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Let B be a real separable Banach space and let X, X, X,,..€B denote a
sequence of independent identically distributed random variables taking values
in B. Denote S,=n""*(X;+ ---X,). Let n: B— R be a polynomial. We con-
sider (truncated) Edgeworth expansions and other asymptotic expansions for
the distribution function of the r.v. z(.S,) with uniform and nonuniform bounds
for the remainder terms. Expansions for the density of z(S,) and its higher order
derivatives are derived as well. As an application of the general results we get
expansions in the integral and local limit theorems for w-statistics

0r(q) & nﬂ/z'jm (Fo(x)—x}7 g(x) dx
,1)

and investigate smoothness properties of their distribution functions. Here p > 2
is an even number, ¢: [0, 1] — [0, o] is a measurable weight function, and F,
denotes the empirical distribution function. Roughly speaking, we show that in
order to get an asymptotic expansion with remainder term O(n~%), a < p/2, for’
the distribution function of the w-statistic, it is sufficient that ¢ is nontrivial,
ie, mes{re(0,1): g(¢)#0} >0. Expansions of arbitrary length are available

provided the weight function ¢ is absolutely continuous and positive on an -

nonempty subinterval of (0, 1). Similar results hold for the density of the
distribution function and its derivatives provided ¢ satisfies certain very mild
smoothness condition and is bounded away from zero. The last condition is
essential since the distribution function of the w-statistic has no density when g
is vanishing on an nonempty subinterval of (0, 1).
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1. INTRODUCTION

We consider two different but closely related topics. .

The first one is devoted to asymptotic analysis of remainder terms in
the Central Limit Theorem (CLT) in Banach spaces—convergence rates
and asymptotic expansions including the results for densities of distribution
functions. This topic was intensively studied during the last 20 years by lots
of authors; let us mention now only the review papers on this subject:
Prohorov,®» Sazonov, ® Paulauskas and Ratkauskas,®8 Bentkus ez al.®
The original motivation of investigations of the CLT in Hilbert or Banach
spaces was based on applications to some statistical tests—such as the
celebrated w>-test of Cramér and von Mises. However, in many of the
subsequent papers-the possibility of such applications was left out.

The second topic is asymptotic analysis of w-statistics

wllg) 2n | | {F(x)=x} g(x) dx

where p>2 is an even number, ¢: [0, 110, co] is a measurable weight
function, and F,(x)=n"'37"_, I{U,;<x} denotes the empirical distribu-
tion function based on a sample U, ..., U, taken from the uniform on (0, 1)
distribution. Let us mention only few papers related to this topic:
Smirnov,">7)  von Mises,® Anderson and Darling,® Stephens,”s
Kandelaki,®  Chibisov,"®  Sazonov, " Rosenkrantz,®®  Kiefer, 4
Nikitin,*®) Orlov,® Csérgs,?* Martynov, “ Serfling, ™ Csérgd and
Révész,*» Gotze,*» Koroliuk and Borovskich, > Shorack and Wellner, ")
Bentkus and Zitikis, ' Zitikis,®® Bentkus et al,,® and Paulauskas and
Ratkauskas.®” In many papers o-statistics have been studied without
taking into account the relation between them and the analysis of the
remainder term in the CLT in Banach spaces. ’ _
Our main purpose is to join the two topics mentioned. More exactly,
formulating and proving the results in abstract Banach spaces we always
have in mind applicability to statistical problems. This sometimes causes
unexpected technical difficulties and turns us aside from the widely
accepted canons of the theory. Furthermore, we look for conditions
rewritable in terms of the weight function g as well as easily verifyable
using: elementary. analysis, that is, without any references to the Banach
space theory. We formulate such results in Section 2. There are asymptotic
expansions of an arbitrary length and with uniform and nonuniform
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estiﬁlates of the remainder terms given. We alsg §tudy the sn:100thness
properties of the distribution functions .of w-statistics anq ob_taln expaln-
sions for their densities as well as for their h1gher. order derivatives. Resu ts
of this section include as partial cases many earlier results as well as their
i ments. - '
nnpr;)r\l/ eSection 3, we discuss asymptotic expansions ig the CLT_ in Banach
spaces for the distribution function (and for its density and higher origr
derivatives) of a polynomial defined on a general Banach space. This
section include as partial cases many earlier results (Gse7>e, for instance,
Gotze,®3" Chebotarev,™® Yurinskii, %) Bentk.us,( ’8; Bentkus and
Zalesskii,® Paulauskas and Ralkauskas,® Ziti1§1s?(87‘ ) Nagaev and
Chebotarev, 5 Bentkus ez al,® etc.) as well as their improvements.

The remaining sections are rather technical and are mainly -devoted to
(relatively complicated) proofs of the main resultg . ‘

Throughout we assume that all random variables are independent in
the whole if the contradiction is not clear from the context.

We shall use the following notation.

N set of all natural numbers

Ny set of all nonnegative integer numbers

R set of all real numbers

R* the k-fold Cartesian product of R

C set of all complex numbers '

B a real separable Banach space with the norm | -.H

S class of all infinitely differentiable and rapidly
decreasing functions

P probability
expectation ; ,

g x ths conditional expectation with respect to X (all
other r.v. are fixed)

I the indicator function

U, U,, U,,..eR a sequence of real iid. r.v. such that U is uniformly
distributed on (0, 1) .
F the empirical distribution function based on the
T sample Uy,..., U, . '
X, X,, X,,..eB a sequence of iid. r.v. taking values in B and such
that EX=0 ‘ . .
G, G,, G,,..€B a sequence of iid. Gaussian r.v. taking values in B
o and such that EG =0 and the covariances of X and
G are the same
S,=¢X,+ - +X,)
‘s=1/\/rz, for neN
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XV =X1{)| X </n}

Xo=XI{|X] >/n}

s(-, -) Stirling’s numbers of the first kind
7AN stands for “by definition”

stands for “identically equal to”

] stands for “the end of the proof”
# stands for “the number of elements in”
[x] stands for “the integer part of x”

2. EXPANSIONS FOR @-STATISTICS

Let U, Uy, U,,...e R be independent and uniformly in (0, 1) distributed
random variables. Denote by F, the corresponding empirical distribution
function. For even p>2 and a measurable function g: [0, 1] - [0, o]
define the generalized weighted Cramér-von Mises statistic (shortly
o-statistic)

wlfa) &nP | {F ()=} glx) dx e

which is well-defined if
f xP(1—x)? ¢(x) dx < o0 (2.2)
©.1) :

As partial cases we get the generalized Cramér-von Mises statistic

Wpan | (F(x)=x)rdx
)

0,1

(the Cramér-von Mises statistic if p = 2), the generalized Anderson-Darling

statistic |

4R | (EE-x) (10} ds

(the Anderson-Darling statistic if p=2.) We also consider the trimmec‘l
w-statistics

cs@7(@) &R | ()= x}? g(x) d

where >0 and B<1. The trimmed Cramér-von Mises «pW?2 and

Anderson-Darling sA?  statistics were considered by Pettitt and
Stephens.

Asymptotic Expansions RS

Denote

w?(q) & J(o | (B} g(x)

where x— Br(x) is the Brownian bridge. -
Let S be the class of infinitely differentiable and rapidly decreasing
functions, that is, g€ S provided that sup, g(1+ |x|?) [(d/dx)* g(x)| < o0

for all m, seNj.
The following theorem illustrates our general results.

Theorem 2.1. Let w”(g) be one of the following statistics: W7, A7 .or
wp W2, o pAL with some 0<a<p<1. Then the distribution function
x—»P{w”(g)<x} is infinitely différentiable, its density is of the class S,
and there exist functions a;, a,,... €S such that for every (but fixed) ke N,

we have
P{w?(q)<x}=P{o?(g)<x}+a(x)n ™'+ - +a(x)n “+ R(x) (23)
with the remainder R satisfying

sup |x|™ |R(x)| =0(n=*"1), n— o (24)
xeR
for all meN,. Furthermore, let seN. If w?(g) is either W? or A%, then for
all n>p(s+1) the distribution function x> P{wZ(q)<x} is s-times
differentiable and

sup |x|™ |(d/dx)* R(x)|=O(n=*"1), n—c. (2.5)

x€R

for all me Nj.

The terms a,, a,,... of the asymptotic expansions are functions depend-
ing on ¢ and p, which can be expressed using the distribution of the
Brownian bridge. We shall describe the construction of them in Section 3.
Let us note also that if 0 <« < B <1, then the distribution function of each
trimmed w-statistic has a jump (see Remark 2.2). '

Now we are going to formulate general results.

Define

y/p y/p
M(y)éj (j g(x) dx> du+ (f q(x)a’x> du
(0,1/2) (u,1/2) (1/2,1) (1/2,u)

Let ACM(a, b) denote the class of all absolutely continuous monotone
functions on the open interval (a, b). This means that fe ACM(a, b) has a
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derivative integrable on every closed subinterval of (a, b), and f” is either
nonnegative or nonpositive on (a, b).

By ACM (0, 1) we denote the class of all functions on (0, 1) which
are piecewise of class ACM. More exactly, quCM (0, 1) if there exist
a finite set of points, say O=x,<x;< --- <x,<x,,,;=1 such that
g€ ACM(x;, x;,,) for all j=0,..., .

Furthermore, ACMy(a, b) stands for the class of all functions
g€ ACM(a, b) such that sup,. ;) [¢'(x)] < c0.

Throughout we impose the condition

f xP2(1 — x)?"2 g(x) dx < (2.6)
(0,1) :

It is stronger than Eq. (2.2) and ensures that w?(g)eR almost surely (see
Section 8).

In order to exclude the trivial case P{a)”(q =0}=1, we assume
throughout that

mes{ze (0, 1): g(¢) %0} >0

Theorem 2.2. The distribution function x — P{w?(g)<x} is of the
class C*, its density is of the class S. Let k, me N,. If M(2k +2) < oo, then
the functions a,, a,,..€S in the formal asymptotlc series in Eq. (2.3) are
well defined. If

M2k +4) + M(pm) < oo

then the remainder R in the asymptotic expansion of Eq. (2.3) satisfies the
estimate of Eq. (2.4) provided k+1 < p/2.
Furthermore, let there exist a nonempty interval (g, b) < (0, 1) such
that
inf ¢(x)>0,

ACM :

xe(a,b) 7€ b(a, b)

Then (w1thout restrictions on k € NO) the asymptotic expansion of Eq. (2. 3)
holds with a remainder R satisfying Eq. (2.4).

The following theorem allows us to differentiate the asymptotic
expansion of Eq. (2.3) (mcludmg the remainder term).

Theorem 2.3. Assume that the moment conditions of Theorem22
hold and

inf
xeu(})’l)q(x)>0,

ge ACM (0, 1) n ACM,(a, b)’ 2.7)
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for 2 nonempty interval (a, b). Then for all n> p(s+1) the distribution
function x—P{w?(g)<x} is s-times differentiable and the remainder R

satisfies Eq. (2.5).

