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Introduction.

A. domain D in a complex Banach space E with basis (¢,),., is said to
be Reinhardt (w.r.t. (e,)) if it contains the origin and is invariant under
the transformations

D Bn—> > Au®u,  V|A] =1.
n n
It is known that # contains a bounded Reinhardt domain precisely when

(¢.) is unconditional. In this case; an approprlate diagonal linear isomorphism
T: B — F normalizes D, i.e.,

e,c oD, and e D =A<l VneN,

where D) = TD. B may then be given an equivalent norm ]] | for which g

co(D) is the unlt ball and (e,) is 1-unconditional.

Let D and D be bounded normalized Reinhardt domains in B and &
w.r.t. the 1-unconditional bases (e,) and (é,). D and D are sald to be
bzholomorphwally equwalent if there is a biholomorphic map w: D - D.
In [10], Sunada has shown that for finite dimensional E and E, D and D
are biholomorphically equivalent iff there is a surjective linear isomorphism

T' D —D which is basic, ie., there is a permutation o so that T(e,) .

Vn. We extend this result to infinitely many coordinates.

c(n)

The methods used in [10] are Lie algebraic and peculiar to finite dimen-

sions. We’ll deduce the theorem instead by using the D skew-hermitian

operators on E to examine the |-| isometric structure induced by D on

(*) Current address: Dept. of Math. Sciences, MSU, Memphis, TN 38152.

The results of this article are contained in the author’s Ph. D. thesis, written
at Kent State University.
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the coordinate subspaces of B. Specifically, we’ll find a maximal partition €
of N such that F,= [e¢;: ¢ € ¢] is isometrically Hilbert space and D,= D
N E, is the Hilbert unit ball Ye € &, and such that z € D is determined by
the sequence ([2,];).eq, Where |+[, is the Hilbertian norm on E, and g, is
the canonical projection of » onto #,:

For D = B, this structure was studied by Schneider and Turner [8] in
finite dimensions and by Fleming and Jamison [4, 5] and Kalton and Wood [6]
in infinite dimensions, where {H,:cec ¢} are referred to as the Hilbert
components of E. Stachd, using different methods, re-discovered Hilbert

components in [9]. The papers of Vigué [12] and Barton et al. [2] using

Jordan theoretic techniques developed principally by Vigué [12] and Braun
et al. [3], may be viewed in part as uncovering certain Hilbert components
of F induced by arbitrary bounded Reinhardt domains admitting of a non-
linear biholomorphic automorphism. '

In § 1 we'll use an elementary argument to establish the Hilbert compo-
nents induced by a bounded normalized Reinhardt domain D. The argu-
ment is motivated in part by Auerbach [1], in which it is shown that a
bounded group of linear transformations is a subgroup of a group of unitary
transformations. We’ll see in particular that the Hilbert components induced
by D are generally proper subspaces of those induced by co(D). In § 2
we’ll prove Sunada’s theorem. The argument here is standard; half of it
is similar to that of [5]. The normal form of a bounded Reinhardt domain
(cf. [2]) is described in § 8. This form shows the very special geometric
structure required of a bounded Reihardt domain to support a nonlinear
biholomorphic automorphism. A subset of the Hilbertian components
induced by D can be computed from the parameters of the normal form,
and these parameters furnish a set of bihelomorphic invariants of D.

§1. We first recall some background (ef. [11]). Let D be a bounded
domain containing the origin, and let &,(D) be the linear and continuous
automorphisms of D. The infinitesimal transformatlons of Gy(D) are a

Banach Lie sub-algebra g(D)+ of the linear operators on E, called the
D skew-hermitian operators on E. g(D)* is closed under the Lie bracket

lf, 91 = gof — feg, f,g9€g(D)*.
Represent fe g(D)*+ as éJ matrix (fy), o where .
fii= {fle), 0;k>

and ¢f is the coefficient functional associated with ;. When D is Reinhardt,
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¢a € g(D)* whenever « is' a real diagonal matrix (a;) sinee.. - -
exp (cta)(@ Z exy (sta;);

Let A be a linear operator on E such that dz € g( )+'. Then for any reai
diagonal matrices ¢ and b,

[ib, [¢a, ih]] e g(D)*+

In particular, choosing a,cy= 1and a;= 0 Vistk, and b,=1, b,= 0 Vi#1,

- for some k=41, we find that ¢'(hk;6m+ hixer:) € g(D)* where ¢;; is ‘the ele-

mentary matrix with a 1 in the (4, j)* place and zeros elsewhere.
Let D be & bounded normalized Reinha,rdt domain.

