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We study isometries of certain non-self-adjoint operator algebras by means of the
structure of the complete holomorphic vector fields on their unit balls and the
associated partial Jordan triple products. We show that isometries of nest sub-
algebras of B(H) are of the form T+ UTW or T+ UJT*JW, where U, W are
suitable unitary operators and J a fixed involution of H.  © 1990 Academic Press, Inc.

1. INTRODUCTION
This paper deals with isometries of certain non-self-adjoint algebras of

operators on a Hilbert space. Our main theme is that the isometries must
preserve besides the norm and the linear structure also the Jordan

structure. In a way, this can be viewed as the generalization of the™

famous theorem of R. Kadison [K] (proving that every isometry of one
C*-algebra onto another is given by a Jordan isomorphism followed by a
unitary multiplication) to the non-self-adjoint case.

Kadison used as the main tool the structure of the extreme points of the
unit ball of a C*-algebra (maximal partial isometries), i.., the affine struc-
ture of the unit ball. Our approach is quite different and depends heavily
on the holomorphic structure of the open unit ball. The class of algebras
we consider is much bigger than C*-algebras and includes nest algebras
and unital Jordan subalgebras of JB*-algebras.

If E is a complex Banach space with an open unit ball D, then the set
aut(D) of all complete holomorphic vector fields on D is a real Banach Lie
algebra. The group Aut(D) of all biholomorphic automorphisms of D is a
real Banach Lie group, having aut(D) as its lie algebra. The symmetric part
of Eis E,=aut(D)(0) and it is a closed, complex-linear subspace of E. The

" importance of this subspace stems from the fact that it is preserved by all
members of aut(D), and its unit ball is invariant under all members of
Aut(D), and in particular under the linear isometries of E. Associated with
E, is the partial (Jordan) triple product { }: Ex E,x E — E, generalizing the
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triple product of JB*-triples (and in particular the triple product {xyz} =
(xy*z + zy*x)/2 in subtriples of B(H)). The linear isometries of E preserve
the partial triple product and the skew hermitian bounded operators on E
are derivations of the partial triple product.

In Theorem 2.6 below we prove that the symmetric part of a unital
Jordan subalgebra U of a JB*-algebra E (and in particular, a unital
subalgebra of B(H)) is simply A, = ~A* Moreover, the partial triple
product of 2 is the restriction of the triple product of E. It follows that an
isometry ¢ from a unital subalgebra U of B(H) onto a unital subalgebra
% of B(H) satisfies

P(xy*z+zy*x) = o(x) @(¥)* 0(2) + ¢(2) @(»)* ¢(x)

for all x, ze U, ye AN A*, and ¢(I) is a unitary in £ N FB*. Thus ¥(x)=
o(x) p(I)* is a isometry of U onto 4, satisfying y(I) = I, which preserves
also the Jordan product and the adjoint (when restricted to % n 2A*). With
A and E as above, we also show in Theorem 2.14 that the Potapov
Moabius transformations ¢, associated with ae D n U W* preserve not
just DU~ U* but also DN A. This implies that every biholomorphic
automorphism ¢ of DU is of the form ¢ =y¢,, where ¥ is a linear
isometry of U, and a= ¢ ~*(0).

Section 3 deals with isometries of nest algebras. By definition, a nest 9
is a totally ordered set of projections on a Hilbert space H, containing 0
and 1. The associated nest algebra alg(M) consists of all operators in B(H)
having P(H) as an invariant subspace for every Pe %, ie.,

alg(N) :={Te B(H); TP=PTP, YPe9t}.

Our main result in this section, Theorem 3.16, says that if 9t and I are
nests of projections on H, which are complete (i.e., closed in the strong
operator topology), then a linear isometry ¢ from alg(%t) onto alg(IM) is
either of the form

o(T)=UTU*V, VT e alg(M)
or of the form
o(T)=UJT*J]) U*V, VT e alg(9),

where U,V are unitary operator, V=¢(I) lies in the commutant
WM :={TeB(H); TP=PT, VPeM}, and J is a fixed involution on H.
Thus P @(P)V* is either an order isomorphism of 9t onto MM (in the first
case) or an order isomorphism of % onto M+ := {I— P; Pe M}.

It follows that every linear isometry of alg(9t) onto alg(9M) can be
extended uniquely to an isometry of B(H).
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The study of isometries yields quite easily the description of the
hermitian operators (Theorem 3.10): Every bounded hermitian operator
h: alg(I) — alg(M) is given by

WT)=K, T—-TK,, Tealg(),
where K, K, are self-adjoint elements of 9'. In particular, # extends
uniquely to a hermitian operator on B(H).

Section 2 contains a survey of the Jordan theoretic and holomorphic
tools needed in our proofs. The survey is a little more comprehensive than
what is strictly needed, to make the exposition more self-contained.

The field of scalars is always assumed to be the complex numbers C.

2. THE SYMMETRIC PART AND ISOMETRIES OF JORDAN SUBALGEBRAS

We begin with a short survey on JB*-triples and bounded symmetric
domains. See the monographs [Ul, U2, IS] for more details and proofs.

A complex Banach space E is a JB*-triple if there exists a continuous
sesquilinear form

ExE—B(E), (% y)—D(x )

(where B(F) denotes the space of bounded linear operators on E) such
that

(i) the triple product {xyz}:=D(x, y)z is symmetric in x and z;
(i) D(x,x) is hermitian, ie., [[e"P*®| =1 for all teR, with
spectrum in [0, 00);
(iti) [ DCx x)| = |x]?
(iv) the operators §(x)=1iD(x, x), x€ E, are triple derwaz‘zons ie.,

S(x)({uvz})={6(x)u, v, z} + {u, 8(x) v, z} + {u, v, 6(x)z}.