Remark 2.1. There is a generalization of the gstimates of the remain-
der terms in Theorems 2.2 and 2.3. Namely, if we replace the condition
M(2k +4) < 00 by M(2k +2+23) < co with some 0<J < 1, then the error
bound O(n—*~') in Egs. (24) and (2.5) should be replaced by o(n™*~?).
Of course, in this case the condition k + 1 < p/2 in Theorem 2.2 should be
replaced by k+ 0 < p/2. ‘

 Remark 2.2. If g vanishes on a nomempty interval (a,b)<(0, 1),
then the distribution function of wZ?(g) has a jump. Indeed,

Plof=n[ e asen” | (-2 g ax)

>P{U,‘E (a, b); Vi= 1:"-7 n} =(b—a)n=exp{-cn}

where ¢= —In(b —a) = 0. Thus, the condition inf, 4 ;) g(x) >0, which we
have imposed to get convergence rates and asymptotic expansions in the
local limit theorem, is a natural one. Of course, it can be weakened but not
too much.

According to Theorem 2.3, the distribution function x> Z(x) &
P{w?(g)<x} is s-times differentiable provided n> p(s+1). The next
theorem supplements this result.

Let D**" be the class of functions f:R —R which are k-times
differentiable and | f(x) — f(¥)l <c |x— y|"

Theorem 2.4. Assume ¢ to satisfy Egs. (2.2) and (2.7). Denote
N 2 n/p. If N=[N], then % eD"~'*% for all 6 [0, 1). If N> [N], then
F,eDIVI+ for all e [0, N— [N]).

The result of Theorem 2.4 is almost unimprovable. Indeed, if g(x) =1
and p=2, then Theorem 2.4 states that #,eD">~° for all 6>0. On the
other hand we know (see Stephens and Maag®) that %,(x)=0 for

L 0<Xx<1/(12n), and F(x)=c(x—1)/(12r))"?, ¢>0, for 1/(12n)<x<

(n+3)/(12n%). Therefore &, is not n/2 times differentiable.

Proofs of the results of this section are based on estimates of charac-
teristic functions. They may be of independent interest and therefore we
formulate them as the following two theorems.
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‘ Theorem 2.5. Let se N, and M(ps) < oo. If there exists a nonempty
subinterval (a, b) = (0, 1) such that

inf ¢(x)>0, ge ACM (a, b)

xe{a,b)

Lhen for any (sufficiently large) 4 >0 and any (sufficiently small) 6 >0 we
ave

sup(n”  sup  |(d/dr)’ E exp{itw?(g)}]) < oo (2.8)

|21 > nPl2=1+46

Theorem 2.6. Let seN, and M(ps) < c0. If

inf ¢{x)>0, ge ACM,(0, 1)

xe(0,1)
then there exists a (positive) constant-c = ¢(g, p, s) such that
|(d/dr) Eexp{itw?(g)}] < cn [d=72, V|1 >1 (2.9)

Let us  discuss the relationship between w-statistics and limit
theorems in Banach spaces. Let L,(g), 1< p< o, stand for the Banach
space of real-valued functions f:(0,1)— R with the norm £ &
{1 | f(x)|? g(x) dx}? < 0. Define thé random process * X(¢) &
I{ U<t} -1 0<t<1, and consider X as a random variable taking values
in the Banach space L,(¢). Then

2

wi(g)=1S,7, S,=n""X;+ .- +X,)

where X, X>,... are independent copies of X. Since p is an even number,
the function 7n(z) £ |z||? is a polynomial of the pth order on L,(g) and
P{a)fz’(.q)‘sx} =P{n(S,)<x}. Therefore, in order to get resalts for
@-statistics we may (and do) apply general results in Banach space setting
from the next section. Let us only note here that for >0 and y>0 we
have (see Section 8)

E [ X]|" < 00 < (2.2) and M(3) < o0 (2.10)

and '
P{XeL,(g)}=1<(22) : (2.11)
P{BreL,(q)}=1<(2.6) ’ (2.12)

Let us describe results directly connected with the topic of the section.
The paper by Bentkus ez al.® contains a detailed review of the results con-
cerning w-statistics up to 1989. Convergence rates for the distribution of
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w? were considered by Kandelaki,*® Sazonov,*¢” Rosenkrantz, 9
Kiefer, 9 Nikitin,®® Orlov,®® Csorgs, @2 Gétze.®") Csdrgd?* also
conjectured the rate of convergence O(n~') and gave a formal expansion
for the distribution function of W2, It was Gétze®" who obtained the rate
O(n~") as well as asymptotic expansions. In the book by Koroliuk and
Borovskich® one can find similar results.

The differentiability properties of the distribution function of W2 were
investigated by Csorgé and Stach6,®) Bentkus and Zitikis."'” The local
limit theorem as well as asymptotic expansions for the density of W2 are
proved in Bentkus and Zitikis."® In Zitikis®**® results were extended to
the case of general statistics w?(g) with ¢ satisfying a little bit stronger
conditions than those of the present paper.

Gotze®® proved the rate of convergence O(n™") as well as asymptotic
expansions with uniform bounds of the remainder terms for w7(g) (p is an
even number) for a class of weight functions g. ‘

Cotterill and Csorgd?® using technique similar to that in Gotze,®V
have obtained the rate O(n~!) for the multivariate Cramér-von Mises
statistic. .
Properties similar to those we consider in Theorems 2.5 and 2.6 are
discussed in Zitikis.®? Related questions were studied in van Zwet,
Bickel ef al,'® Gotze and van Zwet,®® Helmers,*") Bhattacharya and
Denker,!!) Callert ez al,*” Csérgd and Horvath,®") Darling,®” David, ®®
Durbin and Knott,®’ Filippova,®® Helmers,*® and Watson.””

3. EXPANSIONS FOR DISTRIBUTION FUNCTIONS
_IN BANACH SPACES

‘ Let B (with norm ||-|) be a real separable Banach space. The.
topological dual of B is denoted by B’. Let X be a B-valued r.v. with dis-,
tribution #(X), and let X, X,,..€¢B be independent copies of X.

. Throughout we assume that

EX=0, E|X[?’<w

and
supE ||S, | <o (3.1)

Without loss of generality we may assume that P{X=0} <1. Also, we
require the X to be pre-Gaussian (see Pisier and Zinn‘®V), i.e., there exists
a centered Gaussian r.v. GeB (we denote @ & £(G)) such that the
covariances of X and G coincide, that is, -

EG=0, Ef*(X)=Ef?(G), VfeB’
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Remark 3.1, By definition, X satisfies the Central Limit Theorem in
B (briefly X e CLT) if the sums S, & (X, + - +X,,)/\/; converge weakly
to a Gaussian r.v. G. In this paper we do not need this assumption. Let us
note that XeCLT and E | X||*<co imply Eq. (3.1) (see Kruglov,“®
de Acosta and Giné,”® and Araujo and Giné.®).

Remark 3.2. It is known (see Borisov'®) that E | X| I>< oo and the
fact that X is pre-Gaussian imply EL(X, X)=EL(G, G) for each con-
tinuous bilinear form L on B. ‘ _

Let n: B— R be a polynomial function of degree pe N, that is

() =mo(b)+ -+ +m,(b), VbeB

where b+ 7,(b) & n,(b,..., b), and =, is a v-linear symmetric and con-
tinuous- function. Without loss of generality we may assume p > 2. Indeed,

the case p=0 is trivial. In the case p=1 one may apply the well-known
one-dimensional results (see, e.g., Petrov®®), :

Throughout we impose the following condition:

sup |7|*E exp{itn (G ... G,)} < oo, Vd=0 (3.2)

teR

where G,,.., G, are independent copies of G.

Remark 3.3. It is known that Eq. (3.2) holds for each infinite-
dimensional G if B is a Hilbert space or B=1/,, p is an even integer {see
Yurinskii®®). In the case of X (and G) corresponding to w-statistics this
condition is fulfilled as well (see Section 8). A consequence of Eq. (3.2) is
that the distribution function of n(G) has density of the class S. '

By definition, the class S consists of functions g:R - R such that

gl £ sup(l+ |x]™) |g(x)] < oo, !-lgllm,s 2 sup(1 + |x|™) |(d/dx)* g(x)] < oo
xeR

xeR

- for all meN, and seN.
We denote ¢ £ 1/, /n.

Theorem 3.1. Let keN, and E |X|“*3<co. Then there exist
functions aj,..., a, €S such that - '

P{n(S,)<x}=P{n(G)<x}+a,(x)e+ - + a,(x) & + R(x)
with the remainder R satisfying

sup |R(x)| = O(¢** 1), oo ' (3.3)

xeR
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provided k< p—2. If k= p—1, then for each 6>0

sup [R(x)| =0(*'7?%),  n-o
. x€R

If the Cramér type condition

36>0 j IE exp{itn(S,)}| dt = O(c"+")

nPl2=8 < j7| g nlk+1)2

is fulfilled, then Eq. (3.3) holds for all k€ No.

Remark 3.4. The Cramér type condition imp'o.sed in Theor;m 31
and similar conditions described later are the co.ndltlon.s on the :tasrta;z;
teristic function of the whole sum. A_sAv.ve sl}ow in Secﬂqn 8, - iéase)
satisfy them. The classical Cramér condition (in the ﬁm.te. d1mens1otr_1a Sase)
is a condition on individual summands. Such type conditions sorlne 1113n  are
used in the infinite dimensional case as well (see., for examp Z"t‘ er; s
et al.®). Unfortunately, we are not able to verify such condition
w-Sta}llEllf:c(:;m 3.1 is an immediate consequence of more general and precise
results given later. Before formulating them, let us descr{be 1}:1he ;irmi; zvr(t;cl?
of the asymptotic expansions. We shall define them via the Edge

¢ omials. .
Cram;liepgcligworth-Cramér polynomials. Th:ese polynomlals, denote tl(lf}rlx; .
by E, = E,(m,,.., m, ), of formal commutative varlab}es M5 sz?zrmal
so-called “moments” variables) are defined as coefficients in the fo

power series expansion

exp {t‘z In <1 + i mvt”/v!> —m2/2} = E:O E (my,ym, o) 1" (3.4)

y=2
For instance,

Eo = 1,

El = m3/65 .

Ez = —m2m2/8 + m3m3/72 + m4/24,

Ey= —mymy/12 — mymyms[48 + mymsms[1296 + mymy/144 +ms/120
The random Edgeworth-Cramér differential operators. To define these

(5)
operators we need derivatives of measures (see Averbgch et al., .alr;ld
Daletskii and Fomin®® for more information concerning differentiable
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measures). Suppose that ¥: .7 — R is a set function (not necessary additive
or g-additive) defined on a class & of subsets 4 = B. Assume that the class
&/ is invariant under translations, 4 € o/, he B= A+ he /. Then we can
define the directional derivative

D(h) P(4) & liné{ﬂt’(A —th)—¥(A4)}/1, teR

(if the limit exists). The first derivative D(h)¥: o >R is a set function.