LeEvMmA 1: (compare Wlth [9, Lemma 3.6] and [6 Proposmon 4.2]).
Let It =1. Then the followmg are eqm’oalem : :

(i) Ela'h‘eg( )+ such that k= 0.

i) [+ lonfr= gl + il and lwl-—m Vi, 1 mpw weD sz
yeD.

ProoF. ,Suppose (i) holds. We may assume = (s, + Bews) € g(D)+
for some a, f€C with 0. Let g= exp (ith) for. arbitrary teR and
write Do= DN [ex, ¢;]. Then g|,,p,..x, is the identity and g, € Go(Dy),
i.e., we may assume that D = D, and do € g(Dy)*. By caleulating exp (ith),
teR one easily finds that 8> 0 and (ify)he GO(DO) where y2= of.

Sinee D, is normalized,

i h(lek)‘e Dy=|A]<1, . and

2B

'—ezeDoal—,<1

Sinee e, ¢, € 0D,, We may choose |A] as near to 1 as we please, and so con-
clude that |/8/y] =1. Similarly, |ix/y] = 1. It follows that

i=8.

The argument.of [6, Proposition 4.2] can be easﬂy adapted to complete the
proof of (i) = (ii):- ‘ :
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Now assume (ii) holds.” Let [¢| =1, fix # € D,, and let
Y = (%, 608t 4 Joww, sint)e, + (v, cost + idw, sint)e,

for arbitrary‘ teR. Then (9[>~ [y:]> = [2:]>+ |22, 50 y € Dy: This shows
that 4‘(0(670; + &6;]0) € g(.Do)+- ]

REMARK. If k= | satisfy (ii), the above arguments shows that any g
in Go(BzZ) is naturally in Go(D,), and ¢@ Wy, i1 € Go(D). In particular,
for each # € ¥ there exists g € Gy(D) with

9(z) = (lwef2 =+ |e[2)? o+ > w6,

ikl

Define a relation on N by k~1if k =1 or If € g(D)*+ with f,; 54 0. The
The proof of (i) = (ii) shows that f,= — fiz, 50 ~ is symmetric. If
i(otery + &ei) and i(fey; -+ Bey;) axe in g(D)*+, then so iy their Lie bracket,
which is just /(ofey; -+ afe;). So ~ is an equivalence relation. Let &
denote the induced equivalence classes. For z € E, let z, be the eanonical
projection of & onto E,=[¢;:i€c], ce¥. Write D,= D N E,, and for
each ¢€ ¥ choose a distinguished i, < ¢. :

If, for some ¢€ ¥ and v e ¥, z, has only finitely many nonzero co-
ordinates, then the remark following Lemma 1 may be repetitively applied
to find a g € G4(D) such that

g(m) =[] z€, + %wiei )

, where [z],:= (Z [aoi[z)g.

k]
Let y»= X g,6;, and let. ¢e¥ such that ¢n {1,...,n}%0. Then
i=1

dg,€ Go(D) such that
9:y7) = 19:]e0s. + gy?w
By composing the automorphisms g, we get a ¢, € Go(D) such that

=. z Hy:“2eic ’

where the summation is over all ¢e € with ¢ N {1, ..., n} 0. Since Gy(D)
is naturally embedded in Gy(co(D)), every ge Go(D) isa || - |-isometry. Hence;
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if m > n, then

19(5™ — 2™ = lgmly™— 9] = |ym— 9] -

S0 (X [92]s6, )» converges in E. Also,

loe— g (Zl9clae,)| = gz — 2 19tlee, | = [ X wies]

i>n

so g.*(>lvt]ze,,) and consequently . IWZHZ% both converge to an ele-
ment in D if and only if ze.D. B

Should ze'H, for some ce ¥, then {IJ |-= ]]g,/y"H = [ly"|. Vn. Hence
|#| = |#|,. Summarizing the above discussion, we’ve shown (compare
with [4, Lemma 4.2]):

Levma 2. Let we E. Then |x,| = |o.]. Yee €. Furthermore,
weD iff > |@se, D .
“ :

As a conséquelice we obtain
LEMMA 3. Dc_B Vee¥.

