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INTRODUCTION

The Haifa 1985 Conference is the second in a series (hopefully of length
greater than 2) of conferences on matrix theory. It was held from 29-31
December, 1985 under the auspices of the Israel Mathematical Union, and
hosted by the Department of Mathematics at the Technion and the Depart-
ment of Mathematics and Computer Science at the University of Haifa.
Participants from Israeli universities, research institutes, and high-tech in-
dustries gathered to listen to twenty-seven speakers, including three guests
from the U.S.A. and West Germany. The informal exchange of information

and ideas culminated in an open problem session

The social program included receptions at the University of Haifa and at
the Technion, and a guided tour of the Reuben and Edith Hecht Museum at
the University of Haifa.

This report contains synopses of talks presented at the meeting, which
were made available to us. They are arranged in alphabetical order. In
coauthored synopses, the speakers’ names are starred.
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The program was as follows:

29 December
Technion, The Silver Institute of Biomedical Engineering Auditorium
10:00-11:00
Dimension of faces generated by certain positive linear operators, by R

Loewy, Technion.

Sign patterns of matrices and their i
eir inverses, by M. :
Institute. y Berger, Weizmann

Chairman: A. Berman, Technion.
11:30-12:30

Submultiplicativity and mixed submultiplicativi
plicativity of matrix
operator norms, by M. Goldberg, Technion. ty atrix norms and

S ]. y y
I:he reso. Vellt COI]dlhOn arld unlfOInl pOWGI bOllndedneSS b E. Iadmor,

Chairman: H. Wolkowicz, University of Delaware.
14:00-15:00
An efficient preconditioning algorithm and i i
t:

e ot g and its analysis, by 1. Efrat, IBM
Para:llel algorithms for triangular systems, by A. Lin, Technion.
Chairman: I. Gohberg, Tel-Aviv University.

15:30-16:30
Minimality and irreducibility of time-invari
e invariant boundary-value systems,

Maximum-entropy extensions of matri
atrices and related
Gohberg, Tel-Aviv University. ated problems, by I

Chairman: I. Cederbaum, Technion.
16:30-17:00
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On linearly constrained entropy maximization, by Y. Censor, University

of Haifa.
Some theorems in matrix theory using optimization, by H. Wolkowicz,

University of Delaware.
Chairman: J. Sonn, Technion.

11:00-12:30
Holdability, irreducibility, and M-matrices, by A. Berman, Technion.

On the uniqueness of the Lyapunov scaling factors, by D. Shasha,

Technion.
On positive reciprocal matrices, by V. Mehrmann, University of Biele-

feld.
Chairman: H. Schneider, University of Wisconsin and Technion.

14:00-15:30

On biholomorphic automorphisms of the unit ball of unitary matrix

spaces, by ]. Arazy, University of Haifa.

Perturbed and mixed Toeplitz matrices as generalization of the resultant
matrix, by B. Kon, Technion.

Bezoutian for several matrix polynomials and polynomial Lyapunov-type
equations, by M. Tismenetsky, JBM Scientific Center, Haifa.

Chairman: G. Moran, University of Haifa.
16:00-17:00

Powers of a nonnegative definite matrix related to interpolation by radial

functions, by N. Dyn, Tel-Aviv University.
Using Gauss-Jordan elimination to compute the index, null space, and
Drazin inverse, by U. Rothblum, Technion.

Chairman: A. Pinkus, Technion.

31 December
Technion, The Silver Institute of Biomedical Engineering Auditorium

9:30=10:30

Open-problems session
Chairman: D. Hershkowitz, Technion.

30 December
University of Haifa, Main Building, Room 608

9:00-10:30

Class functions of finite .
; groups, nonnegative matrices, and i
circulants, by D. Chillag, Technion. generalized

Higher dimensional Euclidean and hyperbolic matrix spaces, by B.
Schwarz, Technion.

From the complex numbers to complex matrices along the projective
line, by A. Zaks, Technion.

Chairman: D. London, Technion.
11:00-12:00

Maximum-distance problem and band sequences, by A. Ben-Artzi, Tel-
Aviv University.
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Block-Hankel1natrix inversion and the partial-realization problem, by
P. A. Fubrmann, Ben-Gurion University at the Negev.

Chairman: V. Mehrmann, University of Bielefeld.
13:30-14:30

. Eigenstructures and signal processing, by A. Bruckstein, Technion.
The structure of root clustering criteria, by S. Gutman, Technion.