Let H be a Hilbert space. A closed subspace E of B(H) which is closed '
under the map x — xx*x is'a JB*-triple with respect to the triple product

. {xyz}= (xy*z + zy*x)/2.

Such JB*-triples are called JC*-triples (or J*-algebras by Harris [H17]).
An element ¢ in a JB*-triple E is called a tripotent if {eee}=e. In a
JC*-triple the tripotents are precisely the partial isometries. A tripotent e
is unitary if D(e,e)=1
A JB*-algebra is a JB*-triple E with a distinguished unitary tripotent e.

NON-SELF-ADJOINT OPERATOR ALGEBRAS 287

One defines the Jordan product

— {xey}

and an involution

x* = {exe}.
E is a Jordan algebra with respect to the Jordan product, namely
x%o (xo y)=xo (3?0 )

for all x, ye E, where x*=xox, and e is the unit of E. The involution
satisfies, besides the usual properties, also

(xoy)*=x*oy*.
The triple product can be expressed via the Jordan product and the
involution by

{xyz}=xo0(y*oz)—y*o(zox)+zo(xoy*)

Every unital C*-algebra is a JB*-algebra. The symmetric matrices in B(H)
and spin factors are other examples of JB*-algebras.

We survey now the approach to JB*-triples via infinite dimensional
holomorphy.

Let E be a complex Banach space and let D be its open unit ball. A func-
tion h: D — E is holomorphic (or analytic) in D if its Frechet derivative A'(z)
exists at every point ze D. Equivalently, for each z,e D there is an open
ball Bc D with center z, and a sequence {Ah,};_,, Where A, is a
homogeneous polynomial of degree 7 (ie., the “diagonal” of a continuous,
symmetric, n-linear map on E), so that

h(z)¥ OZO: hn(z—zoj, . zeB.

This is the Taylor series of 4 near z,. A holomorphic function is also called
a  holomorphic vector field A holomorphic function A:D—D is
biholomorphic (or, a biholomorphic automorphism of D) if it is one-to-
one, onto, and the inverse 4 ~' is holomorphic. We denote by Aut(D) the
group of all biholomorphic automorphzsms of D.

A fundamental result of W. Kaup is the following.

2.1. TueoreM [K1,K27]. Let E be a complex Banach space with open
unit ball D. Then D= Aut(D)(0) if and only if there exists on. E a unique
triple product, making it a JB*-triple.
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We now proceed in describing the construction of the partial (Jordan)
triple product in a general Banach space. For the details and the proofs see,
besides the monographs [U1, U2, IS], also [V] and the survey [A].

Let E be a complex Banach space and let D be its open unit ball. Every
holomorphic vector field 4: D — E is locally integrable, namely the initial
value problem

%gp(l, z)=he(t,2)),  teJ.

@(0,z)=z

has a unique solution in D for every ze D. Here J, is the maximal open
interval containing z,=0 for which the solution exists. The map
J. ot (t,z)eD is called the integral curve of h through z. The
holomorphic vector field 4 is complete if J,=R for every ze D. We write
©(z)=0l(t, z). Then {¢,),. is a norm-continuous one-parameter group of
biholomorphic automorphisms of D called the flow associated with A.
Clearly, ¢(t,z) is analytic in each variable. We shall frequently write
exp(th) for o,.

One denotes by aut(D) the set of all complete holomorphic vector fields
on D. A remarkable fact concerning the structure of aut(D) is that it admits
a direct sum decomposition as a real Banach space, called the Cartan
decomposition,

caut(D)=4£Q@ 4.

# is the set of all elements of aut(D) that can be extended to skew-
Hermitian, bounded linear operators 4: E— E, ie., {¢”}, g is a norm-
continuous group of linear isometries of E. 4 is the set of all members of
aut(D) of the form

ha(Z)=a—Qa(Z), ZEDD

where Q, is a quadratic homogeneous polynomial on E (depending on a):

and a=#,(0) is a suitable point of E. In particular, the Taylor series about
the origin of each Aeaut(D) contains only terms of degree <2. In
particular, each heaut(D) can be extended to a holomorphic map
h: E— E. If heaut(D), then he# if and only if A(—z)= —h(z), and he 2
if and only if A(—z) = h(z). One shows that s, € 4 if and only if 4, € 4 and
that Qia = _iQa and’ Qa+b = Qa + Qb' .

The symmetric part of E is defined to be

E, :=aut(D)(0) = {h(0); heaut(D)}.

e —g—
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The symmetric part of D is

D.,.=DnE,

It is known that E,= E if and only if Aut(D)(O) D, ie., if and only if
E is a JB*-triple.

If a e E, one polarizes the homogeneous quadratic polynomial @, to get
the symmetric bilinear map ExX E— E assoc1ated with a and denote it also

by Q.
Qua, y) =3 (Q.(x+y)— Qu(x)— Qu(»)).

The partial (Jordan) triple product is the map
{ 2 EXEXxE—E

defined via
{xyz} :=0Q,(x, z), x,zeE, yeE,.
For xeE, ye E, let D(x, y)e B(E) be the operator

D(x, y)z == {xyz}.

The following theorem summarizes some known properties of E; and the
partial triple product.