PROOF By the normahzatlon of D and Lemma 2 we may consider D,
to be a-subset of B, . Since D, contains a relatively open neighborhood of

the origin, 30 < <1 such that |{| < { implies t¢, € D,. By Lemma 2, -

(B, CD,. Hence, the -] and |-[, topologies on L’ eommde Thus, D
is an open connected subset of B " Smce eaeh of the sets ' ’

DA {peBy: fol<t, eamd
D.n{xeB,: 1< |of.<1}, 0<i<l
is open and nonempty, their union cannot exhaust D,:. Therefore, Y0 <?

<1 dwe D, with |z[;=t. Another applieation of Lemma 2 completes the
proof. &

It’s how a small step to

PROPOSITION 4. D Go(D,) = D G4(B,,) € G,(D).
ce® ce?

PROOF. Let g, € Go(D,) Voe % and let g = @g,. Let v B. By Lemma 3,
s >~ s
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[g9:(2)|e= | 2|2, s0 by Lemma 2

veD iff 3 |z.e, €D
it 3 [g.(z)].e,,€ D
iff 3 [(g(x)).]z¢, € D

iff g(x)eD.
. geGD). m

We conclude this section by noting that the embedding of G,(D) into
Gy(co(D)) induces an embedding of g(D)+ into g(co(D))*, and so ¥ vefines
the equivalence classes induced by co(D). The refinement is strict in general
as is apparent from the example '

b

D =B \{we B |n| = |a], || = |aa}

where 0 < a2+ |a.]2< 1. Chbosing || 5 @] ensures, in particular, that
the map ge Go(Bzg) given by g(e) = e, and g(e,) = ¢, is not in Gy(D).

§2. In this section we prove our main result.

THEOREM. Lét D and D be bounded normalized Reinhardt domains in T
and B with respect to the bases (¢:) and (&,). Then D 4is biholomorphically
equivalent to D if and only if there is a swgectwe linear isomorphism 8: B — F
taking D onto D such that S(¢,) = em)__ for some bijection o: N —-N. .

Proor. Sufficiency is trivial.

Suppose that D is biholomorphically equlva,lent to D and let p:D—>D
be a biholomorphic mapping. We first show that there is a surjective linear
" isomorphism 7': ¥ — F taking D onto D. The argument is standard. For
@ €D denote the orbit of # under G(D), the biholomorphic automorphisms
of D, by

G(D) v ={g(z): g€ G(D)} )

If fe (D), then yfy-te D), so

vf(®) = wiyv(@)) € G(D)- p(x) \{f‘e G(D) .
Hence, ‘

- Likewise,
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Thus, : L ‘
Y(G(D) @) = D) () .

Kaup and Upmeier [7] have shown that

G(D)-O'v= {cc eD: G(D)-x is a closed co‘inp‘lez'c’ éuﬁmé,ﬁifolﬂ of D} .

Since y preserves these properties, G’(D) »(0)is a closed complex submamfold;
of D. Eence, (0 )GG(D) -0, a,nd ) ElgeG(D)' ‘with g«p(O) _0 By H.
Cartan’s theorem, gy is linear. T=gy is ‘the desued mappmg Observe
that by Propos1t10n 4 and Lemma 1 '

iheg(]))+ if and only if b= @rghca :

