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BOUNDED REINHARDT DOMAINS IN BANACH SPACES

T. Barton, S. Dineen and R. Timoney

Introduction

In [29] Thullen classified the bounded Reinhardt domains in C? using
the orbit of the origin under the action of the biholomorphic automor-
phisms as a method of classification. Using' Thullen’s results, J* triple
systems, and a result of Braun et al. [3], Vigué [35] classified the bounded
homogeneous Reinhardt domains in a complex Banach space with a
basis (as explained in §1 this is equivalent to characterizing those Banach
spaces with an unconditional basis of unconditionality constant 1 in
which the unit ball is symmetric).

.In this paper we extend Vigué’s work in two directions. First of all, we
characterize those Banach spaces with an unconditional finite dimen-
sional decomposition with unconditionality constant 1 whose unit balls
are symmetric. This also provides an independent. proof of Vigué’s result.
Secondly, we classify all bounded Reinhardt domains in a Banach space
with basis in a manner similar to that given by Thullen [29] in C? and
extended to arbitrary finite dimensional domains by Sunada [28].

This article is organized as follows. In §1 we introduce the concepts
that are used most frequently later. §2 contains a result classifying
Reinhardt decompositions of finite dimensional bounded irreducible
domains and uses Lie algebra techniques. The result is applied in §3 to
characterize those Banach spaces which have both a one unconditional
finite dimensional decomposition and a symmetric unit ball. We also
give some consequences of this classification. In §4 we characterize the
bounded Reinhardt domains in a Banach space with unconditional basis
in terms of the orbit of the origin under the biholomorphic automor-
phisms of the domain. This result is applied in §5 to determine the orbit
for the unit ball of certain Tsirelsohn spaces. Finally §6 contains a
discussion of convexity of the domains considered in §4.

Since the concepts involved in this article are drawn from the theory
of symmetric spaces and Banach space theory — two AREAS which have
had little overlap until recently — we felt it suitable to make this paper as
self-contained as possible and consequently “have included .the basic
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§1. Background

This section contains the basic definitions from Banach space theory and
the theory of symmetric spaces used in the sequel.

Our Banach space notation and terminology will follow that of [22].
In particular, B, is the open unit ball of a Banach space E, [ 4] denotes
the closed linear span of the subset 4 of E, co(4) is the convex hull of
A, and if (e,,) , <y 1s the unit vector basis of ¢, and { E, },, . are Banach
spaces then

(ZeE,)
is the Banach space of all sequences (x,) with x, € E, and Y lix,lle, €

co- We'll also write E~ F when E and F are isomorphi: and E=F
when they are isometrically isomorphic.

Let E be a complex Banach space and let F be a complete orthogonal - '
family of projections on E: A subset D-of E is circular if x €D if and -

only if Ax€ D for all |A|=1, and a circular domain containing the
origin is Reinhardt — we shall always assume in this paper that Reinhardt
domains contain the origin — (with respect to F) if it is invariant under
the transformations

x—>APx+ (id—P)x forall PEF, |[A]=1.

We shall consider only countable families F of finite dimensional projec-
tions.

ProrosiTiON 1.1: If E contains a bounded Reinhardt domain D then the .

operators

n
x—= Y A\Px
i=1
n

are uniformly bounded for alln €N, |\;| =1, and distinct P,,- - -, P, € F.

PrOOF: First observe that co(D) is also a Reinhardt domain. If x €
co(D), then

(>\1Pl+(id_Pl)) e e (AnPn+(id_Pn)>(x)

n n
= SSAPx+x— Y PxccolDY forallix.1=1. {1 1)
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Choosing A, = —1 for all 1 <i <7 in (1.1) results in

n
y= Y Pxeco(D).
i=1

Substituting y for x in (1.1) yields

M=

APx= Y NPyeco(D) forall \,|=1. (1.2)
i=1 i=1

Hence, if r and R are constants satisfying 7B, C D C RBg, then rB C
co(D) € RBg and so

R

r

Y A Px
i=1

3 }\,.P,-H = %sup{
i=1

IXE}’BE} <

by (1.2). | om

A sequence { E,}, cn Of finite dimensional subspaces of E is a fz’m"te
dimensional decomposition (FDD) of E if every x € E can be uniquely
decomposed as x =} x, with x,€E,. An FDD is unconditional (a

n - .
UFDD) if ) x, converges unconditionally, or equivalently, if there is a

n
constant K > 1 so that

<K

YA, x, Yx,| forall |A,|<1. (1.3)
n n .
The smallest constant K satisfying (1.3) is the unconditionality constant,
and we'll say that {E,}, .y is a K-UFDD if (1.3) holds. The interested
reader may consult [22] and [7] for further information and recent
developments on finite dimensional decompositions of Banach spaces.

Proposition 1.1 and (1.3) show that if E contains a bounded Rein-
hardt domain D then {PE|P<F} is a UFDD with unconditionality
constant no more than R/r. In particular, if B, is Reinhardt then F
must determine a 1-UFDD. If {E,} is a 1-UFDD for £ we’ll refer to
E=E ®E,® --- as a Reinhardt decomposition of E. When each E, is
1-dimensional E has a basis (e,) of elements e, € E, choosen so that
0<inf|e,|| <sup|le,|| <. A basis (e,) is normalized if le,l| =1
for all n, and a normalized basis is K-unconditional when the subspaces
E,=[{e,}] form a K-UFDD.

Our definition of a Reinhardt domain containing the origin is a
natural generalization of the classical notion. Thus the obvious setting
for studving these domains in infinite dimencdianal crarec arsa Rananh
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The theory we develop is isometric, not isomorphic, and.so the results
do not generally extend to spaces with a K-UFDD when K>1. A
partial exception to this rule occurs in §4, where the results hold modulo
a renorming of the space which is given by a specific positive diagonal
transformation. -

A basis (e,),en Of E is said to be symmetric with symmetric constant
1 if for each permutation = of N and each sequence (A,), of complex
numbers of modulus one, the map :

Z‘xnen - Z}\nxnew(n)
n n

is an isometry of E. Symmetric bases arise in §5 and should not be
confused with the concepts of symmetric domain and symmetric Banach
space introduced below. In §5 we also discuss a particular Banach space:
Tsirelsohn’s space. This rather remarkable space has already proved
useful in infinite dimensional holomorphy [1]. We define the space in §5
but further details may be found in [6,8,11,17,22].

Let D be a domian in E. A mapping f: D— D is said to be
biholomorphic if

(i) f is bijective,
(ii) f is holomorphic (or Fréchet differentiable),
(iii) f~' is holomorphic.

If E is a finite dimensional space then (i) and (ii) imply (iii). This is not
generally true for infinite dimensional E. As a general reference for

infinite dimensional holomorphy we refer to Dineen [9] and Franzoni -

and Vesentini [12].

G(D) will denote the group of biholomorphic automorphisms of D.
When there is no fear of confusion we’ll write G for G( D). The stabilizer
of the origin or the isotropy subgroup at the origin is the subgroup
K(D)=K of G consisting of all g€ G with g(0)=0. A theorem of
Cartan [5] says that K is the group of linear automorphisms of D when
D is a bounded circular domain. Both K and G are topological groups
with the operator topology and composition of functions as the group
operation (Vigué and Isidro [36]). When D is symmetric (see below) G is
also a Lie group. In general it is unknown when G is Lie group, although
G always has a topology finer than the operator topology in which it is a
Lie group (see Vigué [31]).

D is said to be symmetric if for each x € D there is a symmetry
o, € G, i.e., a map satisfying o,(x) = x and o/(x) = —id. D is homoge-
neous if for each x, y €D there is a map g€ G with g(x)=y. A

hannded cvmmetrie Adamain i< alwave hamaoenamiie IViend 21N and the
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o,=g ' o(—id) > g, where g€ G takes x to 0. These two concepts
agree in the contexts considered in this article.

Let D now be the unit ball of a finite dimensional Banach space E.
We'll say E is symmerric if D is symmetric. D, as well as E, is said to be
irreducible if it is symmetric and is not isometrically isomorphic to the
direct product of two nontrivial symmetric domains. This concept of
irreducibility has several generalizations to infinite dimensional spaces
(see Vigué [32,34]). A classical theorem of Cartan [4] states that any
finite dimensional symmetric space is a direct product, unique up to
permutation of terms, of irreducible spaces. We shall call this decom-
position the Cartan decomposition of the space. Cartan [4] also classified
the irreducible finite dimensional domains (see Theorem 2.4 for a
description of these).

A holomorphic vector field on D is a differential operator X = h%,

where h € H(D, E), the holomorphic functions from D to E, and x
denotes the variable in D. For f€ H(D, E) we have (Xf)(x)=
J'(x)(h(x)). The set of holomorphic vector fields on D forms a complex

Lie algebra with the Lie bracket operation [ X, Y] = (YA — Xk),aix, where

9 . . .
Y= ké}' We restrict ourselves to the complete vector fields on D, i.e.,
those which occur as the derivative at =0 of a one parameter subgroup

¢: R - G(D)
t—g,.

The complete vector fields form a real Lie algebra, denoted by g = g(D).

By a slight abuse of notation we will consider g € H(D, E) and omit the-

Ax
Several facts of fundamental importance to the present work were
given in [3] and [21]. Every X = g(D) isa polynomlal of degree: < 2, and,

writing

G(D).0={g(0)|g=G(D)}

for the orbit of the origin by G(D), there is a unique closed complex
subspace F of E so that

” notation.

DNF=G(D)JO. (1.4)

Moreover, to each {€F there corresponds a complete vector field
X: € g(D) given by
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where Z is a certain trilinear map determined by the action of g(D) on
D. F is in fact characterized by this property, i.e.,

F={X(0)| X g(D)}. ' (16)
The triple (E, F, Z) is called the partial J* triple system associated with
D. The map Z is called the Jordan triple product and has the following
properties:

(i) Z: FXEXE — E is continuous, complex linear and symmetric
in the latter two variables, and complex conjugate-linear in the first
variable.

(ii) For all £ € F the map

h:x—>Z(& ¢, x)

1s a hermitian operator, i.e., exp(ith) € K(D) for all t € R.

(ii) Z satisfies the Jordan triple identity: for all £, », x € F and y,

z;E
Z(£> n, Z(x’ ) Z)) = —Z(Z(ﬂ, £, x)a Y Z)
+Z(x" Z(é, n, J’)a Z)

+2Z(x, y, 2(§, m, 2)).

When D is homogeneous F= E. In this case the pair (E, Z) is called a

J* triple system. Much work on (partial) J* triple systems has been
done by Braun et al. [3], Kaup [18,19,20], Kaup and Upmeier [21], and
Vigué [31,32,34,35], to which we refer the reader for further information.

§2. Reinhardt decompositions of finite dimensional irreducible spaces

In this section we classify all Reinhardt decompositions of irreducible
symmetric finite dimensional Banach spaces. In the next section we
remove the irreducibility condition and apply our results to characterize
those symmetric Banach spaces with a nontrivial Reinhardt decomposi-
tion. Our proof uses Lie algebraic techniques and proceeds by examining
case by case the four classical domains and the two exceptional domains
of Cartan’s classification. For the benefit of the non-specialist we first

sketch the general theory which we apply inthis section. We refer to
Dricker 1101 Heoacon [151 Hitmnhreve [146]1 T Aanc 921 and WAIf T1271 fAr

5]
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Let D denote the unit ball of a finite dimensional Banach space E

and suppose D is an irreducible domain. By differentiating the one

parameter subgroups at the origin, one obtains the Lie algebra of the Lie
group. The elements of the Lie algebra are sometimes called the infinites-
imal transformations of the Lie group. Let g and k denote the Lie
algebras of G and K respectively. These Lie algebras are vector spaces
over R (indeed g Nig=0) and we let g© and k€ denote their complexi-
fications.

