A Lower Bound of the Norm of the Operator $X \longrightarrow AXB + BXA$

MOHAMED BARRAA, MOHAMED BOUMAZGOUR

Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, Marrakech, Maroc

(Research paper presented by M. González)

AMS Subject Class. (2000): 46L35, 47A12, 47B47

Received November 20, 1999

For two elements a and b of a ring \mathcal{A} , we understand by $M_{a,b}$ the two-sided multiplication induced by a and b. In the case where \mathcal{A} is a prime \mathbb{C}^* -algebra, the question of how to determine the lower bound of the norm of $M_{a,b} + M_{b,a}$ is stated in [4] as an open problem: Does the inequality $||M_{a,b} + M_{b,a}|| \ge ||a|| ||b||$ holds for any two elements a and b in a prime \mathbb{C}^* -algebra \mathcal{A} ?.

As a continuation to [4], M. Mathieu [5] proved that $||M_{a,b} + M_{b,a}|| \ge (2/3)||a||||b||$ for prime \mathbb{C}^* -algebras. Cabrera and Rodriguez [1] proved that for prime JB^* -algebras we have the lower estimate $||M_{a,b} + M_{b,a}|| \ge (1/20412) \cdot ||a||||b||$. Stacho and Zalar [6] proved that for standard operator algebras on a Hilbert space we have $||M_{a,b} + M_{b,a}|| \ge 2(\sqrt{2} - 1)||a||||b||$, and recently [7] they proved that $||M_{a,b} + M_{b,a}|| \ge ||a||||b||$ for the algebra of symmetric operators acting on a Hilbert space.

Note that $||M_{a,b}|| = ||a|| ||b||$ if and only if \mathcal{A} is a prime \mathbb{C}^* -algebra [3] and that the upper estimate $||M_{a,b} + M_{b,a}|| \le 2||a|| ||b||$ is trivial.

In this paper, we consider the case where $\mathcal{A} = \mathcal{L}(H)$ the algebra of bounded linear operators on a complex Hilbert space H. We shall prove that for two operators A and B such that $\inf_{\lambda \in \mathbb{C}} ||B - \lambda A|| = ||B||$ or $\inf_{\lambda \in \mathbb{C}} ||A - \lambda B|| = ||A||$ we have $||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||$.

Our proof is based on the concept of the numerical range of A^*B relative to B introduced by B. Magajna in [2]:

$$W_B(A^*B) = \{ \lambda \in \mathbb{C} : \exists e_n \in H, \|e_n\| = 1, \\ \lim \langle A^*Be_n, e_n \rangle = \lambda, \lim \|Be_n\| = \|B\| \}.$$

In the case A = I this reduces to the Stampfli maximal numerical range of B see [8]. The most interesting properties of $W_B(A^*B)$ are [2]:

- (i) $W_B(A^*B)$ is a closed convex subset of the complex plane \mathbb{C} for each $A, B \in \mathcal{L}(H)$.
- (ii) The relation $||B|| = \inf_{\lambda \in \mathbb{C}} ||B \lambda A||$ holds if and only if $0 \in W_B(A^*B)$.

For any $x, y \in H$, define the rank-one operator $x \otimes y \in \mathcal{L}(H)$ by the equation

$$(x \otimes y)(z) = \langle z, y \rangle x, \quad \forall z \in H.$$

Our main result is the following:

THEOREM 1. Let $A, B \in \mathcal{L}(H)$ with $B \neq 0$. Then

$$||M_{A,B} + M_{B,A}|| \ge \sup_{\lambda \in W_B(A^*B)} |||B||A + \frac{\overline{\lambda}}{||B||}B||.$$

Proof. Let $\lambda \in W_B(A^*B)$. Then there exists a sequence $\{e_n\}_{n\geq 1}$ of unit vectors in H such that $\lim_n \langle A^*Be_n, e_n \rangle = \lambda$ and $\lim_n \|Be_n\| = \|B\|$. Consider a unit vector $y \in H$. For each $n \geq 1$, we have

$$\|(M_{A,B}+M_{B,A})(y\otimes Be_n)(e_n)\| = \|\|Be_n\|^2 Ay + \langle e_n, A^*Be_n \rangle By\|.$$