Hence we can define the successive derivatives D(hy)---D(h,) ¥ iteratively.
Write ‘

E, =Y d,(iys iy my -,

Y

where the sum is taken over all integers Iy, iy Such that 2<i, < .- < i
From Eq. (3.4) we see that only a finite number of coefficients d,(---) are

nonzero. Define the polynomials
P(zyymyz,) Y d(iy,us i) z% ez

of commutative variables z,,..,z,. The random Edgeworth-Cramér
differential operators are defined as follows

Pv é ‘PV(‘D(XI)?"" D(Xv))
For instance, we have
P,= —3D*(X,) D*(X,)+ %=D*(X,) D*(X,) + 3D (X,)

The terms of the asymptotic expansions. Denote A,,£4 {beB:
n(b+a)<x} for xeR and aeB. Clearly, o/ & {A, . aeB} is a class
invariant under translations and &(4, ,)=P{Ge Aoy =P{n(G+a)<x},
where @ £ #(G) stands for the distribution of G. Then we define

a,(x) 2 EP,&(4,)
where 4, 2 4, ,. '

Let us now give an explicit formula for a,(x). The Stirling numbers of
the first kind s(j, k) are numbers. such that ' ‘

J
X(x—=1)---(x=j+1)=3Y s(jryx’, for j=1,2,.

r=1

Lemma 3.1. We have a,(x) = EQ,®(4,), where the random differen-
tial operator

0. & 0,(D(X,), D(X,),..; D(G;), D(G)....)
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is defined via the polynomial
Qs(zla 22)"‘; yl: y2,-")

5 i d * 1 oy o) A ~oc/_ o_gj"
2% T LS unT )

i=1 j=1-]'r=

X{I{H-Z(j—?’):S} +j(s—i—2j+2r)/2

S 1 :
— )Y Y
* X (DT |

-
of formal commutative variables z, Zo,.; Y15 Yoo - The fourth spm—iz‘,. +1$;
taken over all integer multiindexes a(j) £ (a1, ocj‘) SIijh that loc‘( Nl =2 t
and o,>3,., «,>3. (We use the notation a(j)! 2 o!... e/, lr.x‘(])l 2
o+ ~-1- +o’c-.) TJhe last sum > ** is taken over all integer multiindexes
ﬁtl) = (ﬁl,...j B8,) such that |B())| =v—i—2(j—r) and f,>2,., B8,=2.

It is easy to see that all sums in the definition of QS(...‘) are finite and
that Q,(z1,..; Y1) depends only on finite number of variables z;, z;,...

Yis Voo -

Remark 3.5. Let us note that the differential operators P, anfi Q,
(and the corresponding polynomials) are not the same. Let. us describe a
procedure allowing to get P, from 0,. If wi(x) é Wi X,eees ‘x).ls a symme}:ltrlc
and continuous k-linear form of the argument x € B, then it is easy to s (;)w
that Ew,(G) =0 if k is odd, and Ew,(G) =k!/(2"m!) wi(G}, Gy Gy Gry)
if k=2m is even. Furthermore, by Remark 3.2, we get

Ewk(G1> Gl FR) Gm: Gm) :Ewk(X1> Xl:---? Xm: Xm)

Therefore one may get the polynomial P, from the polypomial 0, progeed—
ing as follows. First, write Q, as a sum of monomials. Then omit all

monomials containing an odd degree of at least one Of yy,..., Yi- Replace
2m;y 2my

each product yi™,..., yi by
@my)! ... QY@M ey ) 2R Zh
If we rewrite the polynomial obtained as
z ev(il s1eey l;) Z;ll e ZZ
where 2<i, < --- <i;, we shall get the equality

P21y Zysa) = 3 (i 1)) 23 - 2]
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The following two lemmas give some properties of the terms of the
asymptotic expansions.

Lemma 32. The density of the distribution function x
P{n(G)<x} is of the class S.

Lemma 3.3. Let E | X]**2< co. Then the function a, is well-defined
and a, €8. Furthermore, if 7,(b) =0 for odd [, then a,(x)=0 for odd v.

Let us continue with the results on asymptotic expansions.
Now we shall introduce quantities the remainder terms of the
asymptotic expansions given here will be estimated through. Let .

L,=1,(4)=1,m, 9, A)

4 max f
OSpuSm Inpl2-3g |y g nt

|(d/dt)* E exp{itn(S,)}| dt

where 6 >0, 4>0 and meN,, and

Ju=J,(m, 5, s)

>

max . max f
0<o<s—1 OSsusmIn2-3g < oo

217 |(d/dt)* E exp{itn(S,)}| dt,
where 6 >0 and meN,, seN.

Theorem 3.2. Let k, meN,. If
E | X|[***+E | X||”" < oo

then for all 4>0 the remainder R in the asymptotic expansion of
Theorem 3.1 allows the estimates: C

IRl < c{L(4)+e  +n~"}, R, <c{J,+&+1}

for all seN and with some constants ¢ which do not depend on 7.

The norms |-|,, and | “|lm,s here and in the following are taken with
respect to the variable x. Traditionally an estimate of the norm -1, is
called “nonuniform” and that of |- | ,s “nonuniform in the local theorem.”

Remark 3.6. To avoid confusion, let us agree that all inequalities in
this paper mean that if the right-hand side is finite, then the left-hand side
is well-defined, finite and does not exceed the right-hand side. For example,
in the case J,<oo the estimate [Rlms<c{J,+e5"1} together with

741
Asymptotic Expansions '
Lemmas 3.6 and 3.7 ensure that the distribution function x — P{n(S,) < x’}

is s times differentiable. . .
Together with the asymptotic series
k

A (%) 2 P{n(G)<x} + zl a,(x) & (3.5)

y=

described earlier, we shall also consider the following asymptotic series

k .
A7 () AP{n(G)<x}+ ), a)(x) e’ (3.6)
and, for all n>k,
. k :
B, (x) 2 P{n(G)<x}+ Y bya(x) e’ (3.7)
k
BY (x) A P{n(G)<x}+ Y. by (x) e (3.8)

Let us describe the construction of them. '
Coefficients a¥(x) 2 EQY®(A,) in series Eq. (3.5) are defined via the

random differential operators
07 = 0.(D(XT), D(XS),..; D(Gy), D(G2),..)

here the polynomial Q, is defined in Lemma 34 .
" The dSﬁnitions of Egs. (3.7) and (3.8) are a little bit longer. Define the

polynomial
N

) JAN )
T, inkZ1s 2255 V1o Vi) B0 < .

)Z*** (23 = y3) o (27 = )t
J

where the sum 3 *** is taken over all integer multiindexes a(j)= (a1, a;)
such that |a(j)| =2j+v and oy >3,.., a;>3. ‘ _
Using these polynomials, we define the random differential operators

Ty jn & Ty jn(D(X 1), D(X),..; D(Gy), D(G3)se)
TV . & T, (DXY), D(X3),..; D(G}), D(Gy)....)

v jin =

and put

v

boo(x) & Y ET, . ®.(4,), by (x)2 21 ETY P, .(4y)
j=1

f
-
where @;, £ L(G/1—j/n).

e —"
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chzn;‘:}‘;?L"pi'l?noiﬁiird}ffjZnﬁez’f‘if e o ald gy 20 %
:vré n;r;;; ::;: l;;zntgztgrees by appropriate products Qf squares. For inslt;;cif
- Ty (25 y1)=Zf/6,
Ton(z1; y1) = (22{ = 3y2 348,
T550(2y, 255 V1> ¥2)=(1—1/n) ZfZ§/72a
Ts,1n(215 y1) = 23/24, _
T350(215 235 y1, 12) = (1= 1/n) 212253y} y3)/144,
T550(2y, 25, 235 yy, Y2, y3)=(1-1/n)(1 —2/n) zfz"§z§/216

Lemma 34. We have a¥e$ and, if n>v, bY

m, se N, we have » €8. Moreover, for all

SUp 1] l,o/{n"?E | Xo|> + E | XV T2} < oo,

SUD 87,/ {17 | Xl + E [X7)**7} < o

n>vy

HE|[X)]"*?< o0, then a,e$ and, if n>v, b, 8. Also, we have

sup la) — a, |, /E |1 X]"*2 < oo,

sup |,bzn_bv,nllm,s/E IIXV,IV+2< 2]

n>v

Furthermore, if 7,(b) =0 for odd I, then

al(x)=a,(x)= by (x)=b, ,(x)=0
for odd v.

Estimates of the closeness

of i fag 3
presents the following lemma. asymptgtlc series 1 Egs. (3.5)-(3.8)

Lemma 35. For all m, seN, we have

s]‘:g “Az,n_BZn“m,s/{E ”XVHZ +8k+1E ”XV“k"'3} <o

\r,
)
|
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and, if E [ X]**+3 < co, then

sup ”Ak,n - Bk,n”m,s/‘gk+ ! <0
n>k

Let us continue with asymptotic expansions. ..

Theorem 3.3. Let me N, and assume that

>0 E|X[**°+E X" <00

Then, for all ke N and 4>0,
csup [|[P{xn(S,)< -} — A} /{1 (4)+ K, +n~ 4} < o0, (3.10)

sup [P{e(S) < -} — AT s/ (T + Ko} <0 (311)

for all seN, where

K, & E |Xol2 + ¢ 'E | X7|*** + &7 2K | X[ 7" 1{eX] > 1}

Theorem 3.4. Let meN, and assume that

35>0 E|X|**°+E X" <00

Then, for all ke N, and 4>0,
sup |P{n(S,)< -} — Ban\m/{In(A) +K,+n "} <o, (3.12)

n>k

sup [P{n(S,) < -} = B allms/{/n+ Kn} <0 (3.13)

n>k

for all seN, where K is defined in the previous theorem.

Theorem 3.5. Let k, me N, and assume that

E | X3 +E | X]"" < oo

Then, for all 4 >0, v
sup [P{rn(S,< -} —Bk,,,il';,,/{l,,(A)+s"+1 +n "} <00, (3.14)

n>k

sup ||P{7z(S,,) < 3= Bellms/{Tu+esT <0 (3.15).

n>k

for all seN.

The paper by Bentkus etal,®® contains a review of the results
obtained up to 1989. So let us mention only some papers related to the
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topic of the section: Gotze,®%3*3%3) Chebotarey, (1®) Yurinskii, 84
Bentkus, 7 Bentkus and Zalesskii,® Zitikis, 88 Zalesskii, ®+26) Sazonov

" etal, Nagaev and Chebotarev,? Ulyanov,™  Vinogradova, ¢V
Vakhania,” Kuelbs and Kurtz,“” Rhee and Talagrand, ®® Bikelis, 14
Bhattacharya and Rao,"® Statulevitius, ™ Sadikova,(65) Bogachev and
Smolyanov, > Malliavin, “® Giné and Zinn,* Hoffman-Jérgensen and
Pisier,*? Pisier, ® Vakhania e /.80

4. EXPANSIONS FOR CHARACTERISTIC FUNCTIONS
IN BANACH SPACES

In this section we preserve notation from Section 3 and assume the
assumptions of that section hold.
Denote

@.(b) & exp{itn(b)}, VbeB
Let

a(r) £ EP]0,(G)=EQV0,G), a,(1) £ EP,9,(G)=EQ,0,(G),

OLA0 & T ETY,,0(G/Tjm), b, & T BT,,,0(6 T=7m)
N

J

where the differential operators (for example, D(X;)) act on the function
bi— o, (b).

%

Lemma 4.1. The function ¢+ Eg(G) is of the class S.

In this section the norms |- || s I-1ls. of the class S are always taken

with respect to the variable 7eR. Also, for s,meN, and a set D<R we
denote

lg; DIl & sug(l HI) @D, g Dllsm 2 sup(1 + |2)°) |(d/dr)” g(2)]
te teD

Below we shall always use
D & {jz| <n??=7}, c>0

Lemma 4.2. The functions ¢+ ¢~'4Y(¢) and, if n>v, th‘IEXn(z),
are of the class S. Moreover, for all s, meN, we have

sup [[27a7 |,/ {n"E | Xo|* + E | XV|**2} < oo, (4.1)

SUP 17257 s/ {n"°E | Xol2 + E 1 X772} < oo (42)

n>v

i
|

745
Asymptotic Expansions 7

If E|[X]|"*?<co, then the functions t—¢~'4,(¢) and, if n>v,
te>171b, ,(2) are of the class S, and

sup [£718Y — 1714, ]|, n/E | X9l T2 < o0, (4.3)
sup [¢716Y, — 17, |l m/E | Xol* T2 < 0 (4.4)

Furthermore, if 7,(b)=0 for odd /, then
ay()=a,(1)="bY (1)=b,,(t)=0 (4.5)

for vodd v.

