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REMARK ON THE CRAMER—VON MISES—SMIRNOV CRITERION

V. Bentkus and R. Zitikis UDC 519.21
Introductio asic Results
Let X;, X;, ..., X, be independent, identically distributed random variables on the

segment [0, 1],

1

F,(x)= IiXi<x},

N

1
n
i

4

where 1{A) is the indicator of the event A,
1
wi=n [ {Fx)=x}dx
0
U,,(x)=P{co,2,<x},
U(x)=lim U, (x).
N> .
let a =n/2 — 1 if n is even, and a = (n - 1)/2, if n is odd. We prove that the dis-
tribution function U,(x) is differentiable with respect to x a times, but not continuously
differentiable a + 1 times. In addition, the derivatives of the distribution functions U,(x)
as n » o, converge uniformly in x to the corresponding derivative of the limit distribution
function U(x). In particular, one has uniform convergence of the densities U;(x).

In this paper we also give asymptotic expansions for the derivatives of the distribution
functions U (x). The estimates of the remainders depend properly on n.

The results of the paper generalize and improve the results of Smirnov [l], Anderson and
Darling [2], Kandelaki [3], Sazonov [4, 5], Rosenkrantz [6], Kiefer [7], Nikitin [8], Orlov
[9], Czorgo [10], Csorgo and Stacho [1l], Gétze [12], Borovskikh [13], in which the conver-
gence and rate of convergence of distribution functions U (x) to U(x) were studied and asymp-
totic expansions for U (x) were also found.

We proceed to precise forpulations.
We denote by C® the class of functions f£: R! -+ R! which have a bounded derivatives.

THEOREM 1.1, The distribution function U (X) belongs to the class C%* but does not
belong to the class c@tl yhere a = n/2-1 if n is even, and a = (n — 1)/2 if n is odd. More-
over, for any

sup (1 +x™) | UP (x) ~US (x)| S c(s,m)/n. (1.1)
x>0 .

Theorem 1.1 generalizes results of [1-13], devoted to proving (1.1) if s = 0. The first
part of Theorem 1.1 on the differentiability of the distribution function U,(x) somewhat
improves the result of Csorgo and Stacho [11]. One should note that in [11] the question of
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differentiability of the distribution function U (x) was studied with the help of the repre-
sentation of U,(x) as the Lebesgue measure of a certain set in the space R using the well-
known Bruno-Minkowsky inequality. In the present paper this question is studied with the
help of a detailed analysis of the characteristic function E exp {itw?}.

IHEOREM 1.2, For any m20, 5=0, ..., p=1, 2,..., n22(s+1)»

- p—-1
sup (1+x7) | () { U,0)-U@= 5 n*4,0x) } |Sctm, s, pyne. 1.2
k=1 ‘

Explicit formulas for the Fourier—Stieltjes transforms of the functions x ~ 4,(x) are
given on p. 150 of [18]. 1It is known [4] that U, (X) can be represented in the form of the
probability P {;S,|2<x}, where §, is a sum of independent L,[0, 1]-valued random elements.
Asymptotic expansions for the derivatives (_g)" P{iS,F<x}, k=0,1, ..., are constructed in
[14-16]. There too, one can find rules for constructing the coefficients of the expansion.
In particular, the functions A, U(x) are infinitely differentiable and their derivatives
decrease at infinity faster than any power of x.

Theorem 1.2 generalizes the results of {10-13], where asymptotic expansions of the
distribution functions U (x) were studied. The proof of the theorems is based essentially on
the results of [16] on asymptotic expansions in the local limit theorem in Hilbert space. It
follows from the results and proofs of this paper (cf. Sec. 3 and the proof of Theorem 3.1 in
[16]) that to prove Theorem 1.2 it suffices to verify the condition

[~ ‘1"({g‘)quxp{itmﬁ}ldt<x (1.3)

for certain sufficiently large r = r(m, s, p) and q = q(m, s, p). The analysis of the charac-
teristic function E exp{itw?) and the proof of (1.3) are given in Sec. 2. The following
lemma illustrates the results of this section.