If = denotes a maximal abelian subalgebra of k then = is also a
maximal abelian subalgebra of g and, furthermore, it is the Lie algebra
of a certain subgroup of K which we denote by 7. We let € denote the
complexification of .

"A toral group is a group which is homomorphic to " for some
positive integer n where ¢t = {z € C||z| =1} has multiplication of com-
plex numbers as its group operation. The group 7' is a maximal (with
respect to dimension) toral subgroup of K. Any toral subgroup of X is
contained in a maximal toral subgroup and any two maximal toral

subgroups. of X are conjugate under an element of XK. A closed subgroup.

of K is a toral subgroup if and only if it is connected and abelian.
Furthermore, a toral subgroup is maximal if and only if its Lie algebra is
a maximal abelian Lie sub-algebra of k.

The symmetry at the origin in D induces a decomposition of g of the
form k + p. The Lie algebra k contains a central element which induces
a decomposition of g€ into k€ +p*+p~. The space p* may be
identified with the original space E.

If X< g® then the mapping Y € g€ - [X, Y] € g€ is written ad(X).
Let « be a linear functional on 7€ and let g* denote the linear subspace
of g€ given by '

g%={Xeg®lad(H)(X)=a(H)X forall He1®)}.

If « # 0 and g* # 0 then the linear functional « is called a root and g° is
called a root space. If a is a root then g“ is a one dimensional space and
either g*c k€, g*cp™, or g*Cp~. The roots corresponding to these
cases are called the compact, positive noncompact and negative noncom-
pact roots, respectively and denoted by A, Aj,' and A, respectively. It
can be shown that the mappings {ad(H)}y<,c are simultaneously
diagonalizable. Hence

gfl=r+ Y g% and p= 3} g~

a#0 agA]

+

A more concrete renrecentation of ¥ n™ and n~ can he oiven 11 terme
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and Kaup and Upmeier [21]):

p*={n(0)|neg(D)}

k= (#(0) | <5(D))

p~={r"(0)|heg(D)}

LEMMA 2.1: Let TE€ L(E, E). If T€ 7° then [T% ga%] = T(g)aa—z for
all §€E. If, furthermore, T is a projection then a(T)=0 or 1 for all
a€A;.

P

PrOOF: [Ta%, Ea—az] =(T(§) - (5)’(T(z)))§£ = T(é)-a%. If a€A; and
x, is an eigenvector for « then x,€p*™ = F and

[T, x] = a(T)x, = T(x,).

Hence a(T') is an eigenvalue for Te L(E, E). Since T is a projection
this implies a(7)=0or 1. [ ]

A symmetric bilinear form on g€, the Killing form, is defined by
(x, y)=tr(ad(x)ad(y)) where tr denotes the trace on a space of linear
operators. The Killing form is nondegenerate on €. The Wey! group of
g€ is the group of linear transformations of ° generated by orthogonal

reflections in the hyperplanes a =0 where « is a root. By duality the

Weyl group acts on the dual of 7€ and thus on the roots. We have

(@ v)
(o, @)

S(y)=v-2

where y is a root and S, is the transpose of the reflection on the
hyperplane a = 0. Define Ad: G— GL(g°) to be the usual adjoint map
(x € G goes to the derivative at the identity in G of the map w — xwx~
on G) extended to g© by C-linearity.

LeMMA 2.2: If a € A, then there exists x € K such that

(i) S, is the restriction of Ad(x) to 7C.

(ii) Ad(x) is an automorphism of g€ and Ad(x)(g?) = g5 P for any
root (3.

(iii) If ¢ €p™ then Ad(x)(§) = x(§).

PROOF: First choose x, € g* and x_, € g~* such that x, — x_, € k. Let
x = exp(t(x,— x_,)) where t€R and exp: g— G.

The appropriate value of ¢ and the details'of the calculation necessary
to prove (1) mav be found in Mostow [25. p. xxix-21 or in O. Loos [24.

1 -
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(ii) is standard and (iii) follows from Lemma 2.1 using .
Ad(exp(Y)) = Exp(ad(Y))
where Exp is the ordinary exponential map for endomorphisms. |

PROPOSITION 2.3: If E=FE; ® FE, - - - ® E_ is a Reinhardt decomposition of
Eand P: E— E;, 1<j<s, are the associated projections then
(1) the subgroup of K given by .the transformations

(21,5 25) = (02, -, ei%z,)

is a toral subgroup T, of K,

(iiy there exists g € K such that gTyg ' C T,

(itiy E=gE, ® gE, - - - @ gE, is a Reinhardt decomposition with projec-
tions gP,g™!
cally isomorphic for all j, 1 <j <s.

(iv)iP, €k forj=1,2,---,s and i(gP,g" ") €7 for j=1,2, -+, s.

PROOF (1), (ii) and (iii) are either obvious or have already been noted
(iv) Let p: R — G be defined by

(pt(Zl,"',Zs)=(Zl, Tty Zje lﬁe Zp j+1s "9Z:)~

@ is an analytic one parameter subgroup of K. On differentiating at the

origin we see that iP, € k.

The remainder of (iv) follows from general observations already made.

This completes the proof. ‘ ]
From (iii) and (iv) we may assume from now on that iP, €7 for

1gj<s.

THEOREM 2.4: The only Reinhardt decompositions of finite dimensional
Banach spaces with irreducible symmetric unit balls that can occur, up to an
isometry of the space and permutation of factors, are given as follows:

(i) Type 1, 1,, ,=mXn complex matrices, n, m>1. The possible
decompositions are

s s
Lyn=2 ©®L,, where } n;=n or

r

-
T =V a1 where N m .= m

and the spaces g(E;) = ngg—l(E) and P,(E) are isometri- -
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' (ii) Type 11, 1I,=symmetric n X n matrices, n>2. No nontrivial
decompositions possible. ‘
(iii) Type 111, 111, = skew-symmetric n X n matrices, n 2 5.

I, =11, , &1

(iv) Type 1V, the spin factors IV,, n> 5. If n is odd then no nontrivial
decompositions are possible. If n is even then

IV, = 137 @ 1372,

(v) The 16 dimensional exceptional space of 1 X2 matrices over the
complex Cayley numbers can be decomposed as a sum of two eight
dimensional factors each of which is isomorphic to IVj.

(vi) The 27 dimensional exceptional space of 3 X3 “symmetric”
matrices over the Cayley numbers, H(Q); or M$, admits no decomposi-
tion.

NotrationN: Welet I, =1, ,. E;; will denote the m X n matrix with 1 in
the ™ position and zero elsewhere. If 4 is an m X n matrix ‘4 will
denote the transpose of 4, A the complex conjugate of 4 and we let
A* ="(A). Each of the above matrix spaces is considered as a subspace
of L(I3, I3"); hence, if z is an m X n matrix then

lz||*=sup{v|v is an eigenvalue of ¥z},

PrOOF: Let E=E, ® E, --- ®E; be a Reinhardt decomposition of E,

where E is one of the spaces in cases (1)—(vi). Fix k, 1 <k <s, and let
P = P, be the projection onto E,.

The representations for g€, kC, etc. in cases (1)—@v) may be found in

Drucker [10] or Wolf [37].

Cask (i): g€={z€1,,,|tr(z) =0}. Each z € g€ may be written

2 7] ()

where z; €1, 2, €1, ,, z;€1, ,,, z,€1,, and tr(z,) + tr(z4) = 0. We
also have

kC = {zEgc|zz=O and 23=0},
7¢={z€k®|z andz, are diagonal matrices},

p*+p ={z€g%2,=0 and z,=0}, and
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We identify E,; € 1,, , with the element

_[0 E,.j}
0 0

in p™ and note that each such matrix spans a root space g* for some
a € A;. Suppose P is identified with the diagonal matrix
diag(ey, ;@ B+, B,) in 7€ Then [P, E;;]1=(a;— B)E,; for all i
and j, so by Lemma 2.1 &, — ;=0 or 1 for all i and j. We consider the
case a; — B, =1 (the case a; — 8; = 0 follows by applying the succeeding
argument to id — P). Since oy —B;=a; — 1+ B — ;=0 or 1, it fol-
lows that 8, — ;=0 or —1 for all ;. Similarly &; — &; =0 or —1 for all
i If By—B;=a;—a;=—1 for some i and j, then a; — ;=0 and so
a;— B;=0a;—a;+a;— B;=—1. This is impossible, so we have either
B;=PB, for all j or a;=ay for all i. In the first case, [P, E; i1=(a;—

,81)E, ;forall i and j, ie., P is the canonical projection onto those TOWS i
for which o, — 8, =1. In the second case P is the canonical projection

onto those columns J for which a; — 8, =1. Both occur simultaneously:

only when P=0orid. -

Because the sum of ‘two such projections P, + P, 1<k, k' <s,
k # k’, has the same properties and because the decomposition of I, ,
into a sum of row spaces or into a sum of column spaces is indeed a
Reinhardt decomposition, we have completed the proof of (i).

CASE (ii): Elements z in g© have the form (2.1) where z;, z,, z; €l,,
z,='z,, z;="2,, and z, = —'z;. We also have

kc={z’6gc|zz=0 andz3=0},
={z€k®|z is diagonal},
pT+p ={z€g%|z, =0}, and

={zepT+pT|z3=0}.
Suppose P is identified with diag(al, S @~ —ay,) in T,
Since [P, E;;+ E;] = (a; + a;)(E; E;;), Lemma 2.1 1mp11es a;+a;=0
or 1 for all i and Jj-In partlcular a;= O or1/2 for all i. If a;= 1/2 for
some i, then a;=1/2 for all j and P is the identity. If o; =0 for some i,
then a; =0 for all j and P is zero. This completes the proof of (ii).

