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1. Introduction
Finding  optimal  policies  to  minimize  the  mortality  and  morbidity  of  epidemic  outbreaks  is  a  top  public health
priority. The previous influenza pandemic and other emerging / reemerging diseases demonstrate the importance
of mathematical modeling, and calls for a synergistic cooperation of epidemiologists, mathematical modelers and
public health experts. The purpose of this paper is to provide an introduction to the basic principles of compart-
mental  models and their  implementation in  Wolfram’s Mathematica.  Motivated by the 2009 A/H1N1 influenza
pandemic,  here  we  focus  on  how to  develop  advanced  models  for  an  influenza  outbreak from simple  building
blocks using this  computer  algebra system.  The content of  this  paper spans from the most basic  SIR model to
research level  problems. Given the flexibility of  the software,  the models  presented here  are easy to modify or
extend to  include  various intervention  strategies,  population  structure  or  other  features.  The  Manipulate  tool  is
especially useful  when someone wants to have a quick overview of  the possible  scenarios by changing various
parameters. This way we can construct interactive and spectacular simulation tools. We hope that this work will
be useful for those who are interested in infectious disease modelling, to help them to create and study their own
models using Mathematica.

The  basic  idea  of  compartmental  models  in  infectious  disease  modelling  is  that  we  divide  our  population  into
disjoint  groups,  according  to  a  few  key  characteristics  which  are  relevant  to  the  disease  under  consideration.
Then  we  model  the  progress  of  an  epidemic  in  a  large  population  comprising  many  different  individuals  by
keeping track of the number of individuals within each subgroups, which are called compartments. For example,
in  many  common  infections,  such  as  influenza,  it  makes  sense  to  divide  the  population  into  those  who  are
susceptible to the disease, those who are infected and those who have recovered and are immune. We can specify
further  compartments  such as those who have been vaccinated,  those who are  receiving treatment,  age groups,
risk groups, etc. and the combinations of those to account for the heterogeneity of the population. In a dynamical
model there are transition processes between the compartments that specify the rate individuals move from one
compartment to the other. These are typically formulated as systems of differential equations.

A  key  concept  in  epidemic  models  is  the  basic  reproduction  number,  denoted  by  R0,  defined  as  the  average
number of new infections caused by a single infected individual introduced into a wholly susceptible population
over the course of the infection of this individual. In general, a disease introduced into a population will cause an
epidemic  if  R0  is  greater  than  one,  while  the  disease  dies  out  quickly when  R0  is  less  than  one.  Thus,  control
measures  that  decrease  the  basic  reproduction  number  below  one  may stop  the  epidemic  even  if  they  can  not
prevent all  new infections. One of the most important quantity that describes the severity of an epidemic is the
attack rate, which expresses the fraction of individuals who have not been avoided the infection. We can deduce
a final size relation that gives a connection between the attack rate and R0. 

Influenza poses a new threat every year. Seasonal strains are related to strains that have been circulating in the



past thus a fraction of the population may have some residual immunity, while most individuals are susceptible to
a novel pandemic strain. In the seasonal case the vaccination campaign typically precedes the infuenza outbreak,
hence we can model this by simply assuming less susceptibles and more immunes in the initial values. However,
in case of a pandemic, the vaccine may be available only in a later phase, and there is a race between the cam-
paign and the outbreak. Modelling a delayed and continuous vaccination campaign is more challenging. Besides
vaccination, antiviral treatment is an other potential mitigation strategy. A further difficulty for influenza is that
not all infected individuals develop symptoms; a significant fraction of them are asymptomatic but still capable of
transmitting  the  infection.  Accordingly,  we  need  to introduce  compartments  which  contain  the  asymptomatic
infected individuals. Many cases are mild enough not to be reported, hence influenza data will always be incom-
plete  and  fitting  our  model  to  real  data  can  be  problematic.  It  seems  that  model  parameters  for  influenza  are
strongly  age-dependent,  that  requires  age-structured  models.  In  particular,  the  contact  structure  between  age
groups has a significant  effect  on the  outcome of  the  outbreak.  In  a  real  situation data  are  initially limited and
there are uncertainties in the parameters. By careful sensitivity analyses we can examine the variation of model
outputs  in  response  to  changes  in  input  parameter  values.  Our  models  need  to  be  constructed  in  a  way  that
addresses the previous concerns.