2.2. THEOREM. (i) E, is a closed, complex linear subspace of E with an
open unit ball D. - :

(ii) D,=Aut(D)(0).
(i) D, is invariant under all members of Aut(D), and Aut(D) acts on
it transzlwely

(iv) E, is invariant under the triple product, {E:, E,E}<E, and so
E isa JB* -triple.

(v) If ¥ is a linear isometry of E and heaut(D) then Yrohoy™*
aut(D). In particular, if a€ E, then Yoh oy ~* =hy 4.

- (Vi) If ¥ is a linear isometry of E then Y(E,)=E; and Y is an
automorphism of the partial triple product.

Parts (i) and (ii) are not elementary, and they are proved in a slightly

-different form in [KU], see also [BKU]. Parts (iii)—(vi) are more elemen-
tary, see [Ul, U2, KU, L] for proofs.
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2.3. CorROLLARY. For a,beE,, iD{(a, a) and D(a, a)— D(b, a) are in %,
hence they are derivations of the partial triple product.

We conclude the survey with two known facts needed in the sequel. As
before, E is a complex Banach space with open unit ball D. E’ is the dual
of E.

2.4. PROPOSITION. Let F be a closed subspace of E and let he aut(D).
Suppose that (D N F)< F. Then

hip~r€aut(DnF).

This follows by uniqueness of the solution of the initial value problem

0
= 9(6.2)=h(o(1, )

0(0,z)=z
forze DnF.

2.5. PROPOSITION. Let h: D — E be holomorphic. Then heaut(D) if and
only if h extends holomorphically to a neighborhood of D, and for every
ze E, fe E" satisfying |z|| =1=|f]| =f(z), we have

Re f(h(z)) =0.

That is, the complete holomorphic vector fields are characterized by
tangency to the unit sphere. See [S1, S2, U2, Lemma 4.4] for a proof.

Let E be a JB*-algebra with a unit e. By a Jordan subalgebra U of E we
mean a closed linear subspace of E which is closed under the Jordan
product xo y= {xey}. A is not required to be closed under involution. Our
main result in this section is the following.

2.6. THEOREM. Let E be a JB*-algebra with a unit e and let W be a
Jordan subalgebra of E which contains e. Then the symmetric part of U is
the maximal JB*-subalgebra of E contained in W; that is,

A=A A A,
- The commutative analogue of this result, namely the characterization of
the symmetric parts of function algebras, is known. See [BKU, IS].

Proof. Let be U~ A*. As the triple product {xby} can be expressed
via Jordan products of x, 5%, and y, we get {xby}e U for every x, ye U.
Let hy(x)=b—{zbz}, zeW. If D denotes the unit ball of E then
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hyeaut(D). But since A, (DNnUA)=U we get by Proposition 2.4 that

hy p~ o €aut(D N A). Thus
b=h,(0)eaut(DNW)(0)=Y«

This proves AN A* = A, -

Conversely, let be,. By definition this means that there exists
hyeaut DN U of the form %,(z) =b— Q,(z), where Q, is a homogeneous
quadratic polynomial on 2. Let :

S={feE;|fl=1=f(e)}

be the state space of E. By Proposition 2.5 we get 0=Re f(%, (e)) feSs, as
well. Since Q,=iQ,, we get

- FB)=1(Q4(e)),  feS.

The same arguments applied to 4,(z) = b — {zbz}, which is complete in D,
yield

JB)=f{ebe} =f(b*),  feS.
Comparing the last two identities we get |
f6*)=1(Qsle)),  feSs.

Using the fact that e is unitary, and thus every element of E’ can be written

as a linear combination of members of S (this is due to the Jordan decom-

position of self-adjoint elements if E’, see [AS, Theorem 12.6]) we there-
fore get ’ ,

b*¥*=0Q,(e)e .

Thus be U N A*, and so A, = A ~ WA*. This completes the proof.
Our proof of Theorem 2.6 yields the following result.

2.7. COROLLARY. Let E be a JB*-algebra with a unit e, and let U be a |
Jordan subalgebra containing e. Then the partial Jordan trzple product of A

is the restriction to
_ UXxUXU=AUXx (ANA*)x A
of the triplé product of E. That is,
Q,(z)={zbz}, be‘iIm A*, zeA.
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‘Consequently, every quadratic complete holomorphic vector field hy(z) =2z —
0.(z) on D "W extends to a complete holomorphic vector field on D.

2.8. COROLLARY. Let E;, E, be JB*-algebras with units e,, e, respec-
vely. Let W, S E, and U, < E, be Jordan subalgebras containing the units
e,, e,, respectively, and let @: W, — W, be an isometry of W, onto W,. Then

o(U, N UAH =AU, N AL
o{xyz} = {o(x)p(y) 0(2)}, x,zeU,, yeU n AT

and @(e,) is a unitary tripotent in W, N UF. Moreover, if p(e;)=e, then

p(xeoy)=0(x)o0(y), x,yed,

and
e(x*)=0(x)*,  xeU NAF.

In the important special case where 2 is a norm closed unital subalgebra
of B(H) we get the following results.