CasE (iii): gc, kc, etc. are as in (ii) except that z, = =z, and Zy= —'z;.
We have P F. — F l=(n -+ o MF —EFYwheral cicien Tf o~ —
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‘identity or the zero projection. Observe that since a; + ;=0 or 1 for all

i <j, there can be at most two distinct values among «;,: -, «,.
If @;+ a;=0 for some i and j and «; <0, then oy = — ¢, for all k # i.
Hence, for k#1ior j, a;+ a, = —2¢;,=1 and so
o;=~1/2 and a,=1/2 forall k+i. (2.2)

If a;+a;=1 for some i and j and &; <a;, then a;=0 and «;=1 since
for all k+#1i or j, @y =a; or a;. Hence

a;=1 and o, =0 forall k#,. (2.3)

Observe that if P’ is another, distinct, projection associated with the
Reinhardt decomposition satisfying either (2.2) for some i’ or (2.3) for
some j’, then P + P’ cannot satisfy (2.2) or (2.3) for any i or j since
n>5. Hence P+ P’=1id. Consequently, s <2, i.e,, £ may be decom-
posed into at most two factors. If E= E; ® E, with associated projec-

tions P, and P, then (2.2) and (2.3) imply that, up to a permutation of*

coordinates,
P, ( z) =2

and
P 0,-, x
,(z) = —x 0,
where

z; X
z= _tx 01 H

z, is a skew-symmetric (n — 1) X (n — 1) matrix, and x isan (n —1) X 1

matrix. Since
id,-; Ol z =x|id_ 0] z e'fx
0 el|[-x 0]l 0 ¥ ~'(e%%) 0

it follows that || Py(z)+¢€®P,(z)|| = ||z||, and consequently P,(E) &
P F)Yic a Reinhardt Adecamnncitinn nf F Clearlsr P FY = TIT and a
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CASE (iv): Elements z € g© have the form (2.1) where z, €1, z, = —'z,,
2,€1,,, z23= —'z,, and z, €1, with z, = —'z,. We also have

€={z€g%|z,=0 and z;=0},
pT+p ={z€g%z;=0 and z,=0}, and
pr={z€p +pT|z;=[w, iw], wherewel, }, (2.4)

where [w, iw] is the »n X 2 matrix whose columns are w and iw. We first
consider the case when » is even. Then

= {dlag(A1> cty An/Z’ B)}’

where
0 a;
Aj= —aj ol 1<]<n/2,
and
0 B
B‘[—B 0}

for some constants o, - -, @, ,, B. Let ¢; €1, ; have a 1 in the 7™ place
and zeros elsewhere. Define f; (resp. g;) to be the element of p*
obtained by settipg- w=w= iey;_4 +.e,_'j (rgsp. vy =1ey; 4 —e,;) for
1 <j< n/2. Identifying P with a matrix in 7~ we see that

[P, f]=—i 3+a)f; and

[P’ g/] - - J)g]

So —i(Bta;)=0or1forall<j<n/2byLemma2.1.If B+a;=0
for all j (resp. =i for all j) then P is zero (resp. the identity).
Otherwise 8=1/2 and a;=1/2 or —i/2. Hence P(E) is spanned by
(x;)743, where each x; is elther];. or g;.

It now follows that rank(P) = n/2 and that s < 2. We now check that
s =2 is possible.

Using (2.4) it can be shown (see for instance [13, p. 20]) that for
z=(zy,"++, z,) €IV,

\l/z. (2.5)

| z]|%2= Z |z,]? {(i |Zi|2\'2—| izfz
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Now,
n/2 N
z= Z(j(z)"‘fi—l_b( ) )
j=1
where

1 .
aj(z) = Z(zzj_1 + zzzj)

and

1 .

[14]

n/2

Consequently, the element of p* obtained from z is Y (a (2) 1+

b;(z)g;). Define

(2w if x; =7,
h'(z):{bj(z)vj ifx;=g;

a;(z)w ifx;=g;
ki) = {bj(z)vj if x, =,

n/2

J=1

n/2

for 1<j<n/2. Then P(z)= Y hi(z) and (id—P)z)= ¥ k(2).

j=1
Using (2.5),

n/2 2

3 (aj(z)wj—i— b;(z)v;)

Jj=1

=2X1a,(2) 1?4 2L 15(2) |

lz]|? =

+2((§ la,(z)|*+ ; 15;(z) | 2)2— 4)Zaj(z

Consequently ||A;P(z)+A,(id = P)(z)|| %= | z|}>

J=1

2) 1/2

for all [Ay]=|A,|

=1. and so the decomnosition F=P(EYD(id — PYF) ic Reinhardt
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each j and hence P(E) = /4/% Similarly (id — P(E) = I5/%. Thus
v, =01"e15?,

and this completes the proof for the case when »n is even.
We next consider the case when # is odd. Then

7€ = {diag(4,. -, 4(, 2, 0, B)},

where 4;, 1 <j<[n/2] and B are as in the even case. Using the notation
from the even case we find

[P, 1] = =i(B+ )5,

[P, gj] = —i(,B—aj)‘gf, and

[P, h] = —ipn,
where 4 is the element in p™ obtained from w = je,. By Lemma 2.1 we
have —if=0or 1 and (B+ea;)=0 or 1 for all 1<;<[n/2]. This

implies a; =0 for all j and consequently P is either zero or the identity.
This completes the proof for the four classical domains.

CASE (v): We first recall some properties of the complex Cayley numbers
O (we refer to Drucker [10, p. 20-21] a;1d Loos [23, p. 4.17] for details).

Let €ps" - -, € be unit vectors and a= Y, a; e; € O¢. Define
j=0

;
n(a)=ad= Y, a} (nis called a norm).

;
It is easily checked that 7(aa*)=2 ) |a | %, The 16 dimensional excep-

i=0
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endowed with a norm such that the open unit ball B consists of all
(a, b) such that

2—1t(aa* +bb*)>0
and

1—t(aa* +bb*) + |n(a)|*+ |n(b) | *+t((ab)(b*a)) >0
By noting that

(Aa)b=A(ab) =a(A\b)

for any a, b in Og and A € C we see that (@, b) € B implies (e'%a, e'¥b)
€ B for any real numbers § and ¢. Hence V admits a nontrivial
Reinhardt decomposition.

7

If a= ) a, e; then (a, 0) € B if and only if
j=0

2—t(aa*)>0 and1-1t(aa*)+ |n(a)|*>0,

7
ie., if and only if ) |a;|><1 and
j=0

7
1-2Y |a;|*+ > 0.

J=0

7
2 a
=0

7

Hence Y a; e; € B if and only if (ay,- - *, a;) belongs to the unit ball of
j=0

IVy (see [24, section 4.16], [37, p. 350]) and consequently

V=1V, & IV;.

We now show that this is the only nontrivial decomposition of V. To
obtain this result we use some further results from the general theory of
Lie algebras.

It is possible to choose a linearly independent set of roots o, - -, @,
of g% such that every root a can be expressed as an integral linear
combination

a= i ne . (2.6)

Jj=1

where 7, are either all nonnegative or all nonpositive. Once chosen, such
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simple root, denoted by @,, is noncompact and the noncompact positive

roots can be described as those « with coefficient » »=11n (2:6). In the

present case there are six simple roots and the coefficients of the 16
noncompact positive roots, (8,)!¢,, are given in the following table
(taken from Drucker [10, pp. 152-154]). -

Coefficients of «;

Hg ns Ny 14 ny 7y A7
1 0 0 0 0 0 B,
1 1 0 0 0 0 B,
1 1 1 0 0 0 Bs
1 1 1 0 0 1 B,
1 1 1 1 0 0 Bs
1 1 1 1 0 1 Bs
1 1 1 1 1 0 B,
1 1 1 1 1 1 Bs
1 1 2 1 0 1 B
1 1 2 1 1 1 B
1 1 2 2 1 1 B
1 2 2 1 0 1 B12
1 2 2 1 1 1 Bia
1 2 2 2 1 o1 B4
1 2 3 2 1 1 Bis
1 2 3 2 1 2 Big

We must now solve B;(P)=0or 1 for all ;. We may assume without
loss of generality (if necessary by replacing P by id — P) that 8,(P)=1.
From now on we let a,= o;(P) and b, = B,(P) for all i. Since a, occurs
as a difference b, ; — b; for some j it follows that a,=0, 1 or —1. By
considering the differences between consecutive terms in the sequences

bl» b2> b3’ b57 b7? b8
bl’ b27 b3’ b4= b67 b8
bl? bz: b3> bS’ bs’ bs

we find that the nonzero terms of {as, a4, a3, a3, a,}, {as, a4, a,, a;,
a,} and {as, Ay, 35 ay, a, } must alternate in sign and the first nonzero
term in each sequence must be — 1. Hence if a; # 0 then a, and a; must
both be zero. Also, since

biy—by=as+as
bis—byy=as—a;
bis—by=as+a,
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we find that if a5#0 then a;=0 and a,=0. By using the above
relationships and by a case-by-case examination of the resulting possibil-
ities we are led to the following nontrivial values of (a,)%_;.

ag as ay az . - a; !
1 0 0 0 -1 0
1 -0 0 -1 1 0
1 0- -1 1 0 0
1 -1 1 0 0 -1
1 -1 0 0 0 0

We call the corresponding projections @1, @,, s, ¢4, @s. The corre-
sponding values of (b,)!%, are

o e Qe

1 by b3 by bs bg by by by by by by bys by bys byg
111110 01 0 0O 1 O O O O
1110 01 1 01 0 0 1 0 0 O
100111100 1 0 0 1 0 0
610101 011 1. 0 0 0 1 0
6 61010111 1 0 0 0 0 1

This implies in particular that any nontrivial Reinhardt decomposition

of V has the form of E ® F while dim(E) =8 and det(F) =8. We now "

show, using Lemma 2.2, that all of the above five possible decomp051-
tions are isomorphic.

To each complex semisimple Lie algebra is associated a Dynkin
diagram which completely determines the Lie algebra. The Lie algebra
associated with V is E4 and this has the following Dynkin diagram of
simple roots

Eal .
o0—0 ~-O0—O0

Qg Qs Oy Q&3 &

where each node represents a simple root, nodes which are not joined
represent orthogonal roots, (a;, a;) =2 for all i and (e, a;) = —1if i
and j are joined, where

(o, o)
a;, & 2 for all i and ;.
< > ( Qs ai)

A simple calculation shows that S, interchanges the pairs (85, 8;),
(Bc. Bo). (Bn. Bw\) (va. 811'\ and flxeS all Othel‘ B in A+ Hence
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Consequently ¢, = S, (@,). Similarly,
P2=Su(93), 93=5,(9s) and =5, (s).

.By Lemma 2.2 we conclude that there exists only one nontrivial Rein-
hardt decomposition of V and this is IV & IVj.

CaASE (vi): We apply the same methods in this case as we applied in the
previous case. There are seven simple roots and we are interested in roots
6

of the form a, + Y. n sa;. Using the notation of the previous case for 5,
‘ =1

1<j<16,it can ‘ée shown (see for instance Drucker [10]) that &, + B, is
a root in this case, 1 <j<16. Hence all the considerations of the
previous case apply if we consider a projection P with ay(P) + ag(P) =1
and replace a¢ by ag + a,. Hence we need only examine the following 12
possible values of a;= a;(P).

a; ag as a, as a, a,
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 -1 0
0 1 0 0 0 -1 0
1 0 0 0 -1 1 0
1 0 0o -1 1 0 0
0 1 0 -1 1 0 0
1 0 -1 1 0 0 -1
o 1 -1 1 0 0 -1
1 0 -1 0 0 0 0,
0 1 -1 0 0 0 0

The coefficients of the 11 positive noncompact roots not of the form
a;+ B; are given in the following table (taken from Drucker [10, p.
152-154)).

~
(o}
w
»
w
(]
fan

T
Y2
Y3
Ya
Ys
Ye
Y7
Ys
Yo-

o e e e Y
DV DNDDODDDODNDOY
A WWLWWLWLNNDNNDNDO S
el e e e N S o S Y
N.N)—‘N)—l)—ln—tr—lox
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By inspection it now follows that the only one of the 12 possible
decompositions which is admissible is the first one and this gives the
identity mapping (e.g., if the second possibility listed was admissible
then it would follow that y,,(P)=2 and this is impossible). Hence
H (0;) admits no nontrivial Reinhardt decomposition. This completes
the proof of Theorem 2.4. [ ]

§3. Reinhardt decompositions of infinite dimensional symmetric spaces

If £, @ --- ®E is a Reinhardt decomposition of a Banach space E then
we shall call each E; a factor of E. In Theorem 2.4 we have listed all
factors of the irreducible finite dimensional spaces. By inspection of
Theorem 2.4 we obtain the following result.

