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Abstract For a recently derived pairwise model of network epidemics with non-
Markovian recovery, we prove that under some mild technical conditions on the
distribution of the infectious periods, smaller variance in the recovery time leads to
higher reproduction number when the mean infectious period is fixed.

1 Introduction

Networks provide a useful paradigm to incorporate contact patterns and various
heterogeneities within a population [8, 9]. The basic ingredients of such models are
nodes and links, usually representing individuals and the contacts between them,
but they may represent also groups of individuals (such as the population at some
geographic location), and the connectedness of these groups (such as transportation
routes [6, 7]). In simple disease outbreak models, the status of an individual can
be susceptible (S), infected (I) or recovered (R). A key parameter associated with
most epidemic models is the basic reproduction number (denoted by R0), which
denotes the expected number of secondary infections generated by a typical infected
individual introduced into a fully susceptible population [2]. The reproduction
number is also a threshold quantity: if R0 < 1 the epidemic will die out, while
if R0 > 1 the disease will spread. Another important measure of epidemic severity
is the final epidemic size, which is the total number of individuals who become
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infected during the time course of the epidemic. These two quantities are often
connected via the so-called final size relation.

Pairwise models have been successfully used to approximate stochastic epi-
demics on networks and represent an improvement on compartmental models. The
former are formulated in terms of the expected values for the number of susceptible
(ŒS�), infected (ŒI�) and recovered (ŒR�) nodes, which depend on the expected values
of (SS) pairs (ŒSS�) and (SI) pairs (ŒSI�). Introducing the usual notations.

• ŒX�.t/ for the expected number of nodes in state X at time t,
• ŒXY�.t/ for the expected number of links connecting a node in state X to another

in state Y, and
• ŒXYZ�.t/ for the expected number of triplets in state X � Y � Z,

where, X;Y;Z 2 fS; I;Rg, and by summing up all possible transitions, the pairwise
model reads as

PŒS�.t/ D ��ŒSI�.t/;

PŒI�.t/ D �ŒSI�.t/ � �ŒI�.t/;

PŒSS�.t/ D �2�ŒSSI�.t/; (1)

PŒSI�.t/ D �ŒSSI�.t/ � �ŒISI�.t/ � �ŒSI�.t/ � �ŒSI�.t/;

where � is the per contact infection rate and � is the recovery rate. Here ŒS� C ŒI� C
ŒR� D N is the total number of nodes in the network, and only those equations
are listed which are necessary to derive a complete self-consistent system. The
equations for links contain triplets, thus we have to break the dependence on
higher order terms to obtain a closed system. The closure approximation formula
ŒXSY� D n�1

n
ŒXS�ŒSY�

ŒS�
, where n is the average number of links per node, leads to the

self-consistent system [3]

PŒS�.t/ D ��ŒSI�.t/;

PŒI�.t/ D �ŒSI�.t/ � �ŒI�.t/;

PŒSS�.t/ D �2�
n � 1

n

ŒSS�.t/ŒSI�.t/

ŒS�.t/
; (2)

PŒSI�.t/ D �
n � 1

n

�
ŒSS�.t/ŒSI�.t/

ŒS�.t/
� ŒSI�.t/ŒSI�.t/

ŒS�.t/

�
� .� C �/ŒSI�.t/:

Closing at the level of pairs with the approximation ŒXY� D nŒX�
ŒY�

N , one obtains the
so called mean-field model (or compartmental model)

PS.t/ D ��
n

N
S.t/I.t/; PI.t/ D �

n

N
S.t/I.t/ � � I.t/; (3)
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with basic reproduction number

R0 D n

N
�E.I /S0; (4)

where, E.I / D 1=� is the expected infectious period. There are many results for
the Markovian case [1, 3, 5], for example, the final epidemic size is given by

s
1
n1 � 1

1
n�1

D n � 1

N

�

� C �
ŒS�0

�
s
n�1
n1 � 1

�
; (5)

where ŒS�0 is the number of susceptible individuals at time t D 0 and s1 D
ŒS�1=ŒS�0, where ŒS�.1/ D ŒS�1.