Wherezheg(l)) for all ce¥. . L
List the elements of % = {c, Cs, ..}, and & = {¢, &, .. }, where each

set is finite or mﬁmte accordmg to the cardmahty of ‘4 and ‘K ‘Write

T = (Tz"j)z',a' where TH B, —~E,
and R o . o
T1= (Sii)i,i WheI'e S.,;j: E-éj—é' .E,% .
Fix &k and iheg(D,)*. Sineé Toexp (a(D))oT-1= exp (Tog(D)*oT-) it
follows that Tog(D)+toT-C g(D)*+. Hence,
To(ih@ 0)oT = (T;x0iho8y,)s; =@ ik;

for some iﬁ- eg(f)- ), Where 0 is the zero map on. EN_ 8 Consequently

(2.1) z,codzoS,“— 0 for a,ll i;éj and_ che g(Dck)Jr.
Since T is invertible there is a j with S,, +7=0. Because- D, ‘NB . every.
g€ Gy(D, ) may be Wr1tten g_db — ks, Where ¢h1,¢kzeg(]) )t "Hence
(2.1) implies T;,= 0 for all 754j. Smce T is invertible, T,,70. Thus
for each k there is a unique j with 7,,%£0. This defines a map

by
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T’s invertibility ensures that 7 is a bijection. Consequently,

T, B, ——>E

(e} *

Hence, there is an appropriate choice of ;e Gy(D;) so that (@ §;)oT is the
desired mapping. ® '

§3. We fitst recall some notation and background (see[2] and [12]).
Suppose that .D supports a nonlinear biholomorphic automorphism, so that
G(D)-0 2 {0} Then 31 C N with B, = [¢:: i €I] = [G(D)-0], a partition &
of I w1th B,=[e;:iep]l =1, and DN B, =~ B(@E) , and nonnegative con- -
stants 7, ; with sup > p,;<< oo 30 that

je 7 pep

{zw —I—Z've ([[m )QEBGQ,E—m—"%—eDI},

e pi(@p)

where J.= N\, éog, denotes Zco,,, D,=DNE,, and
. 2€P

i(@g) = [1(1— [z[3)=7.

peP

We’'ll abbreviate ﬂxese notations by writing

D = By[+]D,

where B, = B@Ep)%: For each kedJ, define
8= {jed: 'r,,,,-'= o YD EP} .

Then 8N 8;%0 = 8,= 8, and U 8,=J. Thus, the distinet members &

of {8,: keJ} form a partition of J For j, kese S, we write 7, , for the
common value of 7, ; and r,;; and we write ¢, for the function

pwp) =1 (1— o[, ses.

PEP

‘With these notations,

veD < wpeB, and > ——

eD
€& <Ps( 9’) .
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Where z is the canomcal pmJectmn of z onto E,= [e;: i€s]. Observe

@ Go(D N B,)® Go(Ds) € Go(D) .

pEP
Associated with Dis its triple product {,, }: EXE, X E—E. We’ll not study
the triple product here, but simply wuse several properties it possesses,

namely that it is symmetric bilinear in the outer two variables, conjugate
linear in the middle variable, and satisfies

{wkx} =0 VéeE}, ” reE, ‘
{m&y} = —(.’L‘lf) ; Tm,s?)s V& vel,, . »VyEIEJ

{oty} =—1 ; [(#]8)9s + (w)&5)2] V&, 2,y H,,

Where( +]+) is the inner. product on F,. In [3] and [12] it’s been shown that
¢h € g(D)+ implies ‘ -

Mwm=—@M&w+Wmaw+%ém»V&E,WJML
It may oeccur ".u]'mt G(Dy)-0 2 {0}, in which case D, may be decomposed
D, = Bj[+1D,.

Assume this process contiﬁues at ‘yleas’t‘ % times, s0

D=D,= B[+1D,
== B1[+](Bz[‘|‘]D2) .

= BEBL LD L)

Write &, %4, ¢*, ete., for the quaﬁtities ‘and obj’ects associated with Dy,
1<k<n. Define

g1 ‘@1 RS

%c—{slﬂ msk_lnpk s,ey“pkeﬂk}, 1<k<n.
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n

THEOREM. |J %.C %, whem % determmes the Hzlbertmn components
nduced by D. *=?