PROPOSITION 3.1: Each factor of an irreducible finite dimensional space is
irreducible.

LemMa 3.2: Let Ey=E| X E, --- XE, denote a product of symmetric
finite dimensional spaces. For 0<i<s let K, I, and T, denote respec-
tively the group of all linear isometries of E,, the connected component of
the identity in K;, and a maximal torus in I, (or K,). Then I,=1, X I,

- XI, and Ty X T, - - - XT, is a maximal torus in K,. Moreover, any
maximal torus in K, has the form T, X T, - X f} where T, is a maximal
torus inl;, 1 <i<s.

PrOOF: It is easy to see that the Lie algebra of I; X I, --- XI is a Lie
direct sum k, ® k, - - - ®k, and that any maximal abelian subalgebra of

ki®k, -+ &k, must have the form 7 & 7, - - - &7, where 7, is maximal
abelian in k;, 1 <j<s. Hence Ty X T, --- XT is a max1ma1 torus in J

and every maximal torus of I, (or K,) has this product form. ]

Our next proposition enables us to treat the case.of Reinhardt
decompositions with reducible factors and is also used in proving Theo-
rem 3.5.

PrROPOSITION 3.3: If E;® --- ®F, and 1_[ F, are respectively a Rein-

hardt and Cartan decomposition of the fznzte dzmenszonal symmetric space
E then the following are true.
(i) Z ® (E;N F.) is a Reinhardt decomposition of E and E;N Fy is

either {O} or irreducible for all j and k.
(it) Foreach k,1 <k <m, Z ® (E; N F) is a Reinhardt decomposz-

J=1

r o
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m

(iit) For each j, 1 <j<n, 1—[ (E;NF) is a Cartan decomposition of
P _ e ,

E,.
(iv) If each E; is irreducible then m < n and for each j there exists k(j)
such that E,c Fk(j)

PrROOF: We first note that a result of Staché [27, Corollary 2.4], due
independently to Kaup [19], shows that each E; is a symmetric space. :

For 1<j<n let P, denote the canonical projection from E onto E;
and for each &, 1 <k <m, let Q, denote the canonical projection from
E onto F,. Let T be the toral subgroup of isometries of E generated by
the mappings

m m
an_’ an
k=1 . k=1

m m
DX 2 Nxy
k=1

where |\, | =1forall 1 <k < m. Let T be the toral subgroup generated
by the isometries T

n n
IETIDY A
Jj=% Jj=1

Where|>\|—1fora111<] :

Now T, being central in K0 is contained in every mammal toral
subgroup, TO of the group of all isometries of E (see Lemma 3.2). We
may choose T so that 7'C Tj. Let 7.be the Lie algebra of T;,. Then iP;,
1<j<n, and.iQ,, 1<k <m all belong to 7 and hence P,---, P,
Q1+, 0, all commute. Hence P,Q, is a projection from E onto
E,NF, for all j and k. Letting Q| =idg = ZPQk|F we see

J=1 . )

Z ®(E;N Fk) is a Reinhardt decomposition of F,. This proves (11)
J=1

-Since F, is irreducible Proposition 3.1 implies that E; N F) is 1rreduc1-
ble or zero for all jand k. If x € E let x(J, k) = PQk(x) for all j and
k.If |A(j, k)| =1 for all j and k then

G, )20, 0|

£ £AG, 050, 0] = max
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m

since || F, is a Cartan decomposition, and so by (ii)
k=1

an x(J

Jj=1

i, k)x(J, k)” = max

-

Hence we have proved (i) and (iii).
If E; is irreducible then (iii) implies that E;N F, = {0} for all except
p0531b1y one k, say k(j). Then E;=E; ﬁka and E;C F( . Since E

=Y OF » k(Jj) must take on all values between 1 and m and hence
j=1 v
m < n. This completes the proof. ' »

COROLLARY 3.4: Let {E;}72, be a finite-dimensional Reinhardt decom-

J+1

position of the symmetric Banach space E, and let E; = [T F.0=kK
k=kj+1 .

<k, < ---, be the Cartan decomposition of E;, for all j. Then {Fk}k 1
isa Reznhardt decomposztzon of E into zrreduczble factors.

PROOF: Since {Z.xj'.e.'E |x, € E; is zero for all but finitely many j} is.

J
derannse in E, it suffices.to prove the result for finite dimensional E. Let
I_IF,( be the Cartan decomposition of E=E; & --- ®E,. By (i) and

(iii) of Proposmon 3.3, H (E;N Fk) is the Cartan decomposition of E;

and {E;N EF). ik isa Remhardt decomposition of E. By the unicity of

the Cartan decomposition the nonzero members of {E; ﬂFk} 7—1 and
{F, } #Zk,+1 agreeup to a permutation. ‘ |

THEOREM 3.5: Let { E;}72, be a finite dimensional Reinhardt decomposi-
tion of a symmetric Banach space E. Then E is isometrically isomorphic to
Qe F,).,, where each F, is an irreducible symmetric space and is either

P
finite dimensional or isometric to L(H,, H,) where H, and H, are
separable Hilbert spaces, one of which is finite dimensional:

Proor: By Vigué [34, Proposition 4.4], L(H,, H,) is irreducible. By
Corollary 3.4 we may suppose that each E; is an irreducible finite
dimensional space. We define an equlvalence relat10nsh1p on the positive
integers by i ~j if either i =j or if E; ® E; is irreducible. We now show
that “ ~ * is transitive. Suppose i, mz , and i, are distinct positive integers

and that i; ~ i, and i, ~i;. Let ]_[ F, be the Cartan decomposition of
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@iv) 1mp11es that m<2. Again by Proposition 3.3 (iv) E, @ E; is
contained in either F; or F, and E;, © E;, in either F| or F2 Since
(E,©E )N(E,®E;)=E_ #0 and F1 N F2 =0 there exists an i such
that E;, ® E, ® E;, C F.. Hence F is irreducible. By Theorem 2.4 this
implies that there exist positive integers ng, ny, n, and ny such that
cither E, =1, , for j=1,2, 3 or E, I , for j=1,2, 3. In both
cases E; ‘® E,, is irreducible and hence “ 1s an equivalence relation.
Let # denote the set of equivalence classes. If pe®? and | p| =2 then
Y @ E,is an irreducible finite dimensional space. If p€ 2 and | p| > 2
i€

thgn by the above there exists a positive integer m and a sequence (finite
or infinite) of positive integers (7;); such that either '

E=1I,, forallicp

or

E=1 ‘for allz‘€p.

i n;,m

If | p| is finite this implies Z ® E, is either I, Z or ] Z
. isp

In both cases we obtain a finite dimensional irreducible domam Now

suppose | p|=c and E,=1,, =L(C™; C") for all i€p where.C™

and C" are Hilbert spaces. Let Hbea separable Hilbert space. Using a

fixed basis of H we can define a sequence of linear 1sometr1e§° (9):e p?

: C"— H such that ¢,(C").Le(C") for all i#; and Uq> (C™)

m.

spans a dense subspace of H. Since Y ®E,=L(C™ C”(" >) where :

IEP .
n(p ) = Y n,, for any finite subset p’-of p it follows, that the mapplng
iep’
¢: ([, € X ®L(C™ €)= X ¢T; is an isometry from ) & E

i€p i€p i€p
onto L(C™; H). The case where E, =1, , for all i€p is handled
similarly. ’ ‘ »
Foreach pe & let F,= )" @ E,. We have just shown that each F, is
iep h
irreducible and has the required form. By our construction ), @ F,isa
8 pPEP
Reinhardt decomposition of E. ’
For n a positive integer and p €& let F, /= }, ®E, F,, is an

J€p
j<n

irreducible finite dimensional space and (J(L @ F,,) is a dense sub-
nop

el T T SN "D T ~rC o~ PR TT ~
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is a Cartan decomposition of Z ® F, ,. Since each F, , is irreducible

Proposition 3.3 (iv) implies that for each i, 1 <i<s, there exists a_ j(i)
such that F, , C Gy If j(i) =j(k) then Proposmon 3.3 (ii) implies that

E,® E,. is a factor of Gy;, for any [Ep;, I<n, I’Ep, and I’ < n. Since
Gy is irreducible, Theorem 2.4 implies that E,; ® E, is irreducible and

hence /~1’, ie., p;=p;. Hence ) ®F, ,=]]F,,. Since a Banach
»

P
space with a finite dimensional decomposition is separable we have that
E= () ®F,),,. This completes the proof. |

2

In our first corollary we recover a result of Vigué [35] originally
proved using J* triple systems.

COROLLARY 3.6: If E is a symmetric Banach space with a 1-unconditional
basis then E is isometrically isomorphic to a ¢, sum of separable Hilbert
spaces (some or all of which may be finite dimensional).

PROOF: E has a Reinhardt decomposition { E;}, where E; is the span of
the j* basis vector. With the notation of Theorem 3.5, Theorems 2.4 and

3.5 imply that F, is either [y ,(,, or I,,y, where n(p) € {1, 2, -+, 0}.
The result follows by noting that each of these spaces is isometrically
isomorphic to a Hilbert space. ]

COROLLARY 3.7:. If E is an infinite dimensional irreducible symmetric
Banach space with a finite dimensional Reinhardt decomposition then E is
isometrically isomorphic to L(C"; H) for some separable infinite dimen-
sional Hilbert space H and some positive integer n.

Proor: Since E is irreducible we have only one equivalence class
in Theorem 3.5. The only possible infinite-dimensional irreducible fac-
tors are L(C", H) and L(H, C"). These spaces are isometrically iso-
morphic. ]
More specific information can also be obtained by using Theorem 2.4
and the dimensions of the subspaces which occur in the given Reinhardt
decomposition. For example, if E= Y @ E, is a finite dimensional
i<
Reinhardt decomposition of a symmetlricl space and dim(E;) # 8, 16 or
27 for all i then E is a J* algebra in the sense of L. Harris [14].
We now show that the decomposition given in Theorem 3.5 is unique,
up to a permutation of factors, and hence may be regarded as a Cartan
decomposition. To obtain this result we use J* triple systems.

DEFINITION 3.8 [34, Definition 2.2]: Let (E, Z) be a J* triple system. A
cuhsnare F of E ic ealled n IT* ideal in Eifforallvyve F ve Eamdac F
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DEFINITION 3.9: A symmetric Banach space is said to be strongly irreduci-
ble if it contains no nontrivial J* ideals.

"In [34] Vigué shows that every strongly irreducible Banach space is
irreducible (Proposition 2.9) and that the converse is true for finite
dimensional spaces (Théoréme 5.1). Also, the spaces L(C”, H) and
L(H, C") are strongly irreducible for Hilbert spaces H by [34, Proposi-
tion 4.4]. Hence all the irreducible factors which arise in Theorem 3.5 are
strongly irreducible. If H is an infinite dimensional Hilbert space then
B(H), the bounded operators from H to itself, is an example of an
irreducible Banach space which is not strongly irreducible ([34, Théoréme
4.1)).

ProrosiTION 3.10: Let E = ( ) ®E, ) be a symmetric Banach space
iel :

and suppose | 1| > 1. Then I' is a minimal J* ideal of E if and only if T is
a minimal J* ideal of some E,.

PrOOF: Let Z be the Jordan triple product associated with the ﬁnit ball
of E. It can be shown that

Z(;xi, El:y,-, z{:zi) = zI:Z(x,., Vis ;) | (31)

where x;, y;,, and z; are in E,. Hence, if T is a (minimal) J* ideal in
some E;, then it is also a (mlmmal) J* ideal in E. In partlcular each E;
is a J* ideal in E.