Chairman: P. A. Fuhrmann, Ben-Gurion University at the Negev.
15:00-16:00

Matrices with sign symmetric diagonal shifts, by D. Hershkowitz, Tech-
nion.

Equality classes of matrices: The extremal case of an inequality due to
Ostrowski, by H. Schneider, University of Wisconsin and Technion.

Chairman: Y. Censor, University of Haifa.
Synopses of the talks are presented below.

COMPUTING THE INDEX AND DRAZIN INVERSE
USING THE SHUFFLE ALGORITHM

by KURT M. ANSTREICHER' and URIEL G. ROTHBLUM?2*

The well-known Gauss-Jordan elimination procedure computes the inverse
of a nonsingular matrix A by executing elementary row operations on the pair
(A, I) to transform it into (I, A~'). Moreover, Gauss-Jordan elimination can
be used to determine whether or not a matrix A is nonsingular, in the case
where this fact is not known a priori. We adapt the Gauss-Jordan elimination
procedure via “shuffles” to obtain an algorithm which computes the index of
a given matrix A and determines bases of the null spaces of the powers of A.
In the worst case the algorithm requires less than 2n® arithmetic operations,
compared to the wellknown bound of n® operations for the work needed to
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(cf. [13]). Finally, the Drazin inverse of the underlying matrix A ha:s a si.mple
representation in terms of the output of the algorithm and the matrix A itself.
An algorithm incorporating shuffle operations was first devised by

' Luenberger [9], who applied it to the study of singular difference equations.

Anstreicher [1] analyzed Luenberger’s algorithm as applied to the solu.ti'on of
singular systems of linear differential equations with constant coefficients.
Previous methods for solving the latter used Drazin inverses (e.g., [3] and
[12]), suggesting a connection between the shuffle algorithm B.I.ld the ]?razin
inverse. These methods are closely related to the study of matrix pencils (see
and references therein).

[11]To introduce our new a)lgorithm we consider an example (cf. [2, p. 132]).
Let

2 4 6 5
_ 1 4 5 4
A=l 0 -1 -1 of
-1 -2 -3 3
Elementary row operations transform (4, I) into
1 01 0 4 -5 20
01 1 0 0 0 -1 0
00 0 1 -3 2 2 oy

0 0 0 O 3 3 2 1

It is clear that A is not invertible, as a linear combination of its rows
vanishes. The “shuffle step” will next exchange row(s) of zeros with the
corresponding row(s) of the right-hand matrix. This yields

invert a nonsingular matrix using Gauss-Jordan elimination. Moreover, the
procedure suggests adaptation of efficient techniques for computing inverses

1School of Organization and Management, Yale University, Box 1A, New Haven, CT 06520,
2Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technol-

ogy, Technion City, Haifa 32000, Israel. Research of this author was supported by Grant No.
E(CS-83-10213 from the National Science Foundation.

1 0 10 % -2 —-%20
0110 o0 o0 -10
0 0 01 -+ 2 490
\%%%10000}

One then resumes elementary row operations, which result in

1010 & -2 -%20
0110 0 ©O0 -120
o001 -+ 2 20
0000 -3 -3 -3 0
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A second shuffle is next performed, yielding

& wio & win
|

O Gk G

SO
O == O

W O =

S = O O
|

O Wi O W

(= =R e i ]

o=
[0

Elementary row operations are now finally used to convert the left-hand
matrix to the identity, yielding

1 0 00 ¥ -% -2 0
0o 1 00 4 -%F -¥ o0
o o 10 —-¢# % I of
0o 0 o0 1 - 2z £

at which point the algorithm terminates.

Our main results are as follows. First, the algorithm always terminates in a
finite number of shuffling steps, and this number equals the index of the
underlying matrix A, say ». In the above example, the number of shuffling
steps is two, so »=2. Second, the rows shuffled in the first through kth
shuffle steps, k =1,2,..., form a basis of the (row ) null space {x: xTA* = 0}.
In the above example, {(%, 4, 2,1)} is a basis of {x: x'A =0}, and {(},3,3.1)

—1 —1 —30)} is abasis of {x:x"A%= 0}. Finally, we show that AP the
Drazin inverse of A, can be obtained from the matrix A on the right-hand
side of the terminating matrix by computing A?*14%. In the above example
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(A, B, is generated, where (A?, B®)=(A,I). Given (AP, BKY) we
execute row operations on A% to convert it into a matrix whose nonzero
rows are linearly independent; moreover, if A® s found to be nonsingular
the algorithm terminates. Simultaneously, we execute the same row oper-
ations on B®. Let A® and B be the result of executing the above row
operations on A% and B®, respectively. If A has zero rows, we exchange
these rows with the corresponding rows of B() and proceed to iteration
k+1. We show that if » is the index of A, then the algorithm will always
terminate on exactly the »th iteration. Moreover, the rows shuffled on
jterations 0,..., k —1, for k=1,...,», are a basis of the left null space of A*.
In addition, we show that if on iteration », A® is transformed into_the
identity matrix, A®=1, and A is defined to be the resulting matrix B®™,
then the Drazin inverse of A is equal to A"*'A".