2 Non-Markovian Recovery

The Markovianity of the recovery process is a strong simplifying assumption. For
many epidemics, the infectious period has great importance and it is measured
empirically. Recently, pairwise approximations of the SIR dynamics with non-
Markovian recovery have been derived, see [4, 10–12]. In the special of fixed
recovery time � , the mean-field model is given by

S0.t/ D ��
n

N
S.t/I.t/; I0.t/ D �

n

N
S.t/I.t/ � �

n

N
S.t � �/I.t � �/; (6)

while the pairwise model turned out to be [4]

PŒS�.t/ D ��ŒSI�.t/;

PŒSS�.t/ D �2�
n � 1

n

ŒSS�.t/ŒSI�.t/

ŒS�.t/
;

PŒI�.t/ D �ŒSI�.t/ � �ŒSI�.t � �/;

PŒSI�.t/ D �
n � 1

n

ŒSS�.t/ŒSI�.t/

ŒS�.t/
� �

n � 1

n

ŒSI�.t/ŒSI�.t/

ŒS�.t/
� �ŒSI�.t/

��
n � 1

n

ŒSS�.t � �/ŒSI�.t � �/

ŒS�.t � �/
e� R t

t�� � n�1
n

ŒSI�.u/
ŒS�.u/ C�du

: (7)

Both systems are now delay differential equations rather than ordinary differential
equations, as is the case for Markovian epidemics. Considering a general distribu-
tion for the recovery period, the pairwise model can be formulated as a system of
integro-differential equations [11, 12], which we omit here. In [4], the following
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final epidemic size relation has been derived:

s
1
n1 � 1

1
n�1

D n � 1

N
.1 � e��� / ŒS�0

�
s
n�1
n1 � 1

�
: (8)

3 The Pairwise Reproduction Number and Recovery Times

In [4], a newly introduced basic reproduction-like number is defined as Rp
0 D

n�1
N .1 � e��� / ŒS�0, which appears also in (8). It has also been shown, that for
arbitrary infectious periods, the basic reproduction number of the pairwise model is

R
p
0 D n � 1

N
.1 � L Œ fI �.�// ŒS�0; (9)

whereL Œ�� is the Laplace transform and fI is the probability density function of the
recovery process given by the random variable I . Numerical tests and analytical
results have both confirmed that, in general, the following implicit relation for the
final epidemic size holds

s
1
n1 � 1

1
n�1

D Rp
0

�
s
n�1
n1 � 1

�
D n � 1

N
.1 � L Œ fI �.�// ŒS�0

�
s
n�1
n1 � 1

�
: (10)

Notice that while R0 depends on the expected value only, see (4), the pairwise
reproduction number (9) uses the complete density function, thus the average length
of the infectious period does not determine exactly the reproduction number. As
a consequence, for an epidemic we have to know as precisely as possible the
shape of the distribution. We shall analyze how the basic reproduction number (9),
which is not only an epidemic threshold but also determines the final size via (10),
depends on the variance of the recovery time distribution. In [10], using gamma,
lognormal and uniform distributions we showed that once the mean infectious
period is fixed, smaller variance in the infectious period gives a higher reproduction
number and consequently a more severe epidemic. Next we generalize this result
without restricting ourselves to special distributions.

4 Relationship Between the Variance and the Reproduction
Number

In this section we give some simple conditions which may guarantee that smaller
variance induces higher pairwise reproduction number. We consider a random
variable I corresponding to recovery times with probability density functions
fI .t/, cumulative distribution function FI .t/ D R t

0 fI .s/ds and we shall use
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the integral function of the CDF FI .t/ WD R t
0
FI .s/ds. Clearly, d2

dt2
FI .t/ D

d
dtFI .t/ D fI .t/. Moreover, FI .0/ D FI .0/ D 0:

Theorem 1 Consider two random variablesI1 andI2 such that

E.I1/ D E.I2/ < 1; (11)

and

Var.I1/ < Var.I2/ < 1: (12)

Assume that

lim
t!1 t3fIj.t/ D 0; j 2 f1; 2g; (13)

and for all t > 0,

FI1 .t/ ¤ FI2 .t/ (14)

holds. If I1 and I2 represent the recovery time distribution, then for the corre-
sponding reproduction numbers the relationRp

0;I1
> Rp

0;I2
holds.

Proof Using assumption (11), we deduce

Z 1

0

t . fI1 .t/ � fI2 .t// D Œt.FI1 .t/ � FI2.t//�
1
0 �

Z 1

0

.FI1.t/ � FI2.t//dt

D lim
t!1 t.FI1 .t/ � FI2.t// � ŒFI1 .t/ � FI2 .t/�

1
0

Œ��D � lim
t!1.FI1 .t/ � FI2 .t// D 0

thus

lim
t!1.FI1 .t/ � FI2 .t// D 0: (15)

To see Œ��, i.e. lim
t!1 t.FI1 .t/ �FI2 .t// D 0, we need some algebraic manipulations:

lim
t!1 t.FI1 .t/ � FI2 .t// D lim

t!1
FI1 .t/ � FI2 .t/

1
t

L0HD lim
t!1

fI1 .t/ � fI2 .t/

� 1
t2

D � lim
t!1 t2. fI1 .t/ � fI2 .t/

.13/D 0;
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where L’H refers to the L’Hospital rule. From assumption (12), we have