The paper is organized as follows. Section 2 provides the analysis of the simplest SIR model and an introduction
to the relevant features of Mathematica. In Section 3 we develop the SEAIR model which is the most useful for
influenza, and include preseasonal vaccination and antiviral treatment as possible intervention strategies. Section
4 considers a much more complicated model with age structure and delayed vaccination campaign that is parallel
to  the  outbreak.  This  reflects  the  real  situation  of  the  previous  pandemic.  Finally,  we  discuss  some  further
modelling challenges in Section 5 and we explain how to use the relevant commands and tools of Mathematica
that have been applied throughout the paper in an Appendix. For an introductory, but detailed text on the mathe-
matical modelling of infectious disease, we refer the reader to O. Diekmann and J.A.P. Heesterbeek, Mathemati-
cal Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley 2000, and Mathemat-
ical  Epidemiology,  Lecture  Notes  in  Mathematics  1945,  (eds.  F.  Brauer,  P.  van  den  Driessche  and  J.  Wu),
Springer 2008. In particular, chapters 2 and 12 of the latter by F. Brauer consists most of the contents of Section
2 and Section 3.

2. The basic SIR model
The  basic  compartmental  models  to  describe  the  transmission  of  communicable  diseases  are  originated  from a
sequence of papers by W.O. Kermack and A.G. McKendrick, starting from 1927. To introduce the principles of
compartmental  models  using  Mathematica  and  concepts such  as  the  basic  reproduction  number  and  final  size
relation, we use the SIR model as a starting point. The model described in this section is a highly oversimplified
special case of the general one constructed by Kermack and McKendrick that included dependence on the time
elapsed  since  infection;  however  it  is  an  important building block of  more  complex  models.  The  population  is
divided into three classes labeled by S, I, and R. Let SHtL denote the number of individuals who are susceptible to
the disease at time t (measured usually in days), IHtL the number of infected individuals (assuming they are able to
spread  the  disease  by contact  with  susceptibles),  and  RHtL  the  number  of  individuals  who have  been  recovered
from the disease. In the case of influenza, such individuals have immunity for the same strain hence they can not
be  infected  again  during  the  outbreak.  In  a  more  general  context,  RHtL  may  refer  to  the  class  of  individuals
removed  from  the  possibility  of  being  infected  again  or  of  spreading  infection:  they  can  either  be  immune,
isolated or deceased. These characterizations are different from an epidemiological point of view but they result
in  the  same  model  equations.  To  formulate  our  models  in  terms  of  differential  equations,  we  assume  that  the
number of individuals in a compartment is a differentiable function of time. As the outbreak begins, individuals
are  getting  infected  and  recover,  and  the  dynamics  of  this  transition  from one  compartment  to  another  can  be
described by the differential equations.

(1)S¢HtL � - b SHtL IHtL,

(2)I¢HtL � b SHtL IHtL- a I HtL,
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(3)R¢HtL � a IHtL,

with initial conditions

SH0L � S0, IH0L � I0, RH0L � R0.

Figure 1

The basic SIR model

This system is based on several underlying assumptions. An average individual makes bN contact per unit time
which are adequate to transmit the infection to others, where N = SHtL + IHtL + RHtL  is the total population. Since
new infection arises only when an infectious and a susceptible are in contact, the number of new infections per
unit  time  is  bNIHS êNL = bSI.  Such  a  term  called  mass  action  incidence.  We  assume  that  infected  individuals
recover  at  rate  a,  thus  the  sojourn  time  in  the  infected  compartment follows  exponential  distribution  and  the

average duration of the infection is 1

a
. Infected individuals move from the S class to I, and recovered individuals

move  from  I  to  R,  see  Figure  1.  Apart  from  that,  there  is  no  other  entry  or  exit  from  the  compartments:  we
assume the population is closed (no birth, natural death or migration). Furthermore, it is implicitly assumed that
the population is homogenous (all individuals share the same parameters), and randomly mixing. 
System (1)-(3) is non-linear, and there is no explicit analytical expression for the solutions. Nevertheless, we can
give a very detailed analysis of the behaviour of the solutions. First notice that