. A -1
We use the notation ||z~ u]|,,, instead of [v]; ., Wher; v(2) &t u(t).
Here, we investigate the following four asymptotic series:

W(2) €,

1SN

k -~
AV () AE@(G)+ Y ay(t)e’,  Apalt) 2Ee(G)+
R 1

v=

BY.()e, B t) REp (G)+ Y b, ()¢

1

<
—_

P
N K EM»

BY (1) £Eo,(G)+

v

Let us give some facts about the closeness of these asymptotic series.

Lemma 4.3. The asymptotic series ¢+ t“fizn(t) and, if n>k,
t— t‘lﬁz (¢) are of the class S. Moreover, for all s, meN, we have

sup [t71AY, =t BY | m/{E | Xl + ¥ E XV *?} <0 (46)

n>k

If E || X]/*** < oo, then the asymptotic series 7+ t~14,,,(¢) and, if n>k;
t—t"1B, ,(t) are of the class S and

sup |t =" = 17 Biell o /6" T < 0 (4.7)

n>k
Corollary 4.1. For all s, me N, and a>Q we have

i 3, ' Vik+3 ' .
sup [t 4}, — 17 BY s Dllom/{E I XvlI* + &7 'E | X"~ }<00> (4.8)

and, if E | X)|**3 < o0,
sup [[t7'BY , =t B ; Dl o/ {&" T 'E | Xol* 3} < o0, (4.9)

sup [t Ay — 1" Byp; Dl /e <0 . (410)




746 . Bentkus, Gétze, and Zitikis

In the following theorem we give asymptotic expansions of the
quantity

f(t) & Ep(SY)

Theorem 4.1. Asume that E || X]|2*° < co for some &
>0. Th
0>0, keN, and 5, me N, we have en for all

sup =y =747 ; Dy /{E | Xo|>+ &~ 'E IlXVllk+3}i< ©,  (411)

sup e~y —t7 By ; DIl ,u/{E | Xy|> + &*+E IXV]**+%} < 0 (4.12)
and, if E | X][**3 < oo,

sup ey —t7 Ay s D, /et < éO, (4.13)

sup [t — 7 By s Dl /6" < 00 ' (4.14)

Denote
f(t) £ Eg(S,)
Lemma 44. Let meN, and assﬁme that
36>0 E [X[|**°+E | X]| " < o
Then for all >0 and se N, we have

SUp || /) = fu3 Dlls.m/{e”" —°E | X|7" I{ |X] > 1} } < o0

5. PROOFS OF THE RESULTS: SOME PRELIMINARIES

In this section we preserve the notatlon of Sectlons 3 and 4, and
assume the assumptions of these sections hold.
Theorems 5.1-5.3 are the main results of the section.

Theorem 5.1. If 7,(b)=0 for odd I then for 6eR
hy,.... hye B we have ’ or UeR, all odd v, and

ED(h;)... D(h,) ¢ (6G)=0

Proof The function b ¢ (0b):B>C is e
ven. Therefore its
derivatives of odd orders are odd functlons So it is sufficient to show that
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Eu(G)=0 if a function u is odd. But #(G)=%(—G) and we have
Eu(G) = —Eu(—G) = —Eu(G) which completes the proof. O

To formulate other two theorems we need some notational conventions.
For a r.v. ZeB and a subset C< {1,.., n} we denote

Z(C)LeY Z, Z(@)A0

jecC

where Z,, Z,,... are independent copies of Z.
By # C we denote the number of elements in the set C.

Theorem 5.2. Let veN,, and let C<{l,.,n} be a set such that
inf,{ # C/n} >0. Denote
u(t) 2 ED(h;) ... D(h, )Goz(a'*'G(C))

Then for all s, me N, there exists a constant ¢ (which does not depend
on n) such that for all a, 4,,..., h,€ B we have

[ull o, < € Il oo NI (L+ Nl 777 7)

and, if v=1,

Hf_lulls,mSC WAl ... A, (1 + al#™+7" =)

Theorem 5.3. Let veN, and let E ||X|?>*°< oo for some 6>0. Let
C,, C,, C; be mutually disjoint subsets of the set {1,..,n} such that
inf,{ # C,/n} >0 for at least one j=1, 2, 3. Denote

u(t) 2ED(h,) ... D(h,) ¢ (a+G(Cy) + XV(Cy)+ X(C3))

If C;=(, then for all s, meN and o> 0 there exists a constant ¢ (which
‘does not depend on n) such that for all 4, Ay,... i, eB

l; Dlism<c il .. AL+ lal o7+ =) (5.1)

and, if veN,

It~ u; Dy m < e l1Bll o 1AL+ ] 77577 77) (52)
Furthermore, if the set Cs is not empty, then bounds in Eq. (5.1)-(5.2) hold
provided E | X|”"*7~" < oo. Recall that D = {z: ¢ <nP?ey

Before the proof of Theorems 5.2 and 5.3 we will do some preparatory
work.
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For a r.v. ZeB, nonnegative integers v <7 and w put

Y.(t,no,w)2 min min max
Ca{l,,0} ** I=1.,w+1

x min(E exp{itp! 7 (Z(Dy),... Z(D,))})?

where min,, is taken over all partitions Civ ---uC,,.=C of the set C,
a~nd min,,, is taken over all partitions D, U --- U D, = C, of the set C,; by
Z we denote a symmetrization of Z, that is, a random variable Z such that
L(Z)=2(Z, —Z,). It is easy to see that ¥,(t,n,uv, w)=1 whenever
v<p(w+1). :

Lemma 51. Let L(b)=L,(b,.,b), beB, be a continuous v-linear
form (which is not assumed to be symmetric). If

E|Z|["+supE [[eZ,+ --- +eZ,[| <c, < 0

then for an arbitrary subset C < {1,.., n}, #C=v, and w>v we have

[EL(a+Z(C) o(a+Z(C)| S c(1 + [la]]”) ¥ (2, n, v, w)

where ¢ depends on £(Z) only through the constant c;.

Before the proof of the lemma let us remind some known facts?
Symmetrization inequality: For all C < {1,.,n},

(b +Z(C)|” <Eexp{itp! n(Z(D,),... Z(D,))}  (53)

where D;u --- UD,=C is an arbitrary partition of C (see Gotze, GV
p=2, Yurinskii,®™ p>2, and, for instance, Bentkus eral® for further
references.)

A result of de Acosta™): For ¢>2 there exists a constant ¢ (depending
only on g) such that :

E

2 Z
j=1

q
<c<E

n q n q/2 n
5 Z, ) .+c<z E nzjuz) +e Y E|ZI0  (54)
j=1 j=1 ' Jj=1

‘whenever Z,,.., Z, are centered independent r.v. taking values in a Banach

space.

Proof of Lemma 5.1. We may assume v3> p(w+ 1) since otherwise
the lemma is trivial. Write Z(C)=Vy+V,+ --- + V.41, where V, &
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a+Z(Co) V; 2 Z(C)) for j=1,.,w+1, and Cou --- qu_,__lcC is a
partition of C. Then
EL(a+ Z(C)) 9.(a+Z(C)) =L EL(V},,... V) 0.(a+ Z(C))

V. at

where the sum is taken over all 0<jj,.., j,<w+ 1. Among V..., V},

least one of V,.., V., . is absent, say V. Then
[EL(a+Z(C)) o da+Z(O))l
 SCTEN 1) max | [Byea+Z(C)

and an application of Egs. (5.3) and (5.4) concludes the proof. O

The following corollary is a consequence of Lemma 5.1.

Corollary 5.1. Let m,veN,, and
E | Z|P"*7 " +supE [[eZ, + -+ +eZ,[ < ¢ (5.5)

Denote
u(t) 2 ED(h,) ... D(h,) o (a+ Z(C))

Then for all subsets C< {1,..,n}, #C=v, and all w= pm+ py —v we have '

(d/dey™ u(t)| < c |l ... M I (L+ a7 =) Pa (2, m, 0, w)

. o
and, if v>1,

[(@/dey™ {1 u()} < c [yl oo [ (L+ Nlal 77 =) ¥z (8, n, 0, W)

for all ze R, where ¢ depends on the distribution £(Z) only through the
constant c¢,. :

Proof. Write u(z“) as EL(a+ Z(C)) @,(a+ Z(C)) with an appropriate

L and apply Lemma 5.1. If ve N, then the function u(t) is divisible by £ axéi
an application of Lemma 5.1 completes the proof.

Lemma 5.2 is a simplified version of Theorem 5.6, Ch.2, from
Kruglov.“®)

Lemma 5.2. Let V), V,,..€B be independent copies of a r.v. VeB.

If
P{VI<l}=1  P{V;+- +V,[>2}<1/100.  (56)

m—

:
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then

supEexp{|V,+ --- +V,]/(10 + 104)} < 0

This lemma and well-known properties of Gaussian random variables
imply the following corollary.

Corollary 5.2. Let ¥ denote one of X, XV, G, X, X%, G" truncated at
a level Ag\/; (for example, in case of X we have V=XI{|X| <4}).
Then there exists a positive constant ¢; >0 such that for all R>0

sup P{[leV, + --- +eV, [ >R} <cexp{—c,R}
Furthermore, for all >0

SupE eV + --- +¢V,|"< o0

Lemma 53. Suppose that inf,{v/n} >0 and that sup, w < co. Then
for each se N, there exists a (sufficiently large) constant ¢ such that

sup ” ¥’G('a n, v, w)“s< S

nzc

IfE || X||**° < oo for some § >0, then for each ¢ >0 we have *

sup ” !{/X('a n, v, W), D“s< 0, sup “ 5UXV('a n, v, W), -D||s< ©

Proof. Let us first consider ¥,. Take a set C= {1,..,v} and let a
partition C; U --- U C,,,; = C be such that inf, . , If) < i1 {#C;/n}>0.
It is possible to find such a partition because of inf,{v/n} >0 and
sup,w<oo. Similarly, for all /=1,.,w+1 we may choose
Dyv ---uD,=C,so that '

inf inf{ #D./n: 1 <j<w+1,1<1<p} >0

nzc

Thus Z(G(D.)) = %(c,.G) for a constant ¢;,. such that inf, .  inf, . ;. >0,
and so the desirable estimate of ¥, reduces to

sup |7|¢ E exp{itn,(G,,... G,)} <00,  Yd>0

teR

which is assumed to hold.
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The estimation of ¥, and ¥ v is more comp}icated. In order to unify
the both cases, let W denote either X or X V. Obviously, we may a;sum::hn
and |#| to be sufficiently large. Arguing as in the case of ¥, we reduce the
estimation of ¥, to the estimation of

0< T & E exp{itn,(W(Dy),... W(D,))}

where a partition D; U --- uD,=F of a set Fc {1,.., n} is chosen so that
pL #D =---=#D,.
Let for 2 moment

f(-) & ten (W(Dy),.., W(D,_1), *)

Then
T=E(E exp{if(M)})* (57)

since W, W,, W,,.. are independent and identically distributed r.v.
(E, stands for the expectation with respect to W).
Let A>0 be an arbitrary real number and denote

Z & WI{| W] <4}
Since the r.v. W, Z are symmetric we have
E,, exp{if(W)} = Ey cos{f(W)} <Ey cos{/(2)} =Ep exp{#f(Z)}
and sd from Eq. (5.8) we get
T<E exp{itn,(W(D;),.., W(D,_1) Z(D,))}
Repeating the calculations, we arrive at
T<Eexp{itn,(Z(D,),... Z(D,))} (5.8)

Therefore, to complete the proof it remains to show that for all positive
(since Z is symmetric) t<n?? we have

T, 2 E exp{itn,(Z(D,),-. Z(D,))} <ct™* (5.9)

Choose u~nt®~%” and A=1t°n®, where small but positive constants
6>0 and a>0 are to be chosen later, and let us start with the proof of

T,<cTy+ct™,  vVi<n?~° (5.10)

where
T, & E exp{itn,(Z(D,),.. Z(D,_,), G(D,))}
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Denote
f() & ten,(Z(D,),., Z(Dy_1), *),
Lal-I_, LAI{|ZD,)I<R}, RE& Vu/nin®n
Then
T, =E{Ezcos(f(2))}* <E{E;Lcos(f(Z)}+E T (1-1) (511)
=1 .