A representation of the Drazin inverse of matrices for which zero is a
simple eigenvalue is given in [8, Lemma 5.1]. The representation in this case
(for which the index is known to be one) reduces to the execution of our
shuffle algorithm. A special case of the above representation for matrices
having the form I-P, where P is an irreducible stochastic matrix, is given in
[4, Theorem 8].

A survey of methods for computing the index and Drazin inverse of a
matrix can be found in [2]. In particular, efficient methods for computing the
Drazin inverse are given in [5] and [6, 7]. :

Further details and proofs concerning the new shuffle algorithm can be
found in a forthcoming paper of the authors that will appear in this journal.

The authors wish to thank Eric V. Denardo for illuminating comments
concerning the operation of the algorithm, and constructive criticism of the
paper.

16 —-20 -19 0)\° 9 4 6 5\2 REFERENCES
AP =93 4 -5 =16 0 1 4 5 4

-4 5 7 0 0 -1 -1 0 1 K. M. Anstreicher, Generation of feasible descent directions in continuous time

\—3 6 12—0- 1 233 linear programming, Technical Report SOL 83-18, Dept. of Operations Research,

Stanford Univ., Stanford, Calif., 1983.
3 -1 2 2 2 S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transforma-
_ 2 1 3 3 tions, Fearon Pitman, Belmont, Calif., 1979.

-1 0o -1 -1t 3 S. L. Campbell, C. D. Meyer, and N. ]. Rose, Applications of the Drazin inverse

-1 0 -1 -1 to linear systems of differential equations with singular constant coefficients,

We next describe our algorithm in detail. Consider a given n X n real
matrix A. In the course of the algorithm a sequence of pairs of matrices

SIAM. J. Appl. Math. 31:411-425 (1976).

4 E. V. Denardo, A primer on Markov chains, unpublished manuscript, 1978.

5 T. N. E. Greville, The Souriau-Frame algorithm and the Drazin pseudoinverse,
Linear Algebra Appl. 6:205-208 (1973).
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6 R. E. Hartwig, More on the Souriau-Frame algorithm and the Drazin inverse,
SIAM J. Appl. Math. 31:42-46 (1976).

7 R. E. Hartwig, A method for computing AY, Math. Japon. 26:37—-43 (1981).

8 M. Haviv and U. G. Rothblum, Bounds on distances between eigenvalues, Linear
Algebra Appl. 63:101-118 (1984).

9 D. G. Luenberger, Time-invariant descriptor systems, Automatica 14:473-480
(1978).

10 G. Strang, Linear Algebra and Its Applications, 2nd ed., Academic, New York,
1980.

11 P. Van Dooren, The computation of Kronecker’s canonical form of a singular
pencil, Linear Algebra Appl. 27:103-140 (1979).

12 ]. H. Wilkinson, Note on the practical significance of the Drazin inverse, in
Recent Applications of Generalized Inverses (S. L. Campbell, Ed.), Fearon-
Pitman, Belmont, Calif., 1982, pp. 82-99.

13 S. Winograd, Arithmetic Complexity of Computations, SIAM, Philadelphia,
1980.

ON BIHOLOMORPHIC AUTOMORPHISMS OF
THE UNIT BALL OF UNITARY MATRIX SPACES

by JONATHAN ARAZY?

Let S denote the space of all complex matrices a = (a; ;)?°;—; With only
finitely many nonzero entries. A norm « on S is unitarily invariant if

a(uaw) = a(a)

for all ¢ € 8§ and all unitary matrices u, w with the property that u; ;=w, ;
=§; ; if max{4, j} is large enough. For normalization one requires also that
a(a) =1 for every rank-one partial isometry a in S.

The unitary matrix space S, associated with a is the completion of S
under « (these spaces are called also ““unitary ideals” or “symmetric normed

ideals?;-see-[1]) We-denote-by-B;-the-open-unit-ball-of S, It-is known-that
the most general unitarily invariant norm « on S is given by

o(a) =B(sa(a)),

where s, (a) =\, ((a*a)'/?), n=1,2,..., are the singular numbers of @, and

3Department of Mathematics, University of Haifa, Haifa 31999, Israel.