The theorem is established by the following two lemmas. Note that if
¢€ %, then Elpe% Wlth ¢cCp, 80 D,=DNE,~B,

LeMma 6. If dzeg( )+ tken h(E)CE Ver Cr-

k=1

PrOOF. Choosé p &, and i€ p. Then

— h(e:) = h({e;, ¢, e5})
= — {e., &( e} +2{ez,ez,k(e )}
— (ed(hted ;,,)'e (ede (o), — ((hea)le) o
€l,.
So P, CE, VpeP,. :
Now ohoos‘e 80:€ &1, and let p and 7 be as above. Then for y e,
To,5,0(Y) = — B {e:, €, y}) |
= {os, (o), 4} — (M6, ey y} — (o0, 00, hy)}
— (€alh(e))r,0,9 + (Ble)]6:)7s,0,5 + (eddes) 3, 7 o(Bly

se&¥y
Since (¢;le;) = 1, this implies that

(r:p,sol(h(?/))s : 'rm,s(h(y))s Vp e'¢1 ’

. for all ss£s, for which (h(y))s;éO. It follows from the definition of %
that (h(y)),= 0 Vss£s,. Thus k(E,)CE, Vse,. In particular, » decom-
poses so that A 2, € g(D;)*. Hence, the above argument can be repeated
for Dy, ..., D, to yield . -

WB)CE, VpeUZ,
. : : k=1.
n
k(Es)gEs, VS EUy]‘-,-
» k=1
Taking intersections completes the proof. m

. : " ‘
. In view of Lemma 1, Lermma 6 establishes that for each ¢ el %, there
is ¢’ € € with ¢/ Ce. The reverse ineclusion follows from =~ *=1
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LEM:MA 7. Let coe ¥, for some 1<k<n. Suppose y,— 2; Yige, and
that [Y.,|:= [#.,|:- Then xe D<>yeD.

ProoF. It suffices to show that if g, € Go(D,) = Go(B,), then g=
9@ idEN\coe Go(D). Write =80 ... $:-1.0 Di for some s; € ¥, and prLeZ;.
Fix 1<i<k—1 and se;. If sss;, then g[, = id. If s =s,, then gf,
= go® z’dEs\%, so g(#,) C E,. Hence,

: k—1
g(EB)CE, Vsel¥:.

=1

It follows that

geGy(D) < VoeeD, gx)eD

< VreD, axpeB, and > (gl(fv))g eD,
Z. os(va,)

< VreD, x5,€B and eD
G g(;,fpi(ﬂ%)) “

which is implied by g, € Go(D;). Repeating this argument k— 1 times
we see that : U

9lo, . € ) Go(Dx-1) = 9|p,_, € Go(Di—s) = .. >geG(D).

Since g|,,_ € D G(D N E,)D Go(Ds) € G,(Dy—,) the proof is complete. | -

PEPy,

~We conclude this section with the following:

ProPoSITION 8. Let D and D be bzholomorphwally equwa,lent bounded
normalized Reinhardi domains in B and E. Then the matrices ('r,,, Vo, and
(fo)5,5 agree up to a permutation.

Proor. In light of the Theorem of § 2, we may assume there is a basic
isomorphism T': D — D and a bijection 7: € - Z such that T(B,) =X,
Vee¥. By [12, Theorem 2.1], T|; = B, and T\, = Dl, and if ¢eH,
z € ¥, then .

T({wf“}p) = {Z(x), T(8), T(2)}3

where all quantities with a «~» above them refer to D. In particular,
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Tlg: P >P. Fix peP, sc¥, icp and weF,. Then

.’,U) = T({(CL‘ -+ 61’): iy (w + ei)}p),
=— {T(x + &), T(e.), T(x + e,-)}- |
= (T(vei)[T(ei))T(ei) + 2(T(6i)IT(6 ) Z (), s( )‘ .

§e&

Since (T'(e;)|T(¢,)) = (esle:) = 1, we have

T(@) = 3 T i(T(@)); VYpeZ.
e

Using the definition of &, it follows that there is a unique §, depending on s,
with (7(x));540, and that 7, ,=7,,- VpeP. The map s— ) deter-
mines a bijection ¢:& & since T is invertible. Evidently,

"s,5)p, = (Fopp,o) 2,9 -

Remark. If D can be decomposed n times, iteration of the above argu-
ment shows that D can be decomposed n times, and that (r? o, a0d
(rp’s)%,yk agree up to a permutation Vi<k<n.
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