T
By Corollary 5.2, there exists a positive constant ¢, such that
P
T T

We shall show now that
LE; cos{f(Z)} <exp{ct’s>R*»=14-%} exp{ —Es/%(G)2} (5.13)

If I,=0 then there is nothing to prove. Thus let I,=1 and so

p—1
£l <ete [T 1Z(D.)) < creRP~? (5.14)

=1

which implies | f(Z)| <4 | fI| <cteR?~' 4. ’If we choose a and 0 so that
a<o/(p*+2p),  6<20/(p*—p?) £5.15)
we shall get | f(Z)| <1 since Eq. (5.15) implies
A PuP " ¥ n <1

Using cos x<1—x%/4 Vx: |x| <1, we get
| IEzcos{f(Z)} <Io{1—-E,fX(Z)/4} (5.16)
Furthermore,

EzfA2)=Ewf*(W)=Eu AW W] > A} 22, fAW)— A~ || f |2
since E || X]|2*°< o0. If W=X, then

Ewf2(W)=Exf*(X)=Esf*G)

If W=XV, then

Ey fAW)=Exf2X)=Ex fAX) I{| X > /n} 2B f3(G) —cA~? | f||

-1 p—1
; E(1-1)< ; P{Z(D ) >R} <cexp{—c,In’n}<ct™  (5.12)

" Theorem 5.2.
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since 4 < \/r; Using the bounds just obtained and Eq. (5.16), we. get
LE cos{f(2)} <Io{1 ~EcfXG)2+c | f I 47%}

which taken together with Eq. (5.14) completes the proof of Eq. (5.13).
From Egs. (5.11)~(5.13) we get Eq. (5.10) if ur’e®R*?~P4~°<c. But
the last inequality holds because of Eq. (5.15). Thus Eg. (5.10) is proved.
Now let us prove Eq.(5.9). Repeating the calculations leading to
Eq. (5.10), we can replace the sums Z(D,),s Z(D,) by G(D1),s G(D,),
and for t<n??~° we get

Ty<cT, +et™ (5.17)
where

T,.. 2 Eexp{itn,(G(D;),.... G(D,))} SEexp{ict®’n,(G,..., G,)}

p

because of Z(G(D.))=L(/u/nG) and pu~ nt®=?7 Therefore the condi-
tion in Egq. (3.2) and 6>0 ensure T, <ct™“ This proves Eq. (59) and

the lemma as well. O

Proof of Theorems 5.2 and 5.3. These theorems are easy consequen-
ces of Corollary 5.1 and Lemma 5.3. O

6. PROOFS OF THE RESULTS OF SECTION 4

Proof of Lemma 4.1. The result is a simple consequence of
O

Lemima 6.1. If 2<o<j, then there exists a constant ¢ (depending

only on «, B, and Z(X)) such that »
E [ X]*<c{E [X]F}e26-2,  EXV|*<c{E X"}

Furthermore, if P{X=0} <1, then |
1<c{n®* 2K | Xo|>+E [ XV]"}

Proof. The first two inequalities follow from the Holder inequality.
The last inequality is obvious. O

Proof of Lemma 4.2. Let us prove Eq. (4.1). Fix natural nlimbe.rs
&, =3,.., «;=>3 such that la(j)| =2+ i (look at the definition of 2* in
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Lemma 3.1) and B,>2,.., §,>2 such that |S(])| =s—i—2(j—r) (look at
the definition of 3 ** in Lemma 3.1). Denote

u(t) 2 E{D*(XY)~D*(G)} --- {D*(XY) — D%(G,)}
X‘Dﬂl(Gj+1) : "Dﬁj(qu-/) ®(G)
By Theorem 5.2,

!

It~ Ul m<e T[T {E XY= +E |G]|*} [T {E G|}
1

=1 u=

and so, by Lemma 6.1,
It~ ullym < c{n”?E | Xs[*+E | X7|"+2}

The proof of Eq. (4.2) is similar to that of Eq. (4.1); thus we will omit
it.
Let us prove Eq. (4.4). Fix natural numbers «, > 3,..., o; 2 3 such that

l(/)| =2j+ v (look at the definition of 3 %** just after the Eq. (3.9)), and
denote

J

1) AE ( {D*(X,)— D*(G.)}
T=1

- 11 {D“r(XZ)—D%(G»}) oG JT=m)
=1

Applying the identity z,...z;,—y, ... V=221 2o (2= Vo) Yarr oo ¥
with z. & D*(X,)—D*(G,), y, & D*(XY)—D*(G,) and noting that
D*(X.)— D*(X7)=D*(X ), we have from Eq. (5.2) that

I~ ()] m< e i EjlXv|* IT {E1XV|*+E |G| *} (6.1)

1 r#£k

Lemma 6.1 and a simple calculation show that the right-hand side of

Eq. (6.1) does not exceed cE | Xy|**2 which completes the proof of
Eq. (4.4).

To prove Eq. (4.5), use Theorem 3.1; the details are trivial. O

Proof of Lemma 4.3. Denote

D A ﬁ {D*(eXY)~ D*(sG,)}

i=1

T

i
i
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A simple rearrangement and the definition of the Stirling numbers of the
first kind imply

A% (0)= i Z un= i s(, 1) IV +2(j— 1) Kk)

y=1 j=1 r=1

x Y ¥** {a( )1}~ ED*) l; z

We have used the following notations: the sum > *** is defined just after
the Eq. (3.7);

7o £ ¢/G),
2, & (=133 jorr Ry} T DGy, ) - DGy ) @A(G),  [eN
the sum >/ is taken over all y;>2,.., 7,>2 such that |y())]<§ £
k—v—2(j—r). Let us note that z,=0 for all />[9/2]+1.
On the other hand, we have
BY (5)=J,(t)+ (1) (62)
where
k Vo1 i )
ARG Y = Y. s, NIv+2(j-—r)=k)
v=1 j=1J" r=1
x Y TIJTED“U’(G« /1 — j/n)
a()!
and
k v 1 j o
LOLAY Y53 stnv+2(-r<k)
v=1 j=1J"r=1
x Y ﬁED“m(G.. /1— j/n)
a(j)!
Theorem 5.2 and Lemma 6.1 show that
o < O{E [ Xol 4+ 64T E [ XT3 (63)

Thus our task is to show that the same bound holds for ||t ~* 4} , — ™ sl s m-
Denote

wo £ @ (G/1—j/n);
w8 (= 1) Y o (DT ID(Gy ) - DG n) @G /1= /m)
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/e N. Since Wo—272021= 252 o(w,—2z,~—w,, ) (let us note that z;=0 for
all 1> [9/2]+1) we get

e Ay, — = Nl < ¥ K,
=0

where
k v 1 J ) )
K2|Y Y =3 stnIo+2(—r)<k)
v=1 j=1J'r=1
ek 1 i
— _'ED*\ —
XZ 2())! D (w;—z, Wii1)

(Note that K,=0 for all I>[8/2]+1.) Thus, if we show that for all
IS[892]+1

117 Kl o < ¢{E | Xoll> + &4+ 1E | X7 4+3) (6.4)

then Eq. (4.6) will be proved.

To prove Eq. (6.4), let us proceed in the following way. In the defini-
tion of z, replace ¢,(G) by G /1=jn+G, \/j/—n). Then use the
Taylor formula to estimate the quantity w;—z;,—w,,, and replace the first
summand in the Taylor expansion by 0. All these calculations are possible
because of the mathematical expectation E in the definition of K, and the
fact that X is centered. Finally, we have

|(d/dty” {1 K} < - sup |(d/dt)y™ {r~'E... DS =" 0+1(G, )
6e(0,1)

X (Pz(G v 1-j/n'i‘eGj+1+1 ]/n)}l

Now it remains to use Theorem 5.3 and Lemma 6.1 to get Eq. (6.4) proved.
This completes the proof of Eq. (4.6).

The proof of Eq. (4.8) is similar to that of Eq. (4.6); thus we shall omit
it.

Bound Eq. (4.7) is a elementary consequence of (4.4). |

Proof of Corollary 4.1. I n>k, then the corollary is a
straightforward consequence of Lemma 4.3. In case n<k go along the

proof of Lemma 4.3 and instead of using Theorem 4.2 use trivial bounds for
characteristic functions. O

Proof of Theorem 4.1. Let us first prove Eq. (’4.13). Denote:

%/ the sum taken over all integer multiindexes r(j)=(ry,.., ;) such
that I<r; < - <r, <

i 757
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Zz’f the sum taken over all integer multiindexes y(j) = (y1,.-» 7,) such

that 3<y; <k+2and 3<y, <k+2t1—y;— - —Vo-1s for t=2,..., J.
Let us note that 3%/ ...=0 whenever j>n+1, and 32/, =0 whenever
jzk+1L y

Also, define

J
D1 & [] {D7(EXT)~D"(G,)},
=1
Uop é Eq’t(G({lna n})) =E¢t(G)’
u, 8 T Y2 5N EDI 0 G({ L A\ {1 1)), JEN,

2 é qut(XV({lw-» n}))>
b, &Y Y ()N EDIR o), jeN,
where
w2 G({1,m, ]\ {7150 ra D)+ X ({Fjs1s 1))

Since v, ., =0, we get

' k
Eo(SY)=vo=tg+ -+ +up+ D, (U;—%—0;11) (6.5)
=0

Jj=

Notice that

= (”) T2 ()} ED0.(G /T —Jjin)
J

and

Therefore,
U+ -+ +u=BY (1)
and so, look at Eq. (6.5),
|(d/dty" {1~ *Eq (ST)— 17 B} (1)} < max |(d/dt)™{t = (v;— u;— V;41) }]
<j<

Put A
: x & EXV y= Sij-H

kjs1?
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We have

o—w=Y""" X 0N} T DI 0w+ x) — 0w+ )} (66)

If we apply the Taylor formula in Eq. (6.6), we shall get

1L,j+1

V= =0+, 22’1{))(]-)!}—1{]1_'_}24_]3}

where

J1 SEDIB{D(x)—D(»)} ¢ w)
Ty & 27'EDI{DX(x) — DX(y)} @.(w)
J3s 2 E(1—U)° DII{D%(x) @ (w+ Ux) = D*(y) @ (w + Uy)}

0 2 k+2j— |y(j)l. (As usually, U stands for a r.v. uniformly distributed on
(0, 1).) Note that

D(x)=D(y)= =D(e(Xy,,)v),  D*(x)—D*y)= —D*(e(Xy,,)v)

since the means (and covariances) of X and Y are equal. Therefore, it
follows from Theorem 5.3 and Lemma 6.1 that

187 0=ty = 074 D sum < {E |1 X5l + 5B X7)|* 43}

which concludes the proof of bound Eq. (4.13).