2.9. CorOLLARY. Let W be a norm closed subalgebra of B(H) cohtaining
the identity operator I.

(1) U,=UNA*, ie, the symmetric part of W is the maximal
C*-subalgebra of B(H) contained in .
(ii} The partial triple product in W is given by’

. gy

{xyz} = (xy*z+zy*x)/2
for x,zeU; ye AN U*,

2.10 CoroLLARY. Let W< B(H), #<B(K) be unital norm closed
subalgebras, and let ¢: W — R be a surjective linear isometry. Then
(1) o(UNU*Y=F N B*

(i) @(xy*z+zy*x)=0(x) o(y)* @(2) + ¢(z) 9(¥)* @(x) for every
x,z€ W, and ye W U*. In partzcular @ maps partial isometries of W N U*
to partial isometries of B N B*.

(iti) @(I)=V is a unitary operator in B B¥*. If, moreover, o(I)=1,
then

(iv) o(xy+yx)=0(x)o(y)+o(y) o(x): x, ye U
(V) o(x*)=o(x)*; xe U A*

A weaker version of this result was established by Harris [H2] who did

o————
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not prove that ¢(I) is a unitary in B B*. Parts (iv) and (v) say that
@t ~or+ I8 2 self-adjoint Jordan isomorphism of A N A* onto £ N Z*. In
particular ¢ maps projections to projections. It is well known and easy to
prove that it is possible to characterize in terms of the Jordan product the
notions of orthogonality of projections (PoQ=0), commutativity of
projections (P-Q is a projection) and the order between them (P<Q if
and only if Po Q= P). Therefore one gets

2.11. CorROLLARY. Let A<= B(H), # < B(K) be unital subalgebras and
let o: U — B be a surjective isometry satisfying ¢(I)=1I Then

(i) @ restricts to an order isomorphism of the set of projections in QI
onto the set of the projections in B, which preserves commutativity and
orthogonality;

(ii)) for all R, S, Te W we have
@(RST+ TSR) = ¢(R) ¢(S) ¢(T) + o(T) ¢(S) ¢(R).
Indeed, (i) follows from the previous discussion. The identity
STS+TST=(S+T)*—S*—T°—(TS*+S°T)— (T*S+ST?
together with the fact that ¢ preserves the Jordan product, gives
@(TST+ STS) = o(T) ¢(S) ¢(T) + ¢(S) o(T) ¢(S).

Replacing S by —S and adding the resulting formula to the previous line
yields

o(TST) = o(T) (S) (7).

From this the derived result (ii) follows by polarization.
A special but important case of Theorem 2.6 is worth an explicit
formulation.

2.12. CorROLLARY. Let ¥ be a set of projections on a Hilbert space H
and let
| =alg(¥):={TeB(H), TP=PTP,YPec ¥}
Then the symmetric part of W is the commutant of &
A,= %' ={TeB(H);, TP=PT,YPc ¥}

Remark. Let E and U be as in Theorem 2.6 and let D be the open unit
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ball of E. Although we are interested here in the linear isometries of 2, our
analysis gives interesting information concerning the non-linear members of
Aut(D nU). We can show that if ae D n U~ U* then the corresponding
Potapov-Mébius transformation ¢, (see [Po, IS]) maps D n U onto itself,
and that every ¢ € Aut(D n ) can be written uniquely as ¢ =y ¢,, where
¥ is a surjective isometry of 2 and a= ¢ ~*(0).

3. ISOMETRIES OF NEST ALGEBRAS

The main result of this section is the description of isometries of nest
algebras. A family R of projections in B(H) is called a nest if it is totally
ordered (where P<Q if P(H)= Q(H)) and contains 0 and [; 9t will
be called a complete nest if, further, it is closed in the strong operator
topology.

Given a complete nest and 0#Pe® we define P_=V{Q: Qeiﬁ
Q< P} (here Q<P means Q<P and Q # P). Clearly P_e 9.

3.1. DEFINITION. The nest algebra alg M associated with 9t is defined to
be the set of all operators in B(H) which leave invariant the range space
of each projection in N; ie.,

algN={TeB(H): (I—P) TP=0forall Pe N}.

These algebras were introduced by Ringrose in [R1]. We shall frequentl'y"

be interested in the operators of rank 1 in alg . We include here, for the
sake of completeness, a few known results.

3.2. Lemma [R1, Lemma 3.3]. Let M be a complete nest of projections

in B(H) and let x and y be non-zero vectors in H. We write x® y for the.

operator z+—> {z,x) y. Then x®y € alg W if and only if there is some PeN
such that P_x=0 and Py=y.

3.3. Lemma [R2, Lemma 2.3]

Let M be a complete nest of projections in B(H) and let W, be a sub-
algebra of alg M which contains each operator of rank 1 in alg M. Suppose
0#TeW,. Then T has rank 1 if and only if the following condition is
satisfied: if A, Be W, and ATB=0, then at least one of AT, TB is zero.

3.4. LemMA [E, Theorem 1]. Let M be a complete nest of projections

and T e alg N is an operator of finite rank, then T can be written as a finite

sum of rank 1 operators of alg N.

e ——y—

e —
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We shall assume throughout this section that 9t and I are complete
nests in B(H). For a nest 9t we write

={I-P:Peh}

and refer to M+ as the complemented nest of N.

For more details about nest algebras we refer the reader to [D].

Suppose now that ¢ is a linear isometry from a nest algebra alg 3% onto
a nest algebra alg MM (both algebras will be assumed to be subalgebras of
B(H)). By Corollary 2.10 we know that ¢ maps alg 9t n (alg %)* onto
alg M (alg M)*; as algNn(algN)* =N (={TeB(H): TP=PT for
every PeN}) we have o(N')=M". If we assume also that ¢(I)=1I then
it follows from Corollary 2.10 that ¢ preserves the Jordan product and the
*.operation; i.e.,

o(TS+ ST)=o(T) ¢(S) + o(S) o(T)

P(4%) = p(4%)

for Aedt, S, TealgN. In this case, the restriction of ¢ to ' preserves
commutativity (see [K, Theorem 57).