Conversely, suppose I' is a minimal J* ideal in E. Let P,'denote the
canonical projection from E onto E,. Chose il and x €T such that
P,(x)+0. Since the only complete constant vector field on a bounded
circular domain is the zero vector field, there exist y and z in E, such
that Z(P,(x), y, z) # 0. By (3.1)

})[(Z(X, Y Z))=Z(Pi(x)’ Vs Z)=Z(-x’ s Z)Er-

Hence E; N T is a nonzero J* ideal in E. Since I is a minimal J* ideal
it follows that I' N E; =T and hence I" C E,. This completes the proof.

THEOREM 3.11: Let E be a symmetric Banach space with a finite dimen-
sional Reinhardt decomposition. If ( ) ®E, ) and ( Y ®F ) are two
Co

iel ieJ ‘o
decomposztzons of E wzth E, and F, irreducible for all i and J, then there

oxicte n hitection o« from T tn T (‘1lf'h thnt E. ic ienmotriralhs icnmnrnhin 4
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PrROOF: Suppose ( Z ® E, ) is the decomposition of E described in

" Theorem 3.5. Smce each E; is. strongly irreducible Proposition 3.10
implies that { E;}, o, is the set of all minimal J* ideals in E. Proposi-
tion 3.10 implies that for each i € I there exists a -j € J, call it o(i), such
that either

(a) E (1)7 or
(b) E, is a non-trivial minimal J* ideal in F, i)

If (a) holds for all i then the proof is complete. If (b) holds for some i,
then letting I’ = {i €1 |0(i) =0(iy)} we find that( > eE ) = Fy(io)

iel’
Since F,; , is irreducible this is impossible. Hence o: I — J is a bijection

and E; = F,;, for all i. This completes the proof. [ ]
Now suppose Y, ®© E; and ), ® F; are finite dimensional Reinhardt

iel ieJ
decompositions of the symmetric Banach spaces E and F, respectively,

both with irreducible factors. Let ( Y ek ) and( Y oF ) be the
ier co jeJ’

Cartan decompositions of E and F and suppose the unit ball of E is

biholomorphically equivalent .to the unit ball of F. By Harris [13] (see

also Kaup and. Upmeier -[21] for a more general result) E and F are

isometrically - isomorphic. .and hence, by Theorem 3.8, there exists a

bijection @: I’ = J”, such that E, is isometrically 1somorph1c to F,;, for

alliel’ ForflxedzOEI’wehaveE =) ®Eand F,;,= ) ©F
iel, j€h
for some subsets I, and J; of I and J respectively. The example

L(c?,Cc?®)=L(C*: C)a L(C* C?)=L(C;C?) eL(c, c3n)‘

shows that the isometry from E,-o onto F (i May not result in the
existence of linear isometries between the factors. If, however, each
factor admits no nontrivial Reinhardt decomposition (by Theorem 2.4
this is the case only if each factor is either one dimensional, II,, IV;, .4
or H(0,)) we see easily that the following is true.

THEOREM 3.12: If E= )}, ® E;, and F= ), & F; are finite dimensional
ier jeJs

Reinhardt decompositions such that each factor in both E and F admits no

nontrivial Reinhardt decomposition and if the unit balls of E and F are

biholomorphically equivalent then there exists a bijeciion o: I — J such that

E,; and F,;, are linearly isometrically isomorphic for all i € I.

§4. Characterization of Reinhardt domains in spaces with a basis

Toat N he a Reinhardt Aamain in a camnley Ranarh enare F urth a hacic
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(Unless otherwise stated we will always assume that a Reinhardt
domain .in a Banach space with a basis (e,), is a domain which is
Reinhardt with respect to the coordinate projections associated with the
basis (e,),.) It was observed in §1 that if D is bounded then (e,), <, iS
an unconditional basis. When this is the case the diagonal isomorphism

o Zx, ) = T, e,

where
A, =sup{A>0|Ae, €D},

may be used to define an equivalent norm -]l on E for which
co(@(D)) is the unit ball. With regard to this norm (e, )y is a normalized
1-unconditional basis. The domain ¢(D) is also said to be normalized,
ie.,

e,€99p(D) and Ae,€¢(D) implies |[A| <1 forall neN.

We assume throughout the rest of this section that (e,)y is a normahzed
1-unconditional basis.

Let ¢ # IC N, & be any collection of nonempty subsets of N, 4 any
subset of E, and x € E. We'll use the following notations: £, = [e |ied]
is the closed linear span of (¢,);e; A;=ANE;, x;= Y, X, e is the

i
coordinate prOJectlon of x onto E;, and xp=({|x, ), c »-

DEFINITION 4 1: A subset D in E has normal form (2, r) if there exists
a nonempty subset I of N, a partition &# of I, and real numbers
r=(1, ;)o > where J =N\, such that

D= {er]x@EBc, and Y 1—[(1——||x I ) r”xjejEDJ}.

]GJ pEZF
(4.1)

When I =N we may consider D; = {0} and the empty sum in (4.1) to be
zero. ,

The simplest examples (of normal form in a two-dimensional setting)
were considered by Thullen [29]. They were

{(x1, %) €C? | |x, P+ %, <1} (0<r<c0)

and
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Thullen showed that these are the only two-dimensional bounded Rein-
hardt domains which admit non-linear biholomorphic automorphisms.

The main result of this section is a classification of the bounded
normalized Reinhardt domains in E. This will serve to describe all
bounded Reinhardt domains up to a diagonal isomorphism.

THEOREM 4.2: Let D be a bounded normalized Reinhardt domain in E.
Either every biholomorphic automorphism of D is linear or there is a
nonempty subset I of N, a partition P of I, and real constants r=
(70,))pe o jer where J =NN\I, such that

(i) Dy is the orbit of the origin under the biholomorphic automorphisms
of D,

(ii) 1, ;20 forallpeP andj€J, and sup Y r, ;< oo,

- JjeJ pPEP

(iii) for each p €P, E, is isometrically isomorphic to a Hilbert space

and E; is isomerrically isomorphic to ( ), ®E,),,

pPEP
(iv) D has normal form (P, r).

Furthermore, if (iii) is satisfied by the Banach space E, a set D of normal

form (2, r) is a bounded Reinhardt domain if and only if (ii) is satisfied
and Dy is-a bounded Reinhardt domain in-E;, and in this case the orbit of
the origin under the biholomorphic automorphisms of D contains D;.

The idea of the proof of Theorem 4.2 will be as follows. The set I, the
partition & and the parameters 1, are given by work of Vigué [35].
However Vigué [35] only gives the conclusions (i) and (iii). The restric-
tions (i) on the parameters 7, ; will be shown in a straightforward
fashion but the main difficulty is to show (iv). This we do by first
establishing that the set with normal form (2, r) is a bounded domain
and has enough of the biholomorphic properties of the original domain
to allow us to apply a uniqueness lemma of Braun, Kaup and Upmeier
[3]. We begin by proving the following lemma.

LemMmA 4.3: Let D have normal form (2, r) and assume that D, is a

bounded (normalized) Reinhardt domain in E; and that E; = (Z ® EP) ,

2 0

where I=UP and J=N\1I. Then D is a bounded (normalized) Rein-

hardt domain if and only if r, ;>0 for allp €P and j €J and sup er,jl
J @

< ¢o.

ProOF: Observe first that D is necessarily Reinhardt (and normalized)
and that

D,={preE,]xg,EBCO}.
P
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Suppose first that D is a bounded domain. Let
a=sup{||x| |xeD}
and-chbose B> 0 so that
BBg, X BBg, C D.
Thié implies in particular that 8 < min(e, 1) and that
BBg, CD;CaBg, .
For any p € # choose (&, )CBE so that || &, || — 1 as n — co. For any

jE€J, §,+ x; ;€D whenever |x | =81 — &, *)™. Since [x;] <
1€, +x; &l <a this implies

supB(1—[1£,112)" <«
n

Hence r, ;>0 for all p€2 and j€J. Now let #’ be an arbitrary

finite subset of #. For each p €2’ choose §, € E, with [|§,| = 8/2.
By our choice of S, Zf +B/2 ¢ €D for any j EJ Hence,

B/2
[10-449™ veh

P’

which implies

B/2

— P2 <a forall jeJ andall &’
(1-p2/4) %™

Hence
logﬁ
sup )1, ;< ___232___.
J @ log(1 — B%/4)

Conversely, assume that 7, ;>0 for all p€% and j&J and that

sup ) 7, ;=p <o0. Let
J 2

i
v
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‘and

x—Zx +Zx e,€D

be fixed. By definition of D and the hypothesis we have

Iz

max|[x | <1,

sl
and

TI(1= 1%, 17) ™ <1.
Hence

. ro Xx;e;
=| XTIt =l 01%) ™ s .’
01 LTI =1x,11%)™

ngj e

X €e;

<z sl :
7 I_[(l—Hx,,Hz)rp.l
2
<7v.

So D is bounded. Since D, is open and

there is a 8; > 0 so that

xje]
+3B,B;, C D,. (4.2)

1;1(1—nx %)™

Now choose 8, > 0 so that

xjej

Z,a

T v € B,Bg, whenever |a;| <B,. (4.3)
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Let a > 0 be such that
(1+a)’'-(1-a)’| <8,
and let

M= sup ]|xp|!.
2
Since M <1, there exists §; > 0 such that

1—x,]2
1=1]lx,+yl

for all p €& and y, € E, with || y, || <§,. Finally choose 0 <8, < §; so
that -

8,
[1-(a+8,)°

M+8,<1 and <B:.

We'll show that x + y'€ D for any y € E with || y|| < §,, demonstrating
D’s openness and completing the proof. Now,

sup Ix,+y, Il < SI;p(lepll+|Iyp||)<M+82<1,

so it remains to show that

(x;+y)e

7€) Ji€;
o + Z Iy
1;1(1—nxp||2) S I;I(1—1|xp+yp||2)

5 1 ~ 1 .
T T =t +v.02Y"  TI{1=1ux n2Y* 1|7 7
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is in D;. By (4.2) and (4.3) this will be accomplished if we can establish

Yi€;

7 1;[(1— 1, +y,012)"

< B . (4-4)

and
H(_l_”x‘”—“zz)rp.j—l <pB, forall jeJ. (4.5)
2\ 1= |x,+l
For all pe 2,
1= %, +5, 122 1= (lx, [+ 115, 1)°
>1—(M+35,), |

SO
]-;-[(1 = | Xp +yp I 2)’,;./> [1 - (M+ 82)2] ;’p-./‘

>[1-(M+8,)°

)
> -2

By

by our choice of §,. Hence,

Y
Z r ~ej
7=l 40, 1%)™

By B
<521 <8—:|1y||</91,

Z)’j €
J

establishing (4.4). Since || y, || < ||y || <8, <8, for all p 2,

1—|ix, I

T . 5%
1= |lx,+5, I

by our choice of §;. Hence,

1—|x,|I? )

(1-a)27 < H(_

<(1+ a);r’"-’ forall jeJ
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and consequently

<(1+a)® foralljel.