Var.I1/ D E.I 2
1 / � .E.I1//2 < E.I 2

2 / � .E.I2//
2 D Var.I2/

.11/) E.I 2
1 / < E.I 2

2 /:

or equivalently
R 1

0 t2. fI1 � fI2 /dt < 0. We can carry out some calculation on the
left-hand side of this inequality:
Z 1

0

t2. fI1 � fI2 /dt D Œt2.FI1.t/ � FI2 .t//�
1
0 � 2

Z 1

0

t.FI1 .t/ � FI2.t//dt

D lim
t!1 t2.FI1 .t/ � FI2 .t// � 2Œt.FI1 .t/ � FI2 .t//�

1
0

C 2

Z 1

0

FI1 .t/ � FI2 .t/dt

Œ���D �2 lim
t!1 t.FI1 .t/ � FI2 .t// C 2

Z 1

0

FI1 .t/ � FI2 .t/dt

Œ���D 2

Z 1

0

FI1 .t/ � FI2 .t/dt;

consequently
Z 1

0

FI1 .t/ � FI2 .t/dt < 0 (16)

To prove Œ���, i.e. lim
t!1 t2.FI1.t/ � FI2 .t// D lim

t!1 t.FI1 .t/ � FI2 .t// D 0, we

have

lim
t!1 t.FI1 .t/ � FI2 .t// D lim

t!1
FI1 .t/ � FI2 .t/

1
t

L0HD lim
t!1

FI1 .t/ � FI2 .t/

� 1
t2

D � lim
t!1 t2.FI1.t/ � FI2 .t//

L0HD lim
t!1

fI1 .t/ � fI2.t/
2
t3

D 1

2
lim
t!1 t3. fI1 .t/ � fI2.t//

.13/D 0:

Since FI .t/ � 0; t � 0 and monotone increasing, the integral function of CDF
FI .t/ is monotone increasing and convex. Using (14) and (16), we obtain

FI1 .t/ < FI2 .t/; (17)

for all t > 0. Clearly, for Rp
0;I1

> Rp
0;I2

, it is enough to prove, that L Œ fI1 �.�/ <

L Œ fI2 �.�/, i.e.
R 1

0
e�� t. fI1 .t/ � fI2 .t//dt < 0: First, we perform some algebraic



Variance of Infectious Periods and Reproduction Numbers for Network Epidemics 177

manipulation on the left-hand side:

Z 1

0

e�� t. fI1.t/ � fI2 .t//dt D Œe�� t.FI1.t/ � FI2.t//�
1
0

C�

Z 1

0

e�� t.FI1.t/ � FI2.t//dt

D �Œe�� t.FI1 .t/ � FI2 .t//�
1
0

C�2

Z 1

0

e�� t.FI1 .t/ � FI2 .t//dt

.15/D �2

Z 1

0

e�� t.FI1 .t/ � FI2 .t//dt:

In conclusion, we have

�2

Z 1

0

e�� t.FI1 .t/ � FI2 .t//dt
.17/
< 0;

thereforeL Œ fI1 �.�/ < L Œ fI2 �.�/, which givesRp
0;I1

> Rp
0;I2

.

5 Conclusion

Our previous works already indicated that for pairwise models not only the mean,
but higher order properties of the distribution of the recovery times have an impact
on the outcome of the epidemic. We derived useful threshold quantities for non-
Markovian recovery in [4]. In [10], we showed that for particular distribution
families (typically two parameter families such as gamma, lognormal, and uniform
distribution), smaller variance leads to higher reproduction number within the same
family when the mean is fixed. Our new result in this study allows as to make
comparisons between distributions of different kinds. To show the usefulness of

Theorem 1, as an example, we consider I1 � Exp.�/ and I2 � Fixed
�

1
�

�
, i.e.

fI1 .t/ D �e�� t; t � 0 and fI2 .t/ D ı
�
t � 1

�

�
, where ı.t/ denotes the Dirac delta

function. Clearly, we obtain FI1 .t/ D t C 1
�
e�� t � 1

�
and FI2 .t/ D t � 1

�
, thus

there is no t0 > 0, such that FI1 .t0/ D FI2 .t0/. Since E.I1/ D E.I2/ D 1
�
,

1
�2 D Var.I1/ > Var.I2/ D 0 and the other conditions of Theorem 1 are satisfied,

we findRp
0;I1

< Rp
0;I2

.
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