As the center of 9’ is 9" (the von Neumann algebra generated by the
projections in ), we have (N")=IM". It is clear from the above that ¢
maps every projection in 9’ into a projection in M’ and for two projections
E,Fin 9%, EF=0 if and only if ¢(E) ¢(F)=0.

Our first goal is to show that a linear isometry ¢ from alg 9t onto alg M
that satisfies ¢ (/) =1 induces an order isomorphism from 9 onto either IMN
or M+, This will be proved in Corollary 3.9. We first need a few lemmas.

For projections E, Fin 9t” we shall write E< Fif EF=0and EB(H)F<
alg N (then we also have F(alg ) E= {0}). Similarly we define < on "

3.5. LemMa. Suppose E and F are projeétz'ons in " with E<F and let
@ be a.linear isometry from algWM onto .algIN with o(I)=1 Then if

@(E) < o(F) we have ¢(EB(H)F)=¢(E)B(H) ¢(F) and if ¢(F)<¢(E)

then we have @(EB(H)F)= ¢(F) B(H) @(E).
Proof. Suppose ¢(E )<(p(F) The proof for the other case is- 51m11ar
Then @(F)(alg M) ¢(E) = .
It follows from Corollary 2.11 (ii) that
@(EB(H)F) < ¢(E)(alg M) o(F) + ¢(F)(alg M) ¢(E)

= ¢(E)(alg M) ¢(F) = ¢(E) B(H) ¢(F).
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Applying a similar argument for ¢~ we have
o~ (¢(E) B(H) o(F)) < EB(H)F

from which the result follows. |

3.6. LEMMA. Suppose E and F are projections in W' satisfying either
E<F or FKE and @ is a linear isometry from alg 9t onto alg M with
o(I)=1I. Then it is impossible to find non-zero projections E', E”, and F' in
M" satisfying

(i) E'<F'<E"; and
(i) E'<@(E), E"<@(E), and F' < ¢(F).

Proof. We shall assume E < F. The proof for F < E is similar. Suppose
E', E", and F' are projections in I’ satisfying (i) and (ii). Write E; =
o YE), E,=¢ YE"), and F,=¢ '(F'). Then E,<F; (as E;<E,
F,<F)and E,<F,. Using Lemma 3.5 we have

o(E,B(H)F,)=E'B(H)F"
and
' 0(E,B(H)F;)=E'BH)E".
If E,, E,, and F, are all non-zero projections then there are nonzero partial
isometries u,, u, such that u,e E,B(H)F,, i=1,2, and ufu; =ufu,. But,
then ¢(u,)e E'B(H)F' and ¢(u,)e F'B(H)E". Hence |o(u;)+ ¢(us)| =

max(|@(u,l, |@(u,]))=1. Since |lu,+u,l|>./2 and ¢ is an isometry we
arrive at a contradiction. ||

3.7. LeMMA. Suppose E and F are non-zero projections in " with E < F.
Then either @(E)< o(F) or ¢(F) < o(E).

Proof. Note first that if N and P are non-zero projections in 3" with
NP=0 and they do not satisfy N< P then there are some non-zero
subprojections Ny < N and P, < P in MM” such that Ny > P,. For this, write

N'=inf{QeMM: NI-Q)=0}
nd o . ,
P’ =sup{QeM: QP=0}.
Since we do not have N<P it follows that N'> P’. In fact, there is a

projection Q € M satisfying P’ < N'. Now write No=(N'— Q)N and Py=
(Q—P')P to get No> Py. v :
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If E and F are as in the statement of the lemma and ¢(F) < ¢(E) is not
satisfied then there are non-zero subprojections E,< E and F,<F with
@(Eo) < o(Fy).

It follows that ¢(E) < @{(F,). To see this suppose that this is not the case.
Then there are non-zero subprojections E,;<E and F,<F, such that
o(F,) < @(E,); but then ‘

o(Ey) < o(Fy) < o(Ey)

contradicting Lemma 3.6.

If is left to show that @(F) < ¢@(F). If this is not so then there are non-
zero subprojections E,<E, F,<F such that ¢(F,)<¢(E,). But then
o(F,) < o(E,) < @(F,), again a contradiction to the result of Lemma 3.6.
This contradiction completes the proof. |i

3.8. LEMMA. For a projection E€ R", E lies in W if and only if E<I—E.

Proof. It follows immediately from 9 = lar alg =N,

3.9. CorOLLARY. Let ¢ be a linear isometry from alg N onto alg M with
@(I)=1. Then one of the following two statements holds.

(1) o induces an order isomorphism from M onto M and for every
Tealg N and projections P, Q in |, o(PTQ)=¢(P) o(T) ¢(Q).

(2) @ induces an order isomorphism from W onto M* and for every
T e alg N and projections P, Q in N, o(PTQ)= ¢(Q) o(T) ¢(P).

Proof. If P is a projection in 9t then, using Lemma 3.8, P</—P;
hence (Lemma 3.7) either @(P)<I— @(P) or I—@(P)<o(P). In the
former case @(P)e M and in the latter @(P)e M* (ie., I—p(P)eM).

