X is shattered by N. The least such n is called the index of X and is

'_" T N
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denoted by v(X). For a non-negative function f : X — R, the set defined by

sub(f) :={(z,t) e X xR :.,0 <1< f(z)} is called a subgraph of f. Let
D(F) = {sub(f) : f € F}.

Following Dudley (1987), we call F a VC-subgraph class (for D) if D(F) is a
VC class. ‘

As usual in order to estimate the convergence rate in the CLT, we need the
e-strip condition on the limiting Gaussian process: there exists a constant C
such that for all e > 0 and 7 > 0,

P{r<||Bullr<r+e}<Ce(l+r)73 (4.1)

Theorem 4.1 (NorvaiSa and Paulauskas (1991)). Let F be a countably de-
termined VC subgraph class of functions f such that 0 < f < 1. Assume that
(4.1) holds. Then

An(Fy7) = |P{||Enll7 <7} — P{[|Bull <7}
= O((1+7)"3n"Y61n%n). (4.2)
Theorem 4.2 (Norvaisa and Paulauskas (1991)). Let F be a countably de-

termined class of functions f such that 0 < f < 1. Assume that (4.1) is
satisfied and that for some C and some s € (0,1/2) :

H(F,epo0,u) <Cu™®, u>0.

Then
An(F, 1) = O((1 +1)"3n=(1=29)/6 ps ), (4.3)

Let us consider as an example the multivariate empirical process. Namely
let

X =R% (—oo,t] ={s=(51,...,8q) ER%: 51 <t1,...,84 < ta},

F= {X(—oo,t]; te Rd}a En(t) = \/E(Fn(t) - F(t)); te Rda

where F(t) denotes a distribution function with law u and F,, denotes the
empirical distribution function related to F'. NorvaiSa and Paulauskas (1991)
proved the validity of (4.1) under very mild conditions on F. Combining this
with the known fact that the class of lower-left orthants of R? is a VC class
and is always countably determined (see Wenocur and Dudley (1981)), by
Theorem 4.1 we obtain the following result.

Theorem 4.3. Suppose there is an increasing sequence tx € R%, k > 1
such that the distribution function F satisfies 0 < F(t;) < F(tg) < --- < 1.
Then

{P{f;lngi |En(t)] < r}—P{tseuﬂ@ |Br(t)] < r} = O((1+7r) 30" % n). (4.4)
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One can compare Theorem 4.3 with results which follow from the weak
(or strong) invariance principle (see, e.g., Massart (1986, 1989) and references
therein). Here we note only that in (4.4) the order of the remainder term
does not depend on d, whereas usually the convergence rates obtained by the
Hungarian construction are of order n~*/24. Hence (4.4) is better for d > 3.
For more details on the comparison of these results and for a more complete
list of references on this topic we refer the reader to the above-mentioned
papers of Massart (1986, 1989) and NorvaiSa and Paulauskas (1991).
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