(1—a)”<1;1(

1—|ix,)2 ™
1—|lx,+y,|>

This implies

TW A )“_1

P I3
S\ 1= 1%, 45,12 <re)’=(1-a)
P P

<pB, forall je,
establishing (4.5). |

PROOF OF THEOREM 4.2: Let D be any subset of F satisfying conditions
(ii), (iii), and (iv) for which D; is a bounded normalized Reinhardt
domain in E,. By Lemma 4.3 D is a bounded normalized Reinhardt
domain in E. We claim that the orbit of the origin under G(D) contains
D;. To show this, we define a continuous triple product Z: E;X EXE
— E and show that the vector fields

x—=X,(x)=e,+Z(e,, x, x),nel

are complete (n.b. the map Z we define is not known, a priori, to be the
Jordan triple product associated with D). Having done this, by (1.5) and
(1.6) we conclude that E; C F and so by (1.4) the orbit of the origin
under G(D) contains D,.

We define Z on E; X E; X E; to be the Jordan triple product associ-
ated with the bounded symmetric domain B £, (see for instance [35]), i.e.,

» Z(ggp’ ;xp7 ;J’p) = —%g((xﬂép)yp"' (yp|5p)xp)"

where, without fear of confusion, we have let (-|-) denote the inner
product on E, for any p € #. Z is clearly conjugate linear in the first
variable and symmetric bilinear in the second and third variables and
continuous.
For any finitely supported vectors ) ¢, €E;, Y x,+ ).x; ¢;€E,
2 2 J

and )y, e, € E;, we let
7

Z(ng Z‘x,,"‘ fo €;, Zyi ei\ = Z[_ z(xnlén)rn ;] Vi €;
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and extend Z to all finitely supported vectors in E, X EXE using
conjugate linearity, linearity, and symmetry. Since

256 20

;[—;rp.xmsp)]yj

|

s(sup L, (% 18) |1 Xy e
J o J

< (S;p |(x,1€,) l)(SgP ;rp.j) ;yj €j

<(sw 1) (s 16:1) (P 2

Zyjej
J

ki

= (SUP er.j)

J 2

2%,
P

1ze

Z)’j €
J

Z is continuous on the finitely supported vectors of E, X E X E, and
hence has a unique continuous extension to all of E, X E X E.
We now show that the vector fields (X, ), are complete. Fix i € I.

For each x= Y x,e,-in D we must find a differentiable map ¢(-)
neN
= Y @,(-) e,: R = D such that

neN
¢(1)=e+Z(e, p(1), o(1)) VIER (4.6)
and ¢(0)=x.

Let p denote the element of & to which i belongs. Rewriting (4.6) as a
system of scalar equations we obtain

¥ (1) =1- (1)
@ (1) = =@ (1)@, (t), nEP, n+i

¢ (1) =0, n€I\p

|

|

-




[35] Reinhardt domains in Banach spaces 299

We find the solutions

@;(¢) =tanh(z+c), where tanh(c) = x,

(1) =2, DU s
P " sech(c) »
¢,(t)=x,, nelI\p

sech(z +¢) >~
()=x.| ——~ eJ
9;(1) X,{ wech(c) ., J&J,

where we. take the principal banch of z — z"7s. We have only to verify
that ¢(z) €D for all 1€ R. Let g;(r)= . ¢,(¢) ¢,. Then

nep
1"|]<Pp(f)”2
h(t+)2
=1— |tanh(¢+¢)|%— g BT L)
fann(e+e) P~ ¥ 1,11 =50
n+i

sech(z + ¢) ?

=1- |tanh(f+c)|2_(||xﬁ”2_ ]xflz) sech(c)

= cos(2 Im(c)) - |sech(t+ c) |2(1 e 2 — |tanh(c) |2)

1— |tanh(c) |?
= cos(2 Im(c)) |sech(z+ ¢) | ? :'xﬁi
- (1— |tanh(c) |*
_I'sech(z+¢) : B
| sech(c) (1 1% 2)
>1_ ”xi:st (47)

where we have used the identity
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Hence g,(t) € B,, for all # € R. Using (4.7), we see that

%‘(f)ej
7= e, () 12)™
2 .
. (sech(t-i—c) )Zr""/e
J h 7
-y h:ec (C))zr- .
J _ o\ 5| sech(t+¢) | ™ 3 2\ ri
=11 | LILA=1%17)
A (2)xge;

I Q(l—llw)’”’

where |A;(z) =1 foralljeJ, teR.

Since D, is Reinhardt, this last expression is in DJ for all rR. This
completes the first half  of the proof.

Now suppose D is a bounded normalized Reinhardt domain in E. By
Vigué [35] there exists a subset I of N such that G(D). 0=D N E,. The
required partition & of I is also given in [35], and this partition satisfies
the isometric properties in (iii). Let Z: E,X EX E— E denote the
Jordan triple product associated with D and let

M=sup{ || Z(¢& x, y) | |6€B;,, x, yEBg}.

=0

By Lemma 5.3 of [35], for each p€& and jeJ there exists Ty

such that

Z(e,, e,, e,)=—r, ¢, forallnep.

We also note that if p,,- - -, p, are distinct elements of # and my,- -+, m,
are elements of p,,---, p,, respectlvely, then || Z e, |l <1 by (iii).

1
Consequently, .

Ny <M forall ieJ and all n.
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where we've also used Lemma 3.4 (ii) of [35]. Hence sup er‘ ;< 0.
J 2

Define

xjej ~

D={Yx,+ x5 ¢|xzEB, and},
7

— €D,
7 1;1(1—||xpi|2)”"

By the first half of the proof,
G(D).02D,=D,=G(D).0.

We also have D, =D, and, by [35], Z has the same values on the basis
vectors.as does Z, where Z is the Jordan triple product defined in the
first half of the proof. Hence Z = Z, and D = D follows upon applying

Lemma 2.5 of [3]. . |

ReMARKS: 1. Vigué [35] gives an example of a Reinhardt domain in a
Banach space with unconditional basis for which the span of the orbit of
the origin under the biholomorphic automorphisms has codimension
one. This example motivated our approach in this section.

2. Various results on Reinhardt domains in a more general setting are
to be found in Braun et al. [3]. For instance, the authors characterize, in
example 2.10, the bounded Reinhardt domains relative to a decomposi-
tion of E into two subspaces, one of which is one-dimensional and
contained in the span of the orbit of the origin, in a manner generalizing
the analogous result in C? given by Thullen [29].

§5. Normal form of the unit ball of some Tsirelsohn spaces

Let B be the open unit ball of a Banach space E with a 1-symmetric
basis (e, ), < y- It is easily seen that either every biholomorphic automor-
phism of B is linear or else B is symmetric, in which case £ must be
isometric to either ¢, or /, by Vigué [35]. For, using the notation of
Theorem 4.2, if I is not empty, then the subspace E, is invariant under
G(B). In particular, any permutation map

Z'xn €p = an ec(n)
n n

must leave E; fixed and so E,=FE, ie, I=N.
Tn the remainder af thic cectinn we’ll exhihit ‘Ranarh cnarec whace
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and let (€,)nen be the usual unit vectors of the space T, of all finitely

nonzero sequences. For x = Y _x, e, € T, define
n

%]l o= max | x,|

» k Pr+1
1% oy =max{ || x|, sup 63 | X x,e,) ), m>0,
. [=1|n=p;+1 m

where the sup is taken over all choices 1 <k<p;<... <p,,;. The
sequence (|| x|} ,,)m=o is clearly nondecreasing and bounded above by
> |x,|- Thus, we may define

n

%11 = tim |} x| .

The completion of T; with respect to || -|| is called the Tsirelsohn space
with parameter 6, which we Il denote simply by T without fear of
confusion. It is well known (see [22]) that (e,), <y 1S @ l-unconditional
basis for T, and. that T is reflexwe and contains no subspace isomorphic

to/,,1<p<co.An elememary argument establishes that || - || (uniquely)
satlsfles
k Pr+a ‘
x|l —maX{ IIXIlo,Supgz X Xne, } (5.1)
I=1|ln=p+1 )

where the sup, here and hereafter in this section, is taken over all choices

I<k<pi<...<prs1-
Denote the integer; part of a real number « by [a]. The main result of
this section is

THEOREM 5.1: Let T be the Tsirelsohn space with parameter 0 and let B be
its open unit ball. Then

G(B).0O=[e|l<i<[1/0]+1]NB

and

B=|xeT||x]|<1 forall<i<[1/8]+1

}<1}.

[=<]

X X.e,

n=[1/6]+2

. and
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PROPOSITION 5.2: There exists a nonempty finite subset I of N so that
G(B).O=[e|icI]NB (52

and

B={xET| |x;| <1 foralli€l, and

.Z'xnen

n&l

< 1} (5.3)
Proor: By (5.1)

B={xET||xl|'<1 and

o]
Y x,e
n=2

< 1}.
Hence, by Theorem 4.2, G(B).0 2 [e;]1N B, and consequently there is a
nonempty subset I of N satisfying (5.2) and a partition & of I and
constants r = (7, ;) ; S0 that B has normal form (£, r). Consider the
two- dlmensmnal subspace le;, e, i#j. If 0<f< 3, then by «(5.1)

le;, j]~l2 Ifi<o<1, then [e;, ¢;] ‘and [e,, ;] are both 1sometr1c
with /2 by (5. 1) For i and j both greater than 2, let

6

e;te; (5.4)

P
Then ||x|| =1 by (5. 1), and so [e;, e,] is-10t isometric with /3.

Since no two-dimensional coordmate subspace is isometric with /3, it
follows from Theorem 4.2 that £ consists of the singletons {i}, i€ 1.
Hence B; = B, . Since T is reflexive it cannot contain ¢y, so'l must be
finite. Let i€ I and j<J. Then

X =

O x;
Bnle, e j] {(xi,-xj)||x,.[<1 and———— <1

(1 _ |xi|2)rP~J

=0. In case ¥ <6

where p={i}. If 0 <8< 3, then [e;, e j]_l Ty

< 1, the vector x of (5.4) is in 0B. Hence

1 —
1—6\*"
- (57))
which again implies 7, ;= 0. Thus B has normal form ({{i}: i€ I}, O)

i.e.. (5.3) is satisfied bv I




304 T. Barton, S. Dineen and R. Timoney [40]

PROOF OF THEOREM 5.1: Let I’ = {1, 2,...,[1/6] + 1}. To complete the
proof we must show that I’ is the set I of Proposition 5.2. By Theorem
4.2 it will suffice to prove that I’ is the largest set satisfying (5.3).

Let x € T have its support in I’. Then

k Prsa (1/6]1+1
sup 63 | X x,e,l<8 Z 1%, 1 <O[1/0]lixllo< [ x]l0,
[=1 n=p,+1
e} ||x|] =|lxllo by (5.1). Hence B, is isometric to the unit ball of

JU/61+1
We now prove that

2 %, e,

nel’

er

n&l’

} | (5 5)

1l maX{
. 0

for all m. This is obvious for m = 0. Assume (5.5) holds for some m > 0.
Let

k P+
=02 X xe,
I=1|ln=p;+1 m

for any 1<k<p;< ... <pey;. If [1/81+1<p,, then «

Y x,e, I peai<[1/6]+1, then a< H Y ox,e “ . Other-
n&l’ I’
wise find j so that "<

<[1/8]+1<p.