Suppose P and Q lie in 9\ {0, 1} and ¢(P)e M while ¢(Q) e M. Since
PO#0 and (I—P)I—Q)#0 we have ¢(P)o(Q)#0 (ie, I—p(Q)<
@(P) as I—¢(Q) and ¢(P) lic in M) and (I—¢(Q))I=0(P))#0 (ie,
I—@(Q)> ¢(P)). We arrive at a contradiction and this shows that either
P(N) =M or (N) =M.

We now assume that ¢ maps M into M and complete the proof of
statement (1). The proof of statement (2) is similar. _ o

We have o(M)<=IM and can apply a similar analysis to ¢ ! to get
P(N) =M. As ¢ is multiplicative on N” (since it is a Jordan isomorphism
and N” is commutative), the map P+ ¢@(P) from N onto M is an order
isomorphism. It follows that whenever E < F (for projections E, F in ")
then @(E)< @(F). The result now follows by applying Lemma 3.5 and
Corollary 2.11 (ii). |
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We now consider the algebra 2 generated by %’ and J { PB(H)(I— P):
PeM} (and similarly, # generated by M’ and |J {PB(H)(I— P): PeM})
and show that ¢, restricted to 21, is multiplicative and that U contains all
rank 1 operators in alg . We shall then be able to conclude that ¢ maps
the finite rank operators in alg 9t into finite rank operators in alg 9. This
will allow us to extend ¢ to an isometry of alg 9t + % onto alg MM+ A
(where ¢ denotes the set of all compact operators in B(H)). We start with
the following lemma.

3.10. LemMA. Let @ be a linear isometry of alg M onto alg M mapping ER
onto M. Let W and B be the algebras defined above. Then

(1) U is the linear subspace spanned by \) {PB(H)(I— P): Pe N} and

W (and A is the subspace spanned by {PB(H (I—P): Peim} and M).
2) o(U)=2.

(3) U [resp. #] contains all operators of rank 1 in alg 9 [resp. -

alg M.

Proof. In (1) and (3) we prove only the statements concerning .

(1) It suffices to show that the linear subspace spanned by 9’ and
U {PB(H)(I— P): Pe M} is, in fact, an algebra. This is easy to check.

(2) follows immediately from Corollary 3.9 and the fact that
(R) =M.

(3) Let x® y be arank 1 operator in alg 9t. Then (Lemma 3.2) there

is some P e N such that P_x=0 and Py = y. Note that for every operators
T,S in B(H), T(x® y)S=S*x® Ty. Write x=x,+x,;, where x,=

(P—P_)xand x,=(I—P)x, and y= y,+ y,, where y, =P_ y and y,=

(P—P_)y. Then
X@y=x8y+x,8yo+x,& y;

As P(x,® y){—P)=(I-P)x;®P,=x,®y, we have x,® y €
PB(H)(I— P)= . Similarly x,® y, e P_B(H)I—P)<=U. Also x,® yo=
(P—=P_)(xo® yo)(P—P_)= I (as every O e It satisfies either Q< P_ or
Q > P). This completes the proof. |

3.11. LeMMA. With @, U, and # as in Lemma 3.10, the restriction of ¢
to U is multiplicative provided W # {0, 1}.

Proof. We first show that ¢, restricted to 9’ is multiplicative. For that
fix Te B(H), D, D,e N, and PeN\{0, 1). Using the fact that ¢ preserves
the partial triple product (see Corollary 2.10 (ii)), we have

-
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@(PD; D, PT(I—~ P))= o((PD)(D,P) PT(I— P))
+ (PT(I— P))(D,P)(PD;))
= ¢(PD,) o(D,P) o(PT(I - P))
+ ¢(PT(I— P)) ¢(D,P) ¢(D, P).

Using the fact that o(PT(I— P))= o(P) ¢(T) o(I— P) (Corollary 3.9(2))
we get

@(PD, D, PT(I— P))=@(PD,) ¢(D,P) o(PT(I—P)). (1)
But also,
@(PD, D, PT(I—P))=¢((PD,D,P)(PT(I— P))
' + (PT(I— P))(PD,D,P))
=@(PD,D,P) ¢(PT(I—P))
+ @(PT(I—P)) ¢(PD, D, P)
‘ =¢(D,D,P) o(PT(I—P)).
Combining this with (1) we have
(@(PD,) ¢(D,P)— (D, D, P)) (PT(I-P))=0

and consequently

(0(P) ¢(Dy1) 9(D2) = ¢(P) ¢(D, D)) B(H) (I~ P)=0 (2)
As I—-P#0 and B(H) is a factor,
@(P)(@(D1) ¢(D2)— (D, D)) =0. 3)

If we now consider @(PT(I — P)D,D,(I — P)), instead of
@(PD,D,PT(I— P)) and perform a similar computation, we obtain

@(PT(I—P)D,D,(I-P))
= o(PT(I—P)) ¢((I- P)D,) ¢((I— P)D,) o((I - P)D) (1)

instead of (1). In place of (2) we have

@(P) B(H) ¢(I— P)(¢(D1) ¢(D;) — ¢(D,D,))=0 (2)

and in place of (3),

o(I—P)(¢(D,) ¢(D3)— ¢(D;D5))=0.
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As ¢(P)+o(I—P)=o(I)=1, ¢(DD,)=¢(D,D,) = ¢(D;) ¢(D,). This
completes the proof of the multiplicativity of ¢ on It

In fact, we proved more. Notice that (1) and (1’) imply (when we set
D,=1, D,=D) that

o(DPT(I— P))=o(D) o(PT(I— P))

and @(PT(I— P)D)=o(PT(I—P)) (D)

for every TeB(H), Dedt. It is left, therefore, only to show that for
P,Qeh, T, Se B(H) we have

@(PT(I—P) OS(I—-Q))= ¢(PT(I—P)) ¢(QS(I—-Q)).