LEMMA 1.3, Let 5=0,1,...n=1,2, .., teR. Then for any A > 0, and for sufficiently large
n one has

; <,d,>: Eexpf;{wi} iéc(&, A)IZS/(I'{"-i A).

dr (1.4)
A general method for estimating characteristic functions in the zome |/| <;i-*(:>0) was
proposed by Gdtze [12]. In the zone |;|2n!2+:(¢>0), for any A > 0 and for sufficiently large
n, Borovskikh {13] found the estimate
' (;;{7)5 Eexp{itws} :sc(s, A)fnt. (1.5)

Lemma 1.3 improves this result.

2. FEstimate of the Characteristic Function E exp!itwnzl

THEOREM 2.1, There exists an absolute constant a such that for s = 0, 1, ..., n=1, 2,
., in the zone |t] = n® one has

i (;‘f—) Eexp{iten} S0 =" nlOny {a(s+1)}" (2.1)

The proof of Theorem 2.1 will be given below.
Applying the representation of Anderson and Darling for the statistic w? (cf. [2, 17])

@l= D (X -af+1/(12n),

where a; = (j — 1/2)/n and Xy, X#, ..., X* are the ordered random variables X,, X,, ..., , We
;] 1» A2 1 2
get
d \s n n
- tedl = s 1 s . = > it
(dr) Eexp{itwi}=i E{ ;21 & —ap+- } exp { it Z; (X;—a;)'-!-——l'Zn }-_-
== j=



= nlexp { —1—'2’—"— } f{ { i (xj—aj)2+%n- }sx

Jj=1
x eXp { it Z (x;—a;)? } dx,. . .dx,,
i=t

vhere the integration is over all x,<[0, 1], x€[x,_,, 1], j=2,..., n. We make the change of variables
ye=11 V2 (x,—ax), k=1, ... 7, and we note that

Gt ot xF =3 Collyy ..y k). x5,

where the sign £* denotes summation over all (Kyy <ees Ko}y k220, ...y ke 20, ki+...+k,=s, We get

*
(%)‘ Eexp{itewli=i*nllt;~"2=sexp {it/(12n)} Z Ci(kos - -5 k)X

(2.2)
x it (12n) 7% [.,.fyskeexp{ieyg}...yj"_»l—t exp{iO3i_ 1} dyu_y. . drs
where we have set @ = sgn t and the integration is over all
Jne1€[— {2201, (0~ 1[2){t M2 n-1)
and
Yoa €Lt 1B (p— 1) M2, p=1. . n—1.
We let (0, x) = 1
o (p, y)=f Ho-r1g(p—1, Vexp{iOx®}dx, p=1, ..., n, (2.3)

where the integration is over the domain [y—bl-tlllz/n, (p—1/2) |t |V2/y]. Since p(p, y) also depends
on ko, ..., k,_,, we shall sometimes write ®i....x,_, (P,))-

It follows quickly from (2.2) and the definition of ¢(p, y) that
(—d-):Eex {itwZ}y=i*n!"1:~"%*-sexp {it/(12n)} x y*C(k k)it S 12m* [y 12 2.4
7 p{itwi}=in! P ) 2 GColkoy - oy k) It/ (12n) ”‘Pkm...,k,_l(", It /(2,,)), (2.4)

In estimating the sum in (2.4) we shall use the following.

LEMMA 2,2, Let |t| = n?. Then there exists an absolute constant a such that for all
y&(— o0, (n+1/2) | ¥2 -] one has

[Py ook, (1 DS (s 1) (O 2 [)ormrF o Fhegn,
Proof. Let -=|;|¥?p-!. Then
(p—12) =

o(p, = [ Fe(p-1, Dexp{i®Ox}dx; pZl.

y—T
We set

B
T, (4, By= [ Sr-19(p~1, Hexp{i0x*}dx (2.5)
4

and let ¢ (0, x)=1, o (-1, X)=0, (-2, x)=0.