Hence

$$||M_{A,B} + M_{B,A}|| \ge \frac{1}{||B||} |||Be_n||^2 Ay + \langle e_n, A^*Be_n \rangle By||.$$

Letting $n \to \infty$, we obtain

$$\|M_{A,B} + M_{B,A}\| \ge \left\| \|B\|Ay + \frac{\overline{\lambda}}{\|B\|}By \right\|.$$

Since λ and y are arbitrary in $W_B(A^*B)$ and H respectively, we get

$$\|M_{A,B} + M_{B,A}\| \ge \sup_{\lambda \in W_B(A^*B)} \left(\sup_{\|y\|=1} \left(\left\| \|B\|Ay + \frac{\overline{\lambda}}{\|B\|}By \right\| \right) \right)$$
$$= \sup_{\lambda \in W_B(A^*B)} \left\| \|B\|A + \frac{\overline{\lambda}}{\|B\|}B \right\|,$$

which completes the proof. \blacksquare

An immediate consequence of Theorem 1 is the following corollary:

224

COROLLARY 2. If $0 \in W_B(A^*B) \cup W_A(B^*A)$, then

$$||M_{A,B} + M_{B,A}|| \ge ||A|| ||B||.$$

Remark. (i) Corollary 2 answers partially the problem mentioned above.

- (ii) The estimate in Corollary 2 is, in general the best possible.
- (iii) The condition in Corollary 2 is not necessary: take $A = B \neq 0$. Then $||M_{A,B} + M_{B,A}|| = 2||A||^2 > ||A||^2$, but $0 \notin W_A(A^*A) = \{||A||^2\}$.

The following result is a generalization of theorems 1 and 2 of [8].

THEOREM 3. Let $A, B \in \mathcal{L}(H)$. Then the following conditions are equivalent:

- (i) $0 \in W_B(A^*B)$,
- (ii) $||B|| \leq ||B + \lambda A||, \ \lambda \in \mathbb{C},$
- (iii) $||B||^2 + |\lambda|^2 m^2(A) \le ||B + \lambda A||^2$, $\lambda \in \mathbb{C}$, where

$$m(A) = \inf\{\|Ax\| : x \in H, \|x\| = 1\}.$$

Proof. The implication (iii) \Rightarrow (ii) is clear and the equivalence (i) \Leftrightarrow (ii) is contained in ([2], p. 519). Next we show that (i) \Rightarrow (iii). Since $0 \in W_B(A^*B)$, there must be a sequence of unit vectors $\{e_n\}_{n\geq 1}$ such that $\lim_n \langle A^*Be_n, e_n \rangle = 0$ and $\lim_n ||Be_n|| = ||B||$. Let $\lambda \in \mathbb{C}$. For each $n \geq 1$, we have

$$\|(B+\lambda A)e_n\|^2 = \|Be_n\|^2 + |\lambda|^2 \|Ae_n\|^2 + 2\operatorname{Re}(\overline{\lambda}\langle A^*Be_n, e_n\rangle)$$

$$\geq \|Be_n\|^2 + |\lambda|^2 m^2(A) + 2\operatorname{Re}(\overline{\lambda}\langle A^*Be_n, e_n\rangle),$$

where "Re" denotes the real part. Letting $n \to \infty$, we get

$$||B + \lambda A||^2 \ge ||B||^2 + |\lambda|^2 m^2(A)$$

and this proves the theorem.

The next corollary is proved in [8] in the case A = I, but the same reasoning applies to the general situation considered here.