S£HtL + I £HtL + R£HtL � 0

which is in accordance with our assumption

S HtL + IHtL + RHtL = constant = N

for  all  t.  Integrating (1)  and (2)  we can express the  solutions as SHtL = SH0L  ‰-b Ÿ0
t IHuL „u,  IHtL = IH0L  ‰Ÿ0t b SHuL-a „u,

therefore if the initial values are non-negative, the solutions SHtL and IHtL remain non-negative for all t. The non-
negativity of RHtL follows form the non-negativity of IHtL.  
From S ' HtL < 0 we see that SHtL decreases as t increases, while the number of people in classR is increasing.  The
following  short  program  was  written  to  study  the  properties  of  the  epidemic  curves  for  various  values  of  the
parameters, the population size is normalized to 1.

Manipulate @

DynamicModule @8s0, r0, α, sol, s, i, r, t <,

s0 = 1 − i0; r0 = 0; α = 1 ê l;

sol = NDSolve @

8s ' @t D � −β ∗ s@t D ∗ i @t D,

i ' @t D == β ∗ s@t D ∗ i @t D − α ∗ i @t D,

r ' @t D � α ∗ i @t D,

s@0D � s0, i @0D � i0, r @0D � r0 <, 8s, i, r <, 8t, 0, 150 <D;

Plot @8s@t D ê. sol, i @t D ê. sol, r @t D ê. sol <,

8t, 0, 30 <, PlotStyle → 8Darker @Green D, Red, Blue <,

PlotRange → 80, 1 <, PlotLegend → 8"S", "I", "R" <,

LegendPosition → 80.5, −0.2 <, LegendShadow → None, ShadowBorder → None,

FrameLabel → 8Style @"time Hin days L", Medium D, Style @" ", Medium D<,

Frame → 88True, False <, 8True, False <<D

D,

88i0, 0.001, "I 0: infected at the beginning" <,

0, 0.1, 0.001, ImageSize → Tiny, Appearance → "Labeled" <,

88β, 1.5, " β: transmission rate" <, 0.5, 5, 0.5,

<
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ImageSize → Tiny, Appearance → "Labeled" <,

88l, 3, "1 êα: infectious period Hin days L" <, 1, 7,

1, ImageSize → Tiny, Appearance → "Labeled" <,

Initialization : > HNeeds@"PlotLegends`" DL, SaveDefinitions → True

D

I0: infected at the beginning 0.001

b: transmission rate 1.5

1êa: infectious period Hin daysL 3
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What can be said  about  IHtL? The simulation shows that  IHtL  is  initially increasing,  then after  reaching a  maxi-
mum it is decreasing. Is it true in general?
First let us determine the possible maximum points of IHtL by examining the equation I ' HtL = 0.

I ' HtL = SHtL I HtL b - I HtL a = 0,

SHtL =
a

b
,

whenever IHtL  is  not zero. From the monotonicity of  SHtL  we conclude that IHtL  has its maximum when SHtL = a

b
,

and IHtL can attain its maximum at most once. Also,  IHtL is increasing HI ' HtL > 0), when SHtL > a

b
, and decreasing

when SHtL < a

b
.  The condition SH0L > a

b
 is  sufficient and necessary to start  an outbreak, otherwise the number of

infected  individuals  is  decreasing  from the  very  beginning.  IHtL  is  bounded  and  can  not  oscillate,  thus  it  must
approach a limit at infinity. From (3) it follows that this limit is zero.

2.1. Basic reproduction number
The  basic  reproduction  number,  denoted  by  R0,  is  one  of  the  most  important  parameters  of  an  epidemic.  R0

expresses  the  expected  number  of  secondary  infections  generated  by  a  single  infectious  individual  introduced
into a fully susceptible population. This quantity determines weather a disease can invade a population. For the
SIR model, initially an infected individual generates bSH0L infections per unit time, and given that the duration of

the  infectious  period  is   1

a
,  we  obtain  R0=S(0)β

α
.  Recall  that  for  an  outbreak  to  start  we  had  the  condition

SH0L > a

b
,  which is equivalent with R0>1. Thus, the reproduction number is a threshold quantity.  To control  the
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disease, the reproduction number should be decreased below one.