Then
a<b(j-1)| X x,e, +0(k I X x,e,
nel’ 'n&l”
Pis1
+6| > x,e,
n=p;+1

<b(k-1) max{ Y x,e,

> x, e,

)

nel’ 0 n&l’
[1/6]+1 Pi+1
+0 max(|| Y x,e,l , Y x,e,
n=p;+1 o Ifn=[1/81+2 m

P | T
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where we've used the induction hypothesis and 1-unconditionality. Since
k<p,<[1/60]+1, k6<0[1/6]<1. Hence,

max{ },
m+1

and (5.5) holds. Letting m — oo in (5.5) we have

|{x||<max< }

Since the reverse inequality also holds by 1-unconditionality, I’ satisfies
(5.3). Hence I’ C I. .

Now suppose there exists i € I\ I’. Choose distinct jj,- - -, Juyseyin J.
Then j,>[1/6]+1 for each n, so by (5.1)

Y x,e,

nel’

Y x,e,

nel’

0

2 x, e,

nel’

L X, €

n&l’

0

[1/6]

;l e, | =max{1, 6[1/6]} =

but

(1/6]

e+ 3 e

n=1

>6([1/6]+1)> 1

since i>[1/6]+1. This example shows that I’U {i} fauls (5.3), so
I'=1 ]

ReMARK: It follows from Theorem 5.1 that every biholomorphic auto-
morphism of B has the form f® S, where f is a biholomorphic automor-
phism of the unit ball of /£/%1*? and S is a linear isometric isomorphism
of [e;| j>[1/8]+1].

The space originally described by Tsirelsohn [30] is the dual of T. T*
shares the property of containing no /, subspace and has a 1-uncondi-
tional basis (e,"), <, the coefficient functionals of (e,), e 5. The next
result shows that 7™ does not enjoy the same holomorphic properties
that T does.

PROPOSITION 5.3: Let T have parameter 6. Then

G(Bp).0= {0},
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PRrROOF: If, to the contrary, there is a nonlinear biholomorphic automor-
phism of Br«, Theorem 4.2 assures us that there must be some two-di-
mensional coordinate subspace [e*, ef] so that Br. N[ef, ef] also has
this property. We’ll show in fact that every such domain has only linear
automorphisms. -

From (5.1) and the proof of Proposition 5.2 the subspace [e;, e;] of T

is either isometric with /2 or its norm is given by
|ze+we; || =max{ |z]|, |w|, 6(|z]+]|w])} (5.6)

for arbitrary complex numbers z and w. In both cases ||z e;+we;| =
lwe;+ze;||, and by duality this symmetry of the norm occurs also in
[eF, e i erl Therefore as discussed in the beginning of this section, By« N

[e’, ] is either a symmetric domain or has only linear automorphlsrns

In the former case [ef, /] must be isometric with 12 or 12, ie, [e;, e;]
must be isometric with /2 or /2. It was observed in the proof of
Proposition 5.2 that it isn’t /3, and (5.6) shows that it isn’t /7. This

completes the proof. ]

“Modified” and “convexified” Tsirelsohn spaces have been described
by Johnson [17] and Figiel and Johnson [11]. The two-dimensional
isometric structure of these spaces is also reasonably straightforward,
and the above methods may be applied to obtain results analogous to
Theorem 5.1 and Proposition 5.3 for these spaces. We refer to Barton [2]
for further details.

§6. Convexity of bounded Reinhardt domains

Having obtained the results of the previous two sections our attention
was drawn to the recent interesting article of Staché [27]. A portion of
that article (pp. 110-124) may be regarded as being complementary, in
the followmg sense, to our results of §4. In §4 we described the bounded
Reinhardt ‘domains containing the origin which support a non-linear
b1holomorphlc\automorphlsm using Jordan theoretic techniques. In [27]
the biholomorphic automorphisms of bounded convex Reinhardt do-
mains containing the origin are described using [26] and convexity (see
particularly [26, Lemma] and [27, pp. 111-113]) !. Moreover, the prob-
lem of when a bounded Reinhardt domain is convex has not, to our
knowledge, received any attention in the literature.

This problem turns out to be both complex and interesting. For the
general case we obtain necessary (Proposition 6.1) and sufficient (Pro-
position 6.4) conditions but no characterizations. With the notation of

T e~ 1 72 *_ £ 2 Av_ . ____ a_ ___~_ . D R T ST T S
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Definition 4.1, we then consider the case of D, = B, and D;= B, and
find that for these particular cases both Propositions ‘6.1 and 6.4 lead to
necessary and sufficient conditions. Next we obtain necessary and suffi-
cient conditions for D=B,, 1 < g < co, when D contains one equivalence
class (i.e., |#|=1; see “Theorem 4. 2). This also leads to a further
sufficient condition for the convexity of a bounded Reinhardt domain.

We continue with the notation of Theorem 4.2 and in addition we set

=[eliel], Y=[¢ljeT],
A=DNX=G(D)0, B=DnNY.

We have precise information about 4 from Theorem 4.2 including the
fact that 4 is convex. We also recall at this point that in view of
Theorem 4.2 we shall always assume 7, ;>0 and sup er ;<o

J 2

PrOPOSITION 6.1: If D is convex then

(6.1) B is convex
(62) sup ) r, ;<1
J P

ProOF: Clearly B must be convex. To prove (6.2) fix j<J and choose

x, € E, with [ x,|| =1 for each p in some finite subset S of #. Then
x, € 0D and thus, for 0 <a <1, we have :

PES

a) x,+(1—a)eeD.
peS

By Theorem 4.2
(1-a) [T (1-a?x,1?) <1
. pES

Taking logarithms we get

< log(1 — a)

r,, S ———— for0<a<l.
pes log(1—a?)
Letting « tend to 1 yields Zs r,.;<1. Since S was arbitrary this
PE
completes the proof. ]

In proving sufficiency of conditions for convexity of D we can assume
without loss of generality that both @ and J are finite. We make this
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LEMMA 6.2: Assume P and J are finite. Let
DR = {( llxpll)pegaéb ( Ixj[)jeJIpr+ >x, eje-D}_
2 J

Then D is convex if and only if D® is a convex domain in RV(N =
|2 +1JT1).

PrOOF: It is easily checked that D convex implies D® convex. For the

converse we first observe that if D® is convex then BR is convex and

consequently B is convex. Hence, if |x;| < [%;| and chj ¢; € B then
J

>_x; ¢ € B. Secondly we observe that the functions
J
¢ (x) =& (1%, ,e2)) = TT (1~ 1lIx, 1)
pPEP

are modularly decreasing, ie., if | x,|| <[ %,] for all pEZ then
¢,(2) < ¢;(x). Now choose x° and x' in D and 0 < a< 1. For j€J let

alx] |+ (1 —a)|x}]

Yi= .
R (CIEA R TS TR

Our second observation and the triangle inequality show -

lax? + (1 —a)x] |

¢ (ax®+ (1 — a)x') S

Hence our first observation and the convexity of D® show that ax®+ (1

— a)x' € D and this completes the proof. [ |

In the remainder of this section we shall use elementary properties of
‘convex and concave functions. If : R” = R is a C? function then the
Hessian of ¢, H,, is the symmetric » X n matrix

82”& n.n
0x; dx;

i=1,j=1

Y 1is concave if —y is convex, ie., if and only if H, is negative
semi-definite. If ¢ is a smooth positive function defined on an interval I
in RY then the set {(A, x) ER X I|A<y(x)} is convex if and only if

Jro1e eoncave and the et F v lshiivY < 2V ie eanvey 1f sl 1e a ~Aanvey

2
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Lemma 6.3: If Y 7,<1and r,> 0 for all i then the function
i=1

co(ty,eut,) = l:]i(l—t;z)’i‘

is concave on the set {(t;)7=110<t;<1 forall i}.

ProoF: Using subscripts to denote partial derivatives we find

?t(t) = _Zriti(l - fiz)_l‘i’(t)

1+ ¢}
2rt?

"1

¢ii(t) = ¢i(t)2¢(t)_l(1 -

0, (1) =& (2) (1) (2) ", i#).

Hence H, = édiag( ¢,;) M diag(¢;) where diag(¢,) is the diagonal matrix
with entries ¢,,-- -, ¢, and M is the matrix with diagonal entries

1+1¢?

2712

[Ag3

l-g,=1-

and off diagonal entries equal to 1. Hence H, is negative semi-definite if
and only if M is negative semi-definite. Since the principal minors of M
are of the same form as M we need only show (—1)" det(M) > 0.

By induction on # it is not difficult to show

det(M) = (—-1)"Hai(1 - l).
i=1 i=1 a;

Since g; >0 and 1 <a,-r,- for all i we have

n 1 n

-2 —=>1-)Yr>0

i=1 % i=1
and det( M) has the required sign. This completes the proof. ]

We now give a sufficient condition for convexity.

PROPOSITION 6.4: Suppose B is convex. The following are eQuiualent.

(6.3) r, ,=r, is independent of j.
(6.4) For every closed subspace F of E which contains X, G(DNF).02A4
= G(D).0.

AM mvtmmtanse 2 LL AN o amitoalind rmmd €N e 1 tlonen T S mmomeeman
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PROOF: Assume (6.3). let Z be the triple product constructed in the
proof of Theorem 4.2. Then

Z(Z£p= 2xp+ ij €js Zyp"_ Zyj ej)
P P J P J ‘
_Z(Zépy pra Zyp) + er(xplép)zyj ej
P P [ P J

+ E?p(yplip)ij €;
2 J

Clearly Z maps X X F X F into F and the argument given in the proof
of Theorem 4.2 results in an automorphism of D which leaves DN F
invariant and takes O to any desired point of D N X = 4. Hence (6.4) is
satisfied.

Assume (6.4). Fix j and k distinct numbers in J and a scalar A # 0.
Let F=X®[e;+ A e,]. Then D N F is a Reinhardt domain with respect
to the l-uncondmonal basis {e;+Ae,} U {¢;|i €1} and we have G(D
N F).0 2 4. Since 4 has codimension 1 either G(DN F).0=A4 or G(D
N F)0=DnNF by [35, Théoréme 3.2].

By Theorem. 4.2 there exist non-negatlve parameters (s, ) peo SUch
that

DNF={3Yx,+y(e;+Ne,)|suplx,| <1
2 p

lle,+Aells

2\ % <1
LI = 1%, 11%)

(6.5)

and | y|

Here || || 5 denotes the norm on Y whose unit ball is B. Now fix p € &
and i€p. Using (6.5) and Theorem 4.2 we see that, for |x| <1,
xe;+y(e;+Ae)EDNF if and only if the following two equivalent
conditions are satisfied:

[y le+A el s(1—1x]%) 7" <1,

17 10e, (1= 1x1%) 7"+ X (1= [x]*) ") p<1.

Hence
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Letting x increase to 1 we conclude that

s,=max(7, ;, 7, )

P P.J? P,
is independent of the value of A. If s, =r, ;>r, , then letting x increase
tolwehave f|e;+Ae.lz= ¢l for all A # 0. This is impossible and
hence 7, , <7, Slrmlarly I ; <1, and hence r, ;=r, .. Since j and k
were arbltrary thlS shows that (6.3) is satisfied.
Now suppose (6.3) holds and ) r, < 1. Then Zx + Zx e, €D if
2

and only if max | x,] <1and ”Zx e

and ) x, + Zx e; belong to D and if 0<a <1 then
2

‘{;(axjo+ (1- a)x}) &

B

Z xj(-) €

J

<a

+(1—a)

Y e
J

B

<a¢(§x3)+(1—a)¢(;x;) -

<T(1-(al=gi+0 - 1x1))"

by Lemma 6.3. By choosing x >0 and x > 0 for all j €J we conclude
that D® is convex and hence by Lemma 6.2, D is convex. This
completes the proof. ]

PROPOSITION 6.5: (a) If B is the unit ball of ¢, then D is convex if and

only if sup ). r, ;<
pPEP

J
(b) If Bis the unit ball of I then D is convex if and only if r, ;=r, for all

p, j, and Z

ProOF. (a) By Proposition 6.1 the condition er, ;<1 is necessary for

convexity. The structure of D and of the unitga ball of ¢, shows that it
suffices to consider the case where |J| = 1. An application of Proposi-
tion 6.4 completes the proof.