If Q<P then (f— P)Q=¢(I—P)p(Q)=0 and equality holds. Assume

now that P<Q. Set R=PT(I—P) and C=QS(/—Q) and notice that

CR=0=¢(C) ¢(R). We have
o(PT(I—-P)QS(I—Q))=¢(RC)=¢(RC+ CR)
- =¢(R) (C)+ ¢(C) (R)
=@(R) o(C)=@(PT(I-P)) p(QS(I—-Q)). 1

3.12. COROLLARY. @(JnalgN)=TnalgIM, where T denotes the set of,
all finite rank operators in B(H) and ¢ is as in Lemma 3.10.

Proof. Suppose N #{0,1}. Then ¢ is multiplicative on A
(Lemma 3.11) and U contains all rank 1 operators in algN
(Lemma 3.10(3)). It now follows from Lemma 3.3 that if 7 is a rank 1
operator in algJt then ¢(7) is a rank 1 operator in alg M. Using
Lemma 3.4 this proves that ¢(JnalgM)=IalgM when N+~ {0,1}.
For %t = {0, 1} we know from the results of [K, Corollary 11] that ¢ is
either a *-isomorphism or a *-anti-isomorphism of B(H) (=alg{0, 1}). It
follows that ¢ maps finite rank operators into finite rank operators. This
proves that we always have ¢(J nalg N) = JF N alg P and since this holds
also for ¢ ~! we have equality. |

Since JInalgIt is o-weakly dense in alg®f [FAM, Appendix
Corollary 2] and alg 0 + (alg N)* is o-weakly dense in B(H), we have the
following: A :

3.13. LEMMA. The subspace (Inalg N)+ (T ~alg N)* is norm dense in
the algebra A" of all compact operators in B(H).

e .

e
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3.14 LeMMA. Suppose ¢ is as in Lemma 3.10. Then there is an extension
of ¢ to an isometry, &, of the norm closure of alg W+ (alg N)* onto the
norm closure of alg M + (alg M)* mapping A (the algebra of all compact
operators in B(H)) onto itself. ’

Proof. Using [Arl, Proposition 1.2.8] (see also [P, Proposition 2.12])
we can extend ¢ to a positive map @ from alg 9 + (alg N)* onto alg M +
(alg W)* defined by

AT+ S*)=0(T)+ 0(S)*, T, SealgN.
Similarly we get a positive extension ¢’ of ¢ ~! with

P (T+S8*) =0 (D) +(97'(5))* T, SealgM.

Clearly ¢’ =@ ' Since both ¢! and & are positive and unital, |G| <1

and @' <1 (see [P, Corollary 2.8]). Hence @ is an isometry and can
be extended to the norm closure of alg % + (alg 9t)* mapping 4  onto
itself.

3.15. LeMMA. Let @ be a linear isometry of alg N onto alg M mapping N
onto M and assume N # {0, 1}. Let  be the extension of @ to an isometry
of the norm closure of alg W+ (alg M)* onto the norm closure of alg M+
(alg M)* as in Lemma 3.14. Then there is a unitary operator U e B(H) such
that

#(T)=UTU*,  Tealg %+ (alg N)*.

Proof. Since @, restricted to £, is an isometry of J onto itself
(Lemma 3.14) it follows from Theorem 6.4 in [St] that @, restricted to 4,
is either a *-isomorphism or a *-anti-isomorphism. Since @, restricted to
JInalg N is multiplicative (Lemma 3.11 and Lemma 3.10(3)), ¢ is multi-
plicative on #". Therefore (see [Ar2, Corollary 3, p. 20]) there is some
unitary operator Ue B(H) satisfying ¢(T)= UTU* for every TeX. We
now use an argument of [HP]. v

For every x, y in H and T in the norm closure of alg 9t + (alg 9t)* we
set ’

f(N)=<{e(T)x, y>

g(T)=UTU*x, y>.
Since [f(DI<ITI IIxll [ 20, 1A < lxll |yll. For T=U*x® U*y, f(T)=
g(T) = CUU*x @ U*y) U*x, y> = |U*x|* |U*y|> = |x| |y IT|l. As

U*x® U*y lies in A" we have | /]| = f| || = | x| || y|. Proposition 10.4.1
of [KR] now implies that f is o-weakly continuous. As f and g agree on
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A and both are o-weakly continuous we have f= g. Since this holds for
all x, y in H, , :

d(T)=UTU*, Tealg N+ (algR)*. 1

For the following fix an involution J of H, ie., an isometric conjugate-
linear mapping J of H onto H such that J>=1I Then it is easy to check
that the map T+ JT*J is a *-anti-isomorphism of B(H) onto itself.

We now turn to the main result of this section.

3.16. THEOREM. Let N and I be complete nests in B(H) and ¢ be a
linear isometry from alg N onto alg M. Then there are unitary operators U
in B(H) and V= @(I) in M’ such that one of the following two cases holds.

Case (1). @(T) = UTU*V for every T € alg9 -and the map
N UNU* = ¢@(N)V* is an order isomorphism on % onto Ik.

Case (2). @(T)=UJT*JU*V for every Tealg (where J is a fixed
involution on H) and the map N> UJNJU*=¢(N)V* is an order
isomorphism on % onto M+ = {I— P: Pe M}.