Bound Eq.(4.12) is a consequence of Egs. (4.13) and (4.9). Bound
Eq. (4.15) follows from Egs. (4.13) and (4.10). Bound Eq. (4.14) is a
consequence of Egs. (4.15) and (4.11). O

Proof of Lemma 4.4. Put

Vké8X1+ et +8Xk_1+8XZ+1+ ""+8XZ

Then

JAORIMO =z EI{[sX] > 1} {o.(Vy+2X) — 0.V}
and so _

1 fu= £ Dl o< z (16X1 > 13 {lg3 Dl + 1945 DI}
where

ui(t) 2 Epo (Vi +a), vi(t) R E o (Vi) aleX
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(E V‘ stands for the expectation with respect to V). Applying Theorem 5.3,
we get

| fo=f 3 Dllom < ce ™ P{[leX]| 2 1} + ce” ~°E | Xv | " I{]leX] > 1}

-

and the lemma is proved. O

7. PROOF OF THE RESULTS OF SECTION 3

Let us remind that 4, ,={beB: n(b+a)<x} for xeR and a€B,

and o, = {4, acB}.
Put & & {sZ:xeR} and for all §cR\{0} define thé set function

Dy A P(O'A): o >R

Clearly, if A=4, ,, then
Do(4)=P{n(0G+a)<x}

Lemma 7.1. The mesure &, defined on « is infinitely many times
differentiable. Furthermore, the distribution function x> u(x,a) 2
®Dy(A, ) bas the density of the class S and for all me Ny, seN

sup [[u(-, @)l /(1 + [lal ™) < 0

where sup is taken over all aeB. If veN and u(x a) a
D(h,)...D(h,) u(x, a), then for all m, se N,

Sup [9(+, @)l o/ { Al -+~ 1,1 (L + lla]l 7" =7 ")} < o0

where sup is taken over all aeB, A,,..., hkeB\{O}.

Proof. The lemma is a consequence of Theorem 5.2 and well-
known facts concerning mﬁnltely differentiable and rapidly decreasing
functions. O

Proof of Lemma 3.2. The lemma is a consequence of Lemma 7.1 and
well-known properties of functions of the class S. |

Proof of Lemmas 3.3 and 3.4. The lemmas follow from Lemma 4.2
and well-known properties of functions of the class S. g

Proof of Lemma 3.5. The lemma is a consequence of Lemma 4.3-and
well-known properties of functions of the class S. ; O

)
!
i
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Proof of Theorem 3.3. Let us ﬁrst prove Eq (3. 10) By Lemmas 3.2
and 3.4,

sup{[l 47 llo+ 147 lm1} < 0
Therefore, Lemma 2.3 by Bentkus and Zalesskii® imply that, for every

A>0 and every distribution function 4 with m+ 1 finite moments, the
following smoothing inequality holds:

IP{n(S,)< } =AY Im<cd+n=4) (7.1)
where
4L |P{n(S,)< -} * Ap—AY, % Azl,,

and 4,(x) & A(Tx), T & n~*. Furthermore, one can choose 4 so that the
characteristic function A(z)= [ exp{itx} A(dx) satisfy

AeCml, AM)=0  for |f{>1

By the choice of 4 we have the functions P{n(S,)< -}« Arand A} , = A,
to be infinitely differentiable.

_ Let 1 be the characteristic function of A, (we have Ar(x)=A(Tx))
and denote

W) & [ exp(—is){Eo(S,) — A1)} Ar(1) di,

|’|$
Vo & Ws)ds, V.| Wis)ds
(—0,x) (x,0) -
A_ 2sup max [x'V_(x)|, 4, &sup max [x'V,(x)]
x<0 /I=0,m xz=0 /I=0,m
Then
A<d_+4, (7.2)

and, by Egs. (7.1) and (7.2), bound Eq. (3.10) follows from the followmg
estimate: .

max{4_, 4, }<c{I,+E|Xg|>+&7E | X7+

+em XV I{eX] > 1)) (73)

We shall prove Eq. (7.3) for- 4 _ only since 4, can be estimated similarly.

7
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We have
A_<Ady+ sup max [x'V_(x)|

xg< =1 /I=0,m

where .

42| [Ep(S,)— AL, (1) d
<7
Let us estimate 4,. Denoting T £ n7>~° we have

40<| IEg(S,)—Eo S dt

|21 < To

+[  EedSH-AL ()l di+ 1+ AT, (1) dt
1l < T '

To<i|<T

Using Lemma 4.4, bound Egs. (4.12), and Lemmas 4.1 and 4.2, we get that

4, does not exceed the right-hand side of Eq. (7.3). Therefore it remains to
verify that for x< —1 and /=0, m the quantity [x'V_(x)| does not exceed
the right-hand side of Eq. (7.3).

Replacing exp{—ist} by (i/s)'(d/dt) exp{—ist} and integrating by

parts, we get
I

lle ( )= xlJ‘(;w’x)s_l'Jltl<Texp(—lSl‘) <:l7it>

X ({E@S,) = AL ()} Ar(2)) dt ds

(let us remind that A,(¢)=0 for |z] > T). Thus

IX'V_(x)| <4, +d,+ 45+ 4,+ 45

where |
4,8 x’j sQ,(s)ds|, =15,
(=o0,x)
0us) & [ exp{~ist}dlar) ({Eo/(S,)— AT} 4r(0) d
0:(s) & [  exp{~ist}(d/ar) ({E.(S,) = AL, (1)} 1r(1)

0x(5) & [ exp{~ist}(ddr) ({BoS) = AL(0)}(hr(e) = 44e))

<
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0.(s) & Jl 2, xp{=ist}d/an) ({Bo.(S,)~Eo.(ST)} A1),
04(s) & Jm« exp{ —ist}(d/dt)! ({Ep,(SY)— AT (1)} (1)) dt

We shall prove that

AI<C{In+ElleH2+8"“E 1 XV)*+3} (74)
max{d,, 4;} <c{E | Xy|*+&*+'E | XV|*+3

+e”" 7 2E | X VI[P I{ e X]| > 1}}, (7.5)

4, <ce” R XYV PI{ [leX] > 1}, | (7.6)

As<c{E | Xo|?>+ & 'E | XV]**3} (7.7)

which is what we need to complete the proof of Eq. (3.10).
Let us prove Eq. (7.4). Changing the order of integration and noting

<]

(—c0,x)

that

s~lexp{—ist} ds| <2/|1| (7.8)

we get

4,<cl,+ ¢ max (d/dt)* AY (1) dt

0<#<MJ.Tos|r|<r »

An application of Lemmas 4.1 and 4.2 completes the proof of Eq. (7.4).
Let us prove Eq. (7.5) for 4,. Inequality Eq. (7.8) implies

4,<c¢ max f
OspusmYig< Ty

I(d/dt)* {E¢ (S,) —E@(S})}| dt

4+ ¢ max f
OspsmYigid< Ty

\(d/dt)* {Ep(ST)—AY (1)}] dt

and whence, using Lemma 4.4 and bound Eq. (4.1 y
e q. (4. 2){ We get Eq. (7.5)

Let us show that Eq. (7.5) holds for 4. We have

d;<c max d(u)
Osus!

Asymptotic Expansions 763

where

#[ s J——

—co HES!

A(u) &

x {EQ(S,) — AL () }(d/dr) =+ {Xr(t) = A1)} dt

‘ We shall show that each of 4(x), u=0,..., ], does not exceed the right-hand

| side of Eq. (7.6).

| Let us start with 4(I). By |Ar(¢)—A(?)| < 1] {Ixl dA(x)<c and
bound Eq. (7.8), we have that 4(/), does not exceed

| Iy {Eo (S,) ~Eo ST} di
<1

+ch<1 (d/dt) {Eo(SY)— AT (1)} dt

This bound, Lemma 4.4 and bound Eq.(4.12) conclude the estimation
of 4(1). _ ‘

Let us estimate A(x), 4 =0,..., /— 1. Replacing the quantity exp{ —ist}
by (i/s)(d/dt) exp{ —ist}, we get that 4(u) does not exceed

sup
seR

j (d/dt) exp{ — st }(d/dt)*
HEP

x {E@(S,)— AY ()} (d/dt)'~* {Ar(t) = A(D)} dt

Integrating by parts and noting that | |x|”*!dA(x)<oo (let us remind
that p+ 1 <m), we have ‘
Ap)< sup max |(d/di)* {Ep(S,)— AL (D}
[fl<1 Osu<sm :
and whence, by Lemma 4.4 and bound Eq. (4.12), the desirable bound for
A(u) follows.

Let us prove Eq. (7.6). Integrating by parts and using the fact that 4
and its derivatives vanish outside the interval (—1, 1), we obtain

a=|x[ [ exp{—ist}{Ep/S,)~E ST} M1 dtds
(—o0,x) Y|t} €1

By the inversion formula,

Ay=2m x| |P{n(S,) < -} * A(x) = P{n(S)) < -} * Ax)|
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Consequently, we have

d,<elxl | P{a(S,)<x—y}—P{n(ST) <x— y} dA(y)

Scf

xe

. xl” (1 + |x = yI™) dA(y) &7 ?E | X V|| *" I{|eX] > 1} (7.9)

where the last inequality is a consequence of the bound (see Remark 7.2 for
some information about it) '

IP{n(S,) < -} —P{n(SY)< -} <ce™2E | X[ I{|eX]| > 1} (7.10)

Bound Eq. (7.9) clearly completes the proof of Eq. (7.6) because of
[ 1x]™ dA(x) < co.

Let us prove Eq.(7.7). First, replace exp{—ist} by (i/s)(d/dt)
exp{ —ist}. Then use integration by parts (since 4 has m + 1 moments we
are allowed to do-it). An application of bound Eq. (4.12) completes the
proof of Eq. (7.7) and of Eq. (3.10) as well.