COROLLARY 4. Let $A, B \in \mathcal{L}(H)$ such that $m(A) \neq 0$. Then there exists a unique $z_0 \in \mathbb{C}$ such that

$$||B - z_o A||^2 + |\lambda|^2 m^2(A) \le ||(B - z_0 A) + \lambda A||^2$$

for all $\lambda \in \mathbb{C}$. Moreover, $0 \in W_{B-\lambda A}(A^*(B-\lambda A))$ if and only if $\lambda = z_0$.

Proof. The function $\lambda \to \|B - \lambda A\|$ is continuous with $\lim_{|\lambda|\to\infty} \|B - \lambda A\| = \infty$. So by a compactness argument, there exists $z_0 \in \mathbb{C}$ such that $\|B - z_0 A\|^2 \leq \|(B - z_0 A) + \lambda A\|^2$ for all $\lambda \in \mathbb{C}$. The rest of the proof follows easily from Theorem 2.

PROPOSITION 5. If $||A|| ||B|| \in W_A(B^*A) \cap W_{A^*}(BA^*)$, then

$$||M_{A,B} + M_{B,A}|| = ||M_{A,B}|| + ||M_{B,A}|| = 2||A|| ||B||.$$

Proof. Suppose $||A|| ||B|| \in W_A(B^*A) \cap W_{A^*}(BA^*)$. Then we can find two unit sequences $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ of vectors in H such that

$$\lim_{n} \langle B^* A x_n, x_n \rangle = \|A\| \|B\|, \quad \lim_{n} \|A x_n\| = \|A\|,$$
$$\lim_{n} \langle B A^* y_n, y_n \rangle = \|A\| \|B\|, \quad \lim_{n} \|A^* y_n\| = \|A\|.$$

Since $|\langle B^*Ax_n, x_n \rangle| \le ||Ax_n|| ||Bx_n||$ and $|\langle BA^*y_n, y_n \rangle| \le ||A^*y_n|| ||B^*y_n||$, then $\lim_n ||Bx_n|| = ||B||$ and $\lim_n ||B^*y_n|| = ||B||$. For each $n \ge 1$, we have

$$\|(M_{A,B} + M_{B,A})(x_n \otimes y_n)(B^*y_n)\|^2$$

= $\|B^*y_n\|^4 \|Ax_n\|^2 + |\langle AB^*y_n, y_n \rangle|^2 \|Bx_n\|^2$
+ $2\|B^*y_n\|^2 Re(\langle y_n, AB^*y_n \rangle \langle B^*Ax_n, x_n \rangle.$

Letting $n \to \infty$, we obtain

$$||M_{A,B} + M_{B,A}|| \ge 2||A|| ||B||.$$

Whence

$$||M_{A,B} + M_{B,A}|| = 2||A|| ||B||.$$

References

- CABRERA GARCIA, M., RODRIGUEZ-PALCIOS, A., Non-degenerately ultraprime Jordan-Banach algebras: a Zelmanovian treatment, *Proc. London. Math. Soc.*, 69 (1994), 576–604.
- [2] MAGAJNA, B., On the distance to finite-dimensional subspaces in operator algebras, J. London. Math. Soc., 47(2) (1993), 516–532.
- [3] MATHIEU, M., Elementary operators on prime C*-algebras I, Math. Ann., 284 (1989), 223-244.
- [4] MATHIEU, M., Properties of the product of two derivations of a C*-algebra, Canad. Math. Bull., 32 (1989), 490–497.

- [5] MATHIEU, M., More properties of the product of two derivations of a C^{*}algebra, Bull. Austral. Math. Soc., 42 (1990), 115–120.
- [6] STACHO, L.L., ZALAR, B., On the norm of Jordan elementary operators in standard operator algebras, *Publ. Math. Debrecen*, **49** (1996), 127–134.
- [7] STACHO, L.L., ZALAR, B., Uniform primeness of the Jordan algebra of symmetric operators, Proc. Amer. Math. Soc., 126 (1998), 2241–2247.
- [8] STAMPFLI, J.G., The norm of a derivation, Pacific J. Math., 33 (1970), 737– 747.