(b) Proposition 6.4 shows that the conditions r, ;=r, for all p, yA and

L\ 1 ara ciniffiriant FfAr Anncravityr Chasmvmmma  Ascavrmem Al Ter 2lanse T

Q)(Zx ) Ifo +Zx e
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convex. Proposition 6.1 shows that ) r, ;<1. Fix p€& and j, k€J

Z
with j # k. Passing to D® we need only consider the three dimensional
case o

DR={(x, y,2)|x, ¥, 220, x<1, and y(1—-x2)""
+z(1=x*)"" <1}
where r=r, ; and s=r, .. If D® is convex then ' A

z2(x, y)=(1-x*)" =y(1=x*)""

. . . . . 9%z
must be a concave function since its graph bounds D®. Since a——z =0
‘ y
the determinant of H, is

2

- aizéy): ~ (26 =)= =53 7).

Hence the Hessian matrix cannot be negative semi-definite unless » =s,
ie., unless 7, ;/=r, ;. Since j and k were arbitrary this completes the
proof. [ ]

We now consider the case where B is the unit ball of /,, 1 <g < .
Our method is to show that the Hessian of a certain function is negative
semi-definite (as in Proposition 6.5). This leads to rather complicated
expressions and consequently we omit certain details which the reader

may verify directly. We first consider the case where |#| =1.

THEOREM 6.6. Let 1 < g < oo and let

D=<x€9())j-);1|x612,)zj.ec allj, | x| <1,
A }
dy, ———— <1}, .
7 @=1x1*)®

where 0 <r; <1 for all j. Then D is convex if and only if no pair (r;, r;)
satisfies the conditions

SN2
(q(rj+rk)+1—q) > 4qrr, (6.6)

- - ’ N - 7 - =\
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(1-L,0 1
q

Figure 1.

ReMARK: Condition (6.6) specifies the exterior of an ellipse tangent to
the unit square at (1 - %, 0), (0, 1- %), (%, 1), (1,%), and condition
(6.7) specifies the connected components of the exterior (relative to the
unit square) which contain (1, 0) and (0, 1). The set of (rj; 1) which do
not satisfy (6.6) and (6.7) lies in the shaded portion of figure 1. For g =1
the ellipse degenerates to the diagonal r,=r, and in the limiting case
q = oo the ellipse fills the whole square (compare with Proposition 6.4).

PROOF: As noted previously it suffices to show D® is convex and to
consider finite dimensional Y. This reduces the problem to the finite
dimensional case. Hence D is convex if and only if the set

DR = {(xr yl:"':yn+l)|0<X<1= yj>0a
n—1 q
i
and — <1
jgl (1 —xz)q’
is convex.
Let z=y,,, and s=r,.;. On the curved boundary of D (i.e., for
x > 0) we have
’ n
27=(1-x1)= Y (1-x?)T""y8.
j=1

Let \;=(1—x?)"%yf for j=1,---, n. Then D is convex if and only if
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semi-definite. We shall show that (—1)"*! det(H,) > 0 if and only if
(6.6) and (6.7) are satisfied. Since » is arbitrary (6.6) and (6.7) then imply
that H, is negative semi-definite (by considering minors of H)).

Some lengthy calculations show that

det(H,) = (=1)"""4(x, A\)B(x, A),

where

A(x, A) =4(g— 1)n—1(1 _ xz)(nﬁ-l)s—z—zj:z]rj

n (r=D(=1+ =1
x(l—— zxj) I

Jj=1

and
B 0) = | L (=

+ i )\j(rj—s)(%—(q— DA +x%) —g(r+s)x*+ 2sx2)

+(g-1)s(3(1 +x?) —sx?).
Now A(x, A)>0 for 0<x<1 and hence (— 1)”*1 det(H,) >0 if and

only if B(x, A)>0for0<x<1, A;>0, and Z A; <1. Since B(x, A)
=1 !

is linear in x? the minimum value of B(x, A) for fixed A occurs at x =0

or x =1. Now

B(0,A\)=(g-1) i rj>\j+(q—1)s(1— i}\j) >0

Jj=1

and
B(1,N) = ( > <rf—s>xj)

+ é:l(c—s)(q— 1 —’q(rj+,s) +2s)>\j

-\ 7 -\
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If n=1, B(1, A) is a quadratic form in A, and the minimum will occur
atoneof A; =0, A\, =1, or

g—1—g(r +s)+2s
?‘l—S

A1=aE

if 0 <a<1. This is quivalent to (r, s)=(ry, r,) satisfying (6.6) and
6.7).
If n>1 then the minimum of B(1, A) occurs on the Eoundary where

A ;=0 for some j (a lower dimensional case) or where: '21 A;=1.1In the
j=

latter case we have

2

B(1, A) =

Z (G_rn)xj
Jj=1

X(g=1=gq(ry+r)+2r,)+(g—1)r,(1-r)

which is again a lower dimensional case. Hence (—1)"*! det(H.) > 0 if
and only if the conditions of the theorem are satisfied. This completes
the proof. ' ]

Using Theorem 6.6 we get a sufficient condition for convexity in the
case |Z | >1 which is also obviously not necessary in general.

'PROPOSITION 6.7: If 1 < g < o0 and sup er, ;<1 é then
: i 2 ,

D=1{3x,+(3) e, suplx,| <1
P P

|4
and Y, ;]

’p-/‘<1
; 1;1(1—||xp||2)q

is a convex domain.
PROOF: Let
n yjq

lP(Xl,"',Xm, yl:"ﬁyn): Z m -
I TT (1 — 2\
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By Lemma 6.2 it suffices to show that the domain
{(xl" T Xy Y1 yn) [0<x;<1, yj>09

lxb(xh“ T X y17“"yn)~<1}

is convex for all n and m. Since the sum of convex functions is convex it
suffices to take » =1 and to show that

v}

Wl,...,;m,y>=(ﬁ<1-xf>—qrf)yq A

1
is convex when Z r<1l- 7

i=1
Usmg subscripts to denote partial derivatives we have

Vs, = (12_"’—5)(1 +x7 + 2grx?)
Var, = (1-xf2‘;r(i;b—x )(2qrx x,), 1%
yy—%(q 1).

Hence H, =y A(K + B)A where |
A =diag(2gr/(1 = x7),....2qn./(1 = x2), 4/7),
K is the matrix with all its entries equal o one and
B=diag((1+x7)/(2gnx3),....,(1 + x,f)./(2qr,,x,,2), -1/q).

Since B > B = diag(1/qry,...,1/qr,, —1/q) it is sufficient to show that -
K+ B is positive definite. By the formula for det(M) in the proof of
Lemma 6.3

det(K+B)—(l—%— Sr )/(q Fry.. 1) 20

j=1

and the other principal minors are also positive.




[53] Reinhardt domains in Banach spaces 317

REMARK: Combining Theorem 6.6 and Proposition 6.7 one can easily see

that if B is the unit ball of /, and r, ;=0 for all p and some fixed j

then D will be convex if and only if } 7, , <1 - % for all k#}.

2
Our final theorem resulted from our experience with the /, case. We
state this result for finite dimensional spaces. The modifications neces-
sary for the infinite dimensional case are obvious.

THEOREM 6.8: Let || || 5 be a fixed norm on C" "', n > 0, with unit ball B
and suppose

||()/1, : ,)’n+1)||3 ”(]J’l[ sy lyn+1|)||3

(hence B is a convex Reinhardt domain). Let S be the portion of the unit
sphere contained in the positive orthant R"™! and suppose. S, is the graph

of a C* function y, o1 =4(y, "+, y,). Let

D(f',j) = {(-xla" s Xms Y1t yn+1) € Ri+m+1 I'xi<1. ,

<1}
B

(i) the (r,;) for which D is convex form a convex set of mX(n+1)
matrices T,

(ii) T contains the “diagonal” 1, ;=r,, for all j and k,

(iit) T is contained in the simplex

) n+1
“and
Jj=1

(T2

where (r; ;) are non-negative parameters. Then

sup ) ;<1
Jooi » _
() if |||l pisthel, norm,1<gq<co, then T contains the simplex
sup Do ;<1 1
I q
PROOF: We have already proved (ii) (Proposition 6.4), (iii) (Proposition
6.1), and (iv) (Theorem 6.7) and hence it remains only to show that (i) is

true.
Let z=y,,, and s;,=r,,.;. The boundary of D®(D=D(r, 7)) is
given by

- T10- )" ((ﬁ<1}x> ) )

i=1 i=1
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The Hessian of z is equal to

[1(1-22)"AM('4)

I10-#)"|

and the entries of M are

M(xas xb)=_28a,b(1+x§) Sa"ib( ) Z a,j _/.‘Pj

j=1
+4x,x, (sasbzp(a)
n .
+ 2 (ra-,jrb,j_ Saly,;— Sbra.j)aj‘l’/
j=1

+ "a,j"b,jajak%,k(a))
Gk

Mg, 3) = MOy %0) = =25 (50 =10 )9~ Trestdy
k

M(yja yk) =1[’j,k

where we have used the abbreviations

lf_[(l—x) y/’

a=(a1’.. .’an)’

and

=¢;(a), ¥ =9 ,(a)
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Now, on M, we perform successively the following row and column
operations:

Col(x,) — Z 2x,7, je; Col(y;)
j=1

Row(x,) — Z 2x,7, jo; Row(y,).
j=1"

This results in a new matrix M which is related to M by M = BM(‘B)
for some invertible matrix B. The entries of M are

~

M(x,, x,)= =28, ,(1+x2)|s,4(a) - Z Yo 0 )

+4x;xb(3asb¢(a) Z e )

M('xa’ yj) =M(yj’ xa) = —zxa(sa_ra.j)¢j
M(.Vj’ yk)=’1bj.k'

Hence z is a concave function if and only if M = M((s,), (r, i) X, @) 1S
negative semidefinite for all choices x, « with 0 < x, < 1 and a=
(aq," -, a,, 0) € B. Consider two collections (s;, 7; ;) and (8,,-7. ;) of
parameters for which z is concave. Fix x, a and let

ir 1/

= 3(a(s, r)+ (s, 7)) - 51252 15

2

Now

Nt 20) = x5 (5= 50 =) 4o
+ 2 (ra‘_/'_?a.j)(rb.j_?b,j)(—aj\bj))
j=1 ‘
and all other entries of N are zero. For 1 <j < n let

(t) w(ah LT 1 L Oy "van)_
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hence is concave, ie., f"(1)<0 and f/ is decreasing. Also the even
function obtained by putting f;(z) = f;,(—¢) is concave. This implies that
f/(0) <0 and consequently f/(a;) = ¢;(a) < 0. Using this fact it is easily
seen that N is a positive definite matrix. Hence

)-N

~>

M(s,

Nl)-

~(s+8 r+?\ |~
( ) )—TM(S,T')

is a sum of three negative semi-definite matrices and so it also must be
negative semidefinite. Th1s proves (i) and completes the proof of the
theorem. |
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