Let us now show that Eq. (3.11) holds. The proof of this bound is
much simpler than that of Eq. (3.10) since in this case we are able to use
the Fourier inversion formula for integrable functions. Namely, we get

sup(L+ [x[™) [(d/dx)* {P{n(S,) <x} — 4} ,(x)}|

xeR

<c max  max | |1)°|(d/de)* {Bo,(S,)~ AL(0)}| di

O0<o<s O<su<sm

<cJ,+c max max j 1217 | (d/dey* AT (1)] dt
To< |t )

O0<o<s Osu<sm
/
+c¢ max max j [21° [(d/dty* {E@(S,)—E@,(SY)}| dt
. To< |t

0<o<s O<u<m

+e max  max | |7 |(d/dr)* {Eg(ST)~ AL, (1)} dr
0<o<s Osusm Iy ’

An application of Lemmas 4.1, 4.2, and 4.4; and bound by Eq. (4.12) in the

right-hand side of the last inequality completes the proof of Eq. (3.11). O

Remark 7.2. A more general estimate than Eq.(7.10) has been
proved by Sazonov ez al.,'® but under the additional assumption X e CLT.
One can adapt their proof to our setting. We give the following proof of
Eq. (7.10) because it is considerably simplier (but less general) than that

-
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of Sazonov eral® Denote V; & e(XY+ - + XY +X; 1+ - +X,).
Then

P{n(S,)>x} —P{n(ST)>x}|
— [P{n(S,) sgn x> |x|} — P{n(ST) sgn x> ||}

< i |P{n(V,+eX;)sgn x > x|} —P{n(V;+eX})sgnx>|x|}|
j=1

This bound implies

P ((S,) <x} ~P{r(ST)<x}| < Y. (C+D))
j=1

where
C; & P{l|eX;| > 1} P{|n(V))| > xi},
D, £ EX{[leX}l| > 1} X{In(V;+ X))l > |x}

The sum Y, C; does not exceed the right-hand side of Eq. (7.9); use bound
of Eq. (5.4) to show it. The estimation of 3. D; is similar; let us note that

D, < x|~ EX{lsX)| > 1} [n(V; +¢X;)|"

and an application of Eq. (5.4) concludes the proof of Eq. (7.10). ]
Proof of Theorem 3.4. The theorem follows from Theorem 3.3 and
Lemma 3.3. O
. Proof of Theorem 3.5. The theorem is a consequence of Theorem 3.4‘
and Lemma 3.4. ‘ O
Proof of Theorem 3.2. The theorem follows from Theorem 3.3 and
Lemma 3.4. O

- Proof of Theorem 3.1. The theorem follows from Theorem 32 O

Proof of Lemma 3.1. The lemma is a consequence of asymptotic
expansions for characteristic functions given in Section 4 and properties of
functions of the class S.

8. PROOF OF RESULTS OF SECTION 2

In order to get asymptotic expansions for the distribution functions pf
w-statistics we are going to apply asymptotic expansions in the CLT in
Banach spaces, namely, ‘Theorems 3.5 and 3.1.
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As it was noted in Section 2, we may write
P{of(g)<x}=P{|S,|”<x}

where ||-|| is the norm of the Banach space B = L,(g). Therefore it remains
to verify that the r.v. X(z) £ I{U<t} —¢ and the Brownian bridge G £ Br
as the limiting Gaussian variable satisfy the conditions imposed in
Section 3. Verification of the moment conditions of Egs. (2.10) and (2.11)
is quite simple. Pisier and Zinn*" have proved Eq.(2.12) (for supple-
mentary information see, for instance, Norvaifa and Zitikis®¥). The
Brownian bridge satisfies condition of Eq. (3.2) (see Lemma 8.4). The only
serious problem which is left to solve is to verify the Cramér type condi-
tions, that is, to estimate the characteristic function or, in other words, to
estimate 7, and J,. This is the topic of the section.

While estimating the characteristic function, we use a representation
(see Lemma 8.1) of w-statistic as a linear combination of functions of order
statistics. Similar approach was used by Anderson and Darling,®
Martynov,*” Csérgé and Stach6,®*) Mason,® Bentkus and Zitikis, *
and Zitikis, ®%°D etc. '

The proof of Theorem 2.5 is mainly based on ideas used by
van Zwet,®” who investigated characteristic functions of L-statistics (see
also Bickel ez al,"* Helmers,“) Gétze and van Zwet,®® etc.). This proof
is more general than that used by Zitikis. ®5°% ,

The proof of Theorem 2.6 comes back to the paper by Bentkus and
Zitikis'9; for further information see Zitikis.®" Theorem 2.4 is an
immediate consequence of Theorem 2.6 and well-known facts of the
Fourier analysis.

Lemma 8.1. For each u=1,.,n the following representation of
w?(q) holds: ‘

wa)= Y 0u(U)+4, (8.1)

j=1

where we have denoted

p

Q;,(u) & n?”? Ll {(ﬁ + H,(x) —x)

_ <ﬂ+ H,(x) ;x>p} o(x) g(w) dx

n
—nPP? f: {<£+ H,(x)— x)p

(B =) f o) gy

.

e i 767
Asymptotic Expansions

4, & n?? r (H ,(x)—x)? v(x) g(x) dx
0

P f 1 <ﬁ+ H,(x) —x>p 90x) 4(x) dx

0\
and
-1
o 2’S () —apri
1=0
2p—1 _
B(x) & pz (2]7[ 1>x'(1—x)2"_1"
I=p
1 n
I=p+1

Proof. Denote Uy, 20 and U, .., £ 1. Then

w?=n?? i (j—1+Hﬂ(x)—x>p q(x) dx

j=1"Wj-r:mUjty) n

To complete the proof, write

st 2p—1 ! 2p—1-1
= —x)*" 1= (1_x) P
g(x)=g(x)(x+1—x) g(x) i§=0 ( ) >x

and then replace the integral {(y,_,., v DY So.0m = o. g i 12D, anEcll
by fwyorwny = Jwpmn ISP =1

" Lemma 8.2. Forall s=0
E{wl(q)} <o, VnEN%»M(ps)< o0

Pr,oof.' The implication = is obvious. The progf of the reverse
implication is based on the representation of Eq. (8.1) with u=n. d

Proof of Theorem 2.5. By Lemma 8.2, E{w/(q)}* <0, and we have
|(d/dt)* E exp{itw?(q)} = [E{w2(q)}* exp{itw}(q)}|

Since F,(t)—¢ is the sum of r.v. n™'Z(t),., n“Zf,(t), where ﬁ(t):
I{U;< 1} —t, we may represent {®7(g)}" as a sum having at most n* sum-
" mands so that each summand depends on at most ps of random variables
Z (), Z,(2). Rearranging iid. rv. Uy, U, and using the fact that
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M(ps)< oo, we shall get the theorem proved if we show that there exists
a constant ¢ such that

P{ sup [Ey .y, exp{itwl(g)}l<cn=4}=1 (8.2)
17 = nhl2=1+6
with 4 & n— ps.. -
Let us use the representation of Lemma 8.1. Since A . 1s finite almost
surely,

u
Ev...u, exp{i02(g)} = | Eu, o, exp {iz 5 Q;(U;:u)}
j=1

Jj=

where we have denoted Q; & Q;, for notational simplicity. Henceforth, let
us fix U, y,..., U, and let Uf,1< --- < U} be the ordered values of them.
Without loss of generality we may assume 0 < Uko1< - <U¥<1. The
points U*, ;< -.- < U¥* divide the interval (0, 1/) into ps+ 1 subintervals.
Therefore, the same points divide the interval (a, b) = (0, 1) from the condi-
tion of the theorem into at most ps + 1 subintervals. Among these subinter-
vals there is at least one, say J=(a, §), such that B—oa=(b—a)/(ps+1).
Let us note that by the assumption of the theorem there exist numbers
R>0 and L such that

gx)=R,  |¢'(x)I<L,  Vxe(wp) (8.3)

Without loss of generality we may assume that R— 10(b—a)L > R)2.
Indeed, we may replace (a, b) by any other nonempty subinterval. _
The remaining part of the proof is similar to the proof of Theorem 4.1
from van Zwet.®? Therefore we shall only sketch it. Denote N &
[(B—a)u/(3r)], where a number re N is to be chosen later. Without loss
of generality we assume that # is sufficiently large, > ¢,. Clearly, we may
choose ¢, so that N>1 and there exist numbers k..., k.. €N such that

at B-ad<kifi, kyor—k,=N+1, v=1,.r, kpor/u<B—(B—a)/4

Repeating the proof of Eq. (4.10) from van Zwet®? we get that Eq. (8.2)
follows from ' ‘

P{ sup  sup []

|2] = nPl2=1+38 y=1

N

E exp {z‘z S Qi (ut (5301 —5.) UJ:N>}
. j=1

Jj=

X

< cn-/‘} =1 (84)
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Whére sup, is taken over all s;,..., 5,1 € (0, 1) such that
a<Sy, Sv+1_Sv>(ﬂ_a)/(4r)a V=1a---,”, ‘?r+1<ﬁ

istics f U,,..., Uy. Furthermore,
and U,.xy< --- < Uy.y are the order statistics o Uysees U :
choosirllgév r sufficiently large, we reduce Eq. (8.4) to (for more details see the
proof of Lemma 4.2 in van Zwet®?)

P{ sup sup sup |Eexp{ith(Uy.n)}|<cn %} =1 (8.5)

|t|?np/2—1+6 * *%
where sup,, is taken over all V=1, and Uy, Upr_15 Wars1see
wy€ (0, 1) such that
M=1 N .
Y ov+1+ Y (1—w)=>N/4 (8.6)
j=1 j=M+1

we have denoted M £ [N/2] and

N

h(u) & 3 Qjin(a;+bu)

j=1

A J5 for j=1,., M,
4 = {sv+(sv+1—sv), - for j=M+1,.,N,

(sv'+1—sv)vj, for j=1,.,M—1,
by & <s,1—Sys for j=M,
(Sy41=5)1=w), for j=M+1.,N
Let us examine properties of the function . Since a;+bue (o, B) fo;
ue (0, 1),

h(u)= g: n??b;q(a;+b;u) f(u)
j=1 .
where »
f) & (a;+bu—h,—(j+k,—1)/n)? —(a;+bu—h,— (j+k,)/n)?
Let us show that there exists a positive constant ¢ >0 such that
h"(u)=cn®>=??  Yue(0,1) (8.7)
Indeed,
n??b.q(a;+ b;u) f'(u)

j=1 j=1

N N
h'(w) = — Y, b} 1q'(a;+ bu)l | f(w)| + Z:
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Therefore
W)= —A+T
where

42 g n?7 ' @+ bu)l 45 Ay & | f(w)| —10(8 —«) f'(u)/b;,

j=1

M=

ra

J

n?2b;{q(a;+bu) — 108 — o) |q' (a,+ b,u)| } f'(u)

I

1

Let us verify that 4,<0. Denote x 2 g, _ .
d £ 1/(2n). Then ’ x & atbu—h,—(j+k,—1/2)/n,

A= (x+d)? — (x— )| = 10p(B— o) {(x + d)"~* — (x— )~}

L (p-1 2-2 2
< 3 (57,) W @ w1 1) - 105 -a)

Therefore, 4;<0 because of |x|/(2/—1)< x| <5(8— | "
and using thé bound /SIISSE = Thus =1

f'(u)=2pb; 3,

=0

pi2—1
-1
<p21 ) X > 0pbyd?

we get
N
R'(u)=c ), n?Pbinr=1
J=1

This bound coupled with Eq. (8.6) completes the proof of Eq. (8.7).
It follox{vs from Eq. (8.7) that there exists a unique point uye [0, 1]
such that |A'(u)| = |h'(uy)| for all ue [0, 1]. Therefore ' T

7)) = B (@) = |1 (uo)] = |1 () — B (o) | = | B () (u— uo)|

W) 2 can® =72 Yue[0,1\[uo— 4 uo+4], VA>0 (83) .

Now we shall prove Eq. (8.5) (compare with the proof of Lemma 4.1

fi ) (92) i
;:tm van Zwet.” Let b,,.y be the density of Uys.n. Then for all 1>0 we

|E exp{ith(Usy. )}

<24 sup byn(u)+
ue(0,1)

exp{ith(u)} bye. (u) du|

f(o,l)\[uo—l,uo+l]

m
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Integrating by parts, using Eq. (8.3) and the bound Sup,c (o,1) bar:n () <
n'? (see bound Eq. (4.1) in van Zwet®?), we get

|E exp{ith(U,s.n)}| < '+ en??732/(11] 1) < c{n??= 4|8}

choose A=n?*=1[t]~* to get the last inequality above. This completes
the proof of the theorem. ' ' O

Proof of Theorem 2.6. By Lemma 8.1 (with y £ nand ©; 2 Q,,) and
Lemma 8.2, in order to prove the theorem it is sufficient to show

<en |15 (89)

BQN(D,) - QU exp it . 0,01}

J

uniformly over all Kq,..., k, € Ng such that ko+ --- +k,=s.