‘Proof. First suppose that 9t={0,1}. Then M= {0,1} and alg 9=
alg M = B(H). By [K, Corollary 11 and Theorem 7] the map
T+ o(T) o(I)* is either a *-isomorphism or-a *-anti-isomorphism of
B(H); hence either Case (1) or Case (2) holds.

Now suppose N #{0,1}. As ¢ is a linear isometry of 9’ onto W'
(Corollary 2.19(1) and Corollary 2.12) we know that ¢(f) is a unitary-
operator in M, to be denoted by V(see [K, Theorem 7]). Write y(T) =
@(T)V*. Then V¥ is a isometry from alg % onto alg I with y(I) =1 Using
Corollary 3.9 we see that either y(9t) =9 or Y(N)= mL.

If () =M, then Lemma 3.15 shows that Case (1) holds. If () =
and J is a fixed involution on H, define

Yo(T) =y (JT*J).

Then ¢, is a linear isometry from alg((JRJ )t) (where J .‘.TtJ =
{JNJ:Ne9}) onto algM and it maps (JNJ)* onto M. Applying
Lemma 3.15 to , we complete the proof in Case (2). |

J_

3.17. CorOLLARY. If It is not vorder isomorphic to M+ then every
isometry @ of algM onto itself is of the form ¢(T)=UTU*V, TealgM,
where U is a unitary operator in B(H) and V' is a unitary operator in M.

Proof. The corollary follows immediately from the theorem as Case (2)
cannot hold.

The following corollary follows immediately from the theorem. .
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3.18. COROLLARY. Every linear isometry of alg®M onto algM can be
extended to a linear isometry of B(H).

We shall now use Theorem 3.16 to study the hermitian operators on
alg 9t for a complete nest 9t. Recall that a bounded linear operator
y:alg M —algN is called hermitian if for every teR, |exp(ity)| =1 (see
[BD, Definition 5.1, Lemma 5.2]. Clearly, in this case, exp(izy) is an
isometry on alg 9t for every teR.

3.19. TueoreM. If y:alg M —alg M is an hermitian operator then there
are self-adjoint operators K and S in W' such that y(T)= ST — TK for every
TealgN.

Proof. The proof starts with an argument similar to the one used in
[Si, Remark 3.5]. For any state f on B(H), f(B)=f(B(I)) defines a con-
tinuous linear functional f on B(alg %) (the bounded operators on alg 9t)
of norm 1 satisfying f(I)=1. Since 7 is hermitian, f(y)eR for every
state f [BD, Lemma 5. 2] Hence y(I)=7v(I)* and, since y(I) lies in
alg M, y(I) e W'. The operator defined on alg N by multiplication by y(I) is
a hermitian operator on alg . By .substracting this operator from y we
obtain an hermitian operator y, (as the set of all hermitian operators on a
Banach algebra is a real linear space) satisfying yo(7) = 0. Now write

@, = exp(ity,), teR.

Then, for every teR, ¢, is an isomeltry of alg 9 onto itself with ¢ (I)=
exp(ityo)(I)=1 (as yo(I)=0). Hence, for every teR, ¢, is either a
*-isomorphism or a *-anti-isomorphism (Theorem 3.16). Let B be the
set of all teR such that ¢, is an isomorphism. Since ¢+ @, is a2 norm
continuous one parameter group of isometries of alg 9, the set B is closed

and so is the set R\B. Since R is connected and Oe B, R= B; i.e., every o,

is a *-isomorphism of alg 9.

Hence y, is a derivation on alg 9%t. Therefore [Ch, Corollary 3.11] there
is some operator K € alg 9t such that yo(7)= KT — TK, Tealg%. -

We now have,

exp(ityo)(T) = (exp itK) T(exp(—itK)), TealgM, teR.

But exp(ity,) is a multiplicative isometry on alg 9t that maps 7 into 7; hence’
there are unitary operators U,e B(H) (te R) such that

U,TU¥ =exp(itK) T(exp(—itK)), teR, TealgN.

This shows that exp(itK) R’ exp(itK) = N’ aﬁd, consequently, y,(N') <= .
(This fact can also be seen using Theorem 2.2.) In particular KP— PKe %’
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for every PeN and, therefore PKP—PK=PK-— PKP. As ' Kealg M,
KP— PKP=0 and we have

PK=PKP=KP, Peh

Hence KeW'. Write K=K, +iK,, where K, i=1,2, are self-adjoint
operators in N’ and let y,(T) =K, T—TK,, for Te alg M. Then yo=7y,+ 7>
and 7y, is hermitian. Hence both 7, and iy, are hermitian which implies
y,=0 and yo(T)=K,T—TK,, Tealg 9. Finally, W) =y,(T)+y(DT=
(K, +y()) T—TK,, TealgN. 1

320. COROLLARY. Every complete holomorphic vector field on the unit
ball of alg M (for a complete nest N) extends 1o a complete holomorphic
vector field on the unit ball of B(H).

Proof. Let D be the unit ball of B(H) and recall (Section 2) that
aut(DnalgN)=4@ 4.

Corollary 2.7 shows that the members of 4 extend to complete
holomorphic vector fields on D and Theorem 3.19 provides an extension
for every member of #, thus completing the proof. |

Note added in proof. R. Moore and T. Trent have independently proved Theorem 3.16
using different methods. (See J. Functional Analysis 86 (1989), 180-210). .
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