First we prove the recurrence estimate

. -1, Al ip{(p=1, B
Ty, B+ 0O s { 2EZL AL 120l DI,

B
| ~-1, x)| ko +k,_ j@p(p—2, A—1)!
4 [ eleslol dx}+(s+l)(9lti; Lk, ’{_‘_—“ul 22D
A
@ (p—2, B—D)| (2.6)

B
. 1
* =B B=21 +.Af le(p-2, x_m(x*lx—rm +

1 1
tx| (x="1/2)? + Ix| |x==/21 |x—71

B
+ ) dx }+ (S-I— 1) (9 l t])kﬂ—l+kp—z+kp—s f ‘_q) (p—3, x—27)] dx.

fx] [x—=/2]

10



We set
F(p-1, 0)=|x[%-119(p-1, 0,
G{p-2, x)=|x 1] x—zFr-210(p-2, x-7) 1,

2% 2% (2.7)
H(p-3, x)=|x|2"v-11x—-ri -2l x =21 T2 g (p—3, x—-27).
Integrating in (2.5) by parts and applying elementary inequalities, we get
B
F(p—1, &  F(p-1 B) | F(p—1, x)
17,04, B s e D FOA B 41, 2 lf oD dxy
2 2, B) 1] H G(p-2,
G(p—2 4 G(p-2, [ 1 p=2, x)
+ Al AT T 1B By T BT JaEaras dx + (2.8)

B
G(p=2, x) dx+f G(p=-2, x) H'f _H(p~3 %) d

Xt x=1/21 xi—7. fxl(x—=/2) Txi [x==27

B
+hpos [
A

Since y,_,€[y,— 7, (p—-l/Z) tl, p=1, ... n, y,=7/2, it is easy to verify that y,e[—(n—1/2) 7, (n—1/2) <]

for all p=0, 1, ..., n~ 1. Hence, _
B [Bi‘,‘ X, lx—1', iX—2t <3, (2.9

Moreover, oune has

02k, £5s Yp=0,1, ..., n. (2.10)

Estimating the expressions (2.7) with the help of (2.9) and (2.10), we derive (2.6) from
(2.8).

We shall estimate the ¢(p, y) by induction on p. First we consider the case p = 1,
Then :

<2

(1, = f hoexp (i@ x?] dx.

yos
_We separate three subcases:

a)  »-=e[l/2, 7/2];
b) y—=eg[-1/2, 12}
c) r—ze(—o, -1/21.

a) Applying (2.6) for p = 1, we get

Ti2 - . T2
2,0 =) [ shep(i0at)dr s (o] 1ovdoy f~d"}§<s+1>(9!ﬂ)*-4.
b) Analogously,
72 1/2
9 (L, =l f xz"'exp{iG)xz}dx}gl fy”-exp{z‘@:ﬁ}d‘c#
y—= y—-=

/2
+l [ x#exp{i®x®}dx _§4(S+l)(9lti)"4—(9!tl)"’§(5+1)(9H‘3"“5~

Y

c) Similarly,

—12 =2
ie(l, )i ( xHoexp {iOx*}dx | +1 r x*exp{iO@x? }d\t i<
y“: -1/”

—1/2
s [ xexp{iOxt}dx [+(s+ 1)@ t)5x -
. ~1J2
senE D f segimrae [ g dx [=ernoipes.

y—1
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It is clear that in case c) one gets the worst estimate. Hence, for p = 1, for all y € (-,
3r/2] one has the estimate from the hypotheses of the lemma with a = 9,

We proceed to estimate o(p, y) for p =2 2. Let us assume that for £ = 1, ..., p— 1 and
all ye(~o, (I+1/2)7] one has

lo(l, DISE+DIO )t thed(, ¢, r;) (2.11)

with some finite @ (/, 1, n), /122, and @ (1, ¢, n)=9. Without loss of generality, one can assume
that @0, 1, n)=1, ® (-1, ¢, )=® (-2, ¢, n)=0. First we prove that then (2.11) also holds for % =
p. We prove the estimate ®(p, t, n) < aP somewhat later.