We are going to prove Eq. (8.9) using recursion. But first let us note
that without loss of generality we may assume |¢| > (2n)” since otherwise
the result of the theorem follows from the obvious estimate
E{w2(¢g)}° < cn® (which is a consequence, for example, of Lemma 8.1).

For ze [0, 1] denote

=

021 g 8] @ dn  j=len

Z

where
D;(x) £ ¢;(x) Qj.‘f(x)_exp{itQj(x)}

It is easy to see that |po(0)| is equal to the left-hand side of Eq. (8.9).
Therefore Eq. (8.9) follows from ,

I@oll o < en {2]*~ "7 (8.10)

where [|@]l o £ supo<.<1 @) Obviously, Eq.(8.10) follows (when
m=0) from ‘

< c(fl—m)/ZnP(km+1+ <-4 k) +3n—3m ‘tlkm+l+ s+ ky— (n—m)fp (811)

@mll 0

m=0,..., n. Let us show that Eq. (8.11) is a consequence of

loj—ile<c 2 | @oll o P00 7o FhmE3 gl e hmmmm D (8.12)

m=j .
for all j=n,.., 1. Indeed, if m=n, then Eq.(8.11) reduces to the bound
l@alle <1 which is fulfilled by the definition of ¢,. Assume now that
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Eq. (8.11) is fulfilled for m = j,..., n. Then in order to prove Eq. (8.11) with
m=j—1 use Eq. (8.12).

So it remains to prove Eq. (8.12) for all j=1,.., n.

Let xo,.., x..;€[0,1] be taken from the definition of the class
ACM,(0,1). Denote A2~ and Iet A(A) & Ugen{xe[0,1]:
|x—a| <A} be the A-neighborhood of the set

4 & {xq,.. X1 bV {(k+1-1)/2n): 1 <k<iI<n}
We have

lo;—1(2)| <4, + 4, (8.13)
where
44 O (x)dx, 4,4 | ,(x) dx
(z1) N A(2) (2 \A(2)
Let us show that _
141l < gl o nP+2 |z 5= Ve (8.14)

If s=0, then Eq.(8.14) follows immediately from mes{4(1)}<
2/(n*+t+1). Therefore let s> 1. Using the Hélder inequality we get

1411 <19,ll e {f( y 1Q;(x)[* dx} {mes{A(4)})}1-kF

and Egq.(8.14) follows easily from the definition of Q;, the fact that
- M(ps)< oo and mes{A(A)} <2i(n*+7+1). . N

In view of Eq. (8.14) it remains to show that |4,] does not exceed the
right-hand side of Eq. (8.12). Clearly, there are at most cn? (c is a positive
constant) disjoint subintervals 1,,..., I,, w<cn® such that (z, 1\4(1)=
Iy --- UI,. Therefore, in order to get the desirable estimate of A 5, it 18
sufficient to show that for all Ie1,,..., I,, the quantity ‘

454 U ®,(x) dx

does not exceed the right-hand side of Eq. (8.12) divided by n>
For 1<j<I<n, denote = ’ :

1 : -1 : .
0,0 & [ TT 06 [T (i) + - + i)}~

[ = j =
xexp i 3 0,9} 0:(x) s

‘(Notice that 4,=|¥(j, j)|.)
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‘Let us show that
| !
Y Qu(x)|=nP? AP 7'R,  Vxel (8.15)
m=j )

where R 2 inf, < .<; g(x). (In particular, bound Eq. (8.15) shows that the
quantity ¥(j, /) is well-defined).
We have

leQin(x)=n”/2f(X)(J(X), f(x) & (x—(j—1)n)? — (x—1I/n)? (8.16)

‘It is e“aéhy to verify that f is strictly monotone on (0, 1) and that the point
zo & (I+j—1)/(2n) is unique satisfying f(z4)=0. Terefore

inf | f(x)] =1 f(zo— W =277 /n (8.17) -
xel

i . (8.15).
Egs. (8.16) and (8.17) and g(x)> R imply Eq ( .
NOWL&:";1 u(s est)imate |¥(j, 1) from the previous example. Replacing
exp{it >}, _; Om(x)} in the definition of ¥(j, ) by

{it mﬁ: | Qm(x)}—l (d)dx) exp {it méj Qm(x)}

and then integrating by parts, we get

|20, DI < c(da+45) ol o/ 121 + 120, T+ 1)1/ 12] (8.18)

where ¥(j,n+1) 20,

A4 & sup ﬁ | fn(x)/Em(X)ls 45 éj (d/dx) H.fm(X)/gm(X) 3

xel m=j

Fulx) £ 0Fr(x),  gmlx) & Qj(x)+ -+ + Qhl(x)

el

We shall show that

(hjte ooe + D27 K+ oo + KD+ (p— 1= j+1) (8.19)
maX{A4,A5}<A6écnP ] //1

lity |¥(j, j)| = 45 taken
Bounds of Egs. (8.18) and (8.19), and the equa
together complete the estimation of 4; and the proof of the theorem as

well.
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So let us prove Eq.(8.19). The bound 4,< 4, i
. (8.19). is
Eq. (8.15) and the following estimate #5615 & consequence of

sup [Q;(2)| < en””? {fu SA=xra@dnt ] irgx) dx}
b ,1—2)

zel
<cnf)—» (8.20)
The proof of 45< 44 is more complicated. We have
I
4s< Y (a,+b,) 8.21)
v=Jj
where
A ! !
a\,:f va H fm/H Eml»
x€ jSm<lims#v m=j
A ! ) ) I
bv =J‘ p gv H fm/H gm
€ J€Sm<imey ms=j

(if £, =0, then a,=0).
Let us estimate a,. Since a,=0 if &, =0, assume k,> 1. We have

r ky— [ v
fv_kav J.Qv_kal\‘;: l{gv_gv—l}’ gj—l éo

Therefore
ky—1 d
a<k |05 T ()
JSm<lmsy
+kf ka—lg : I—II f/ﬁ ’
v Y v—1 m m
1 J<Sm<im#y m=jg

Bounds of Egs. (8.15) and (8.20) imply

ay S dg/n - (8.22)

and

by e(nPPl=ryki+ 4k yU=Dp2~1)) G=Dp=1) | |
filgv/gvl (8.23)
We have

&) =n"f(x)q(x),  f(x)=(x~(j~1)/n)" = (x = v/n)?
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Therefore

[ 1ggl<n=2 [ 171+~ | 18/

e VAR e RE S

because of ¢ R and f > 47~ /n (see Eq. (8.17)). Furthermore, [r1g/g? <
2/R since ¢ is monotone on I The function £ is monotone on [ as well and
= AP~ /n. Therefore [;|f'/f? <2(A?~'/n)~!. These remarks show that
{:1g./g,| <en'=P?2177 and therefore Eq.(8.23) imply b,<d4¢/n. This
bound, together with Egs. (8.21) and (8.22), proves Eq. (8.19) for 45. This
completes the proof of the theorem. O

We conclude the section with some remarks concerning condition of
Eq. (3.2). Let b—>m,(b,.,b), beB, be a continuous symmetric p-linear
form. Let G, G,,..., G,€ B be centered 1i.d. Gaussian r.v. Denote

0s(t) & Eexp{itn,(Gy,.. G,)}
As usually we define the covariance operator C: B’ — B ofarv. GeB via
(Cf, 8) LEf(G)g(G), (fix)&f(x), [fgeB, xeB
The following lemma allows us while estimating ¢s(t) to replace

Gy,.., G, by (almost) arbitrary other Gaussian r.v.

Lemma 8.3. Let ¢;eB’, j=1,2,., and
0<c?2 Yy EeXG)= ), (Ceje) <0
j=1 j=1
where C is the covariance operator of G. Then
0o(1) < @z(c™7t) 2 Eexplic?tn,(Z,,.n Z,)}

where Z, Z,..., Z, are i.i.d. Gaussian r.v. such that #(Z)= 3’(2;":1 n,Ce;)
and 4;, 75, € R are iid. standard normal r.v.

Proof. The idea of the proof is taken from Yurinskii.®** Denote
f(b) & (b, Gy,..., G,), bEB. Then

oo(t)=Eexp{ —1*(Cf, )/2}

If D denotes the covariance of Z, then

O f)=EfHZ) =3 f(Ce)= Y (Cep P<CHCL, f)
j=1 j=1
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since (C-,-) is a (semi)inner product ' and therefore (Cg, h)*<
(Cg, )(Ch h). Thus
¢5(1) SE exp{—r*(Df, f)/(2¢*)} =E exp{itn (Z,, ..., G,)/c}
Repeating this procedure we complete the proof of the lemma. 0O
As an example of application we have the following

Corollary 8.1. If a Gaussian 1.v. GeR™ is not concentrated in a
proper subspace of the m-dimensional space R” and

Tp(Xyery X) =X+ <+ +x2, X = (X ey X)) ER™

then @q(2)<c |t] ="

"Proof. According to Lemma 8.3, we may replace G by Z; with

independent identically distributed coordinates. Now simple calculations
complete the proof. O

Lemma 84. The Brownian bridge Br, as the Gaussian r.v. G, and the
multilinear form

7,(Byy b) £ f(o RAGPOL

eatisfy condition of Eq. (3.2) provided pe N and the weight function is not
identically equal to zero, that is mes{ze (0, 1): g(¢) #0} > 0. N

Proof. Clearly, for each meN there exist functions fi,..f,€

~ C%(0, 1) with disjoint compact (in the open interval (O, 1)) supports such
that

& 2(t dt +# =
Jo, PO 20, Yi=1m

We are gomg to apply Lemma 8.3. Let us choose e, & —f/ for j=1,.., m,
and e, £ 0 for j>m. It is easy to verlfy that

Ce;=f, for j=1,.,m, and =)

fA)dt< oo
j=1 (0,1)

Therefore
0o(1) < 02(c=71) = Eexp{nc-f’z aty .., }
j=1

where 7,€R, s= 1,...5 b, j=1,..,m are iid. standard normal r.v. Therefore
@s(t)<c|t|~™7 and Eq. (3.2) follows since meN is arbitrary. O
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Difference estimates and Harnack inequalities for mean zero, finite variance
random walks with infinite range are considered. An example is given to shgw
that such estimates and inequalities do not hold for all mean zero, finite
variance random walks. Conditions are then given under which such results can

be proved.

KEY WORDS: Random walk; harmonic functions; difference equations;
Harnack inequality.

1. INTRODUCTION

Let S(n) be a random walk as in Ref. 9 taking values in Z¢ with traqsition
probability p(x, y)=p(y —x). Associated with the random walk is the
correspondirig Laplacian 4 = 4, acting on functions on Z 4 by

Af(x)= 3. plx, »)(f(»)—f(x))
yezd
A function f is called harmonic (with respect to p) on the set 4 cZzZ? if
Af(x)=0 for all xe A. It is well known that if 4 is finite and F: A”—»Z.,
then the unique function f which is harmonic on 4 and equals F on A° is
given for xe 4 by

- flx)=E*[F(S(7))]
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