B is a symmetric norm on sequences. For 1 < p <oo we put

(o]

@)= £ sar] =l

n=1
and
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a(a) = sy(a) = the operator norm of a.
|
|
\
\

We let S, =S, . Thus S, is the trace class, S, is the space of Hilbert-Schmidt

operators, and S, is the space of compact operators on L.

It is well known that B, and B, are bounded symmetric domains, that is
the corresponding groups of biholomorphic automorphisms act transitively
(in fact, by Mébius transformations; see [2] and [5]). If these two cases are
ruled out, the situation changes drastically.

Tueorem 1. Let a be a unitarily invariant norm, different from aq and
. Then every biholomorphic automorphism of B, extends to a linear
isometry of S,..

With the aid of [3] we conclude

CoroLrLarY. Let a be as in Theorem 1, and let F be a biholomorphic
automorphism of B,. Then there exist unitary matrices u, w o that either

F(a)=uaws aesa:
or

F(a)=uaw, a€S,,

where a” is the transpose of a.

A-holomorphic-vector field-X+B;—S;-is-called-complete-if-there-exists.a
solution ¢ = ¢y: R X B, — B, to the initial-value problem

2 4(t,0) = X(g(5,0),

¢(0,a)=a

for every a € B,,.
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TreoreM 2. Let a be a unitarily invariant norm, different from a, and
a,,. Then every complete holomorphic vector field X: B,— S, extends to a
bounded, linear, skew-Hermitian operator on S,.

Here “skew-Hermitian” means that the numerical range is purely imagin-
ary. Again, using [3] we get

Cororrary. Let a and X: B, — S, be as in Theorem 2. Then there exist
bounded Hermitian matrices b, ¢ so that

X(a)=i(ba+ac), a€S

"

The proofs of Theorems 1 and 2 use the “contraction principle” of [4].
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THE MAXIMUM DISTANCE PROBLEM AND BAND SEQUENCES
by A. BEN-ARTZL*" R. L. ELLIS,5 I. GOHBERG,* and D. LAY®

In-this—paper—we-sol—ve-the_followingvproblem._Eor_Ls_j,_k_gn-and
| — k| <m, let ay be a given complex number with a;;=a ;. We wish to
find linearly independent vectors x,...,%, such that (x;,x j) =a for
|j —k|<m and such that the distance from x; to the linear span of
X15+++» X is maximal for 2 <k < n. We construct and characterize all such
sequences of vectors. Our solution leads naturally to the class of m-band

18chool of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel-Aviv University, Tel-Aviv, Israel.
3Department of Mathematics, University of Maryland, College Park, Md.
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sequences of vectors in an inner-product space. We study these sequences
and characterize their equivalence classes under unitary transformations. A
precise formulation of the problem now follows.

Maximum-Distance Problem

For any vectors x,...,x, in C" and for 2<k<mn, let sp(xy,. s Xp)
denote the subspace spanned by x,,..., x;, and let dist(2,,5p{X 15+ +> Tk—1))
denote the distance from x, to sp(xy,..., x;-1)- Given 0 xm <n and a set
{ap:li—klI< m} of complex numbers satisfying a; = @ ;. We shall say that
a sequence of vectors {x,}%., is admissible if it is linearly independent and
if
(Ij — ki< m). (1.1)

(*gs xj) =ax
We define

di = supdist(x;,sp(xrrr Xp1)) @<k SN),
where the supremum is taken over all admissible sequences of vectors in C".

The maximum distance problem is to describe all admissible sequences
{%4}i=1 such that

dist(x,,sp(xp,0r 2p_1)) =d  (2<k<n).
Each such sequence is called a solution of the maximum-distance problem.
This maximum-distance problem has close connections with maximum en-
tropy in the mathematical theory of signal processing [2, 4 5]

Band Sequences

The study of the maximum-distance problem leads naturally to the notion
of a band sequence of vectors in C". If we apply the Gram-Schmidt process
to—a—sequence_of -vectors—{ 44} =1 We—obtain_a_sequence {wi )5y of

orthonormal vectors that is related to { y;} by a system of equations that may
be written in the form ’

Ay + T A= O (k=1,...,n). (1.2)

DeFINITION. Let m and n be integers with 0 <m <n. We say that a
linearly independent sequence {y, }%., is an m-band sequence if @ ;= 0 for
m<k<nandlgj<k-m.