It is clear from (2.5) and (2.3) that
9 (0, W=T,(y==, (p=1/2)7).
The points - 1/4, 1/4, ©j2-1/4, ©/2+1/4, ©—1/4, ©+1/4, (p—1/2)= divide the half-line into seven
intervals I,=(—w, —1/4), ..., I,=(t+1/4,(p~1/2)7). The estimation of ¢(p, y) largely repeats the

estimation of p(1l, y). Hence we consider only the most laborious case y — r € I,. Thus, let
y—r €1l,. Then

. . 7
(o VI=IT,(v=7 (2= 1D 7)|S T, (=1, =1+ 3 IT,(1) <

fe=2

(we apply (2.9), (2.10), and the assumption (2.11))

ST, 0= =D+ 6P )T RO (p 1, w32 Y TR (2.12)

i€{3,5, 7}

The points 0, r/2, r do not belong to the intervals (y—=, —1/4),1,,i=3,57 Hence, to the
intervals T,(y—x, —1/4,T,(1;),i=3,5,7, one can apply the reccurence estimate (2.6). Keeping
(2.12) in mind, we get

1o (2, NISE+DPO ] "R (p, 1, n),
where

O(p, 1, =B (p—1, 1, 1) { B2+UE-5 — 14+ 3 U }+
+®(p=2,1,n) { Viy—-=< —-14+ ZIV(I,) }+ (2.13)
+®(p=-3, ¢, n) { W(y—s, —1d)+ > W) }

the sign Z' denotes summation over i = 3, 5, 7,

B
1
U(d, B)= [-;
B
1 1 ) }d—
V4, B)= 4] 1 A—%/2] IBo IB—r/z + [.{ x‘lx—r/Zl bxi jx=7/21 | x=7| + 1 x| (x==/2) *
= [ —1
W (4, B)—,}” (x| jx—1/2] dx.

It is clear that there exists an absolute constant b = 9 such that each of the expressions in
curly brackets in (2.13) does not exceed b. Hence, from (2.13) for p = 1, 2,..., we get

O(p, t, HS{DP(p—1,¢t, N+O(p—2,t, H+P(p-3,¢t, n}b.

Consequently, there exists an absolute constant a, such that &(p, t, n) < aP (for example,
one can take a = 2b).
Proof of Theorem 2.1. Estimating each summand in (2.4) in modulus, and applying the
estimate of Lemma 2.2, we get
d \5
! (ﬁ) Eexp{itwl}

X 3 Cylhay +ans k) 12 (120) 50 (9 | 1)t He Sl 2] =M8=2 (54 1) a7 (9 £ ) %,

<nl|t]M2-s (s 4 1)@ x
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The theorem is proved.

Proof of Jemua 1,3, Theorem 2.1 and the estimate (1.5) in the zone ¢z pu2+: (¢>0). for
sufficiently large n, imply

() Eexp{itad} | sc(s, Hi(1+11').
In the zone |;j<n'-*(¢>0) the estimate of Lemma 1.3 is known (cf., e.g., [15, p. 37]). The
lemma is proved.

3 o) d

As already noted, Theorem 1.2 follows from (1.3). The estimate of Theorem 2.1 and the
above-mentioned results on estimates of characteristic functions from [12-16] guarantee that
this condition holds. Theorem 1.1 is a special case (for p = 1) of Theorem 1.2. The dif-
ferentiability of the functions U,(x) follows from the estimate of Theorem 2.1 and the well-
known properties of the Fourier transform. It is known [19, 20] that U (x) = 0 for x <
1/(12n) and {, (x)=c¢, (x —1/12)*-vz , for 1/(12n)<x=1/(12n)+1/(2n%), where c, > 0 is a constant.
Hence, [ ¢ce+1,
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