2.2. Final size relation
Since SHtL is decreasing but remains non-negative , the limit limtØ¶ SHtL = : S¶  exists. Finding this limit provides
important  information,  because this  quantity expresses how many susceptibles  avoided the  infection during the
course  of  the  outbreak,  or  equivalently what  was the  total  number  of  infections.  From  HIHtL + SHtLL£ = - aIHtL  it
follows  I¶ = 0.  Integrating  this  equation  we  have  S¶ - SH0L - IH0L = - a Ÿ0

¶
IHuL „u.  Taking  the  limit  in

SHtL = SH0L‰-b Ÿ0
t IHuL „u,  we  obtain  SH¶L = SH0L‰-b Ÿ0

¶ IHuL„u,  or  logS¶ = logSH0L - b Ÿ0
¶

IHuL „u,  and  finally

logS¶ = logSH0L - b
IH0L+SH0L-S¶

a
. 

Assuming that IH0L is small and neglecting it, we have the final size relation

logJ S¶

SH0L N º -
b

a
HSH0L - S¶L,

logJ SH0L
S¶

N º R0 J1-
S¶

SH0L N.

The relation between the final size of the epidemic and the basic reproduction number is plotted next. 
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2.3. First integral
First integrals (invariants) carry important information about the behaviour of nonlinear systems. In our case, we
are looking for a first integral V HS, IL : �2 Ø�, such that V  is constant along solutions (i.e. solutions live on the
level sets of V ). Let us look for the first integral in the following form:  V HS, IL = S + I - c logS. After differentiat-

ing with respect to t and using the differential equations, one easily gets that along solutions dV

dt
 equals to 0 if and

only  if  c = a

b
.  So  V HSHtL, IHtLL = SHtL + IHtL - a

b
logSHtL  is  a  first  integral.  Since  V HSHtL, IHtLL = constant= C,  we

can  deduce  the  final  size  relation  from  V HSH0L, IH0LL = V HS¶, I¶L  which  gives

SH0L + IH0L - a

b
logSH0L = S¶ + I¶ -

a

b
logS¶ ,  the equivalent of R0 J1 -

S¶

SH0L N º log SH0L
S¶

 after ignoring  IH0L.  By

the first integral, we can determine the peak size of the epidemic. Since IHtL attains its maximum when SHtL = a

b
,

we  obtain  Imax= SH0L + IH0L - a

b
logSH0L - a

b
+

a

b
log a

b
.  Mathematica  can plot  the  level  curves  of  V  on  the  S-I

plane,  thus  we  can  have  a  clear  picture  of  the  phase  curves  of  the  system,  as  can  be  seen  below.  Since S  is
decreasing, as time elapses solutions move to the left on the S-I phase plane along the level curves.
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b: transmission rate 0.63

3. Influenza models - asymptomatic infection, 
vaccination and antiviral treatment

3.1. SEAIR  model
To include  two important  aspects  of  influenza,  we  extend  the  basic  SIR model.  There  is  an  incubation  period
between infection and the  development  of  the  disease so that an infected person becomes infectious.  Thus,  we
introduce an intermediate compartment E. A significant fraction of people who have been infected never develop
symptoms, so they will  never be detected. However, going through an asymptomatic infection, they are capable
of  transmitting the  infection.  Thus the new model  contains the compartments S,  E,  I,  A  and R.  Upon adequate
contact  with  an  infective,  susceptibles  move  into  the  compartment  E.  After  the  incubation  period  (which  has

length 1

mE
), they develop symptoms with probability p, or become asymptomatic infected with probability 1- p.

Asymptomatic  infected  individuals  are  less infectious by a  factor  d.  The  recovery rates are  mI  and mA,  respec-
tively.  See  Figure  2  for  the  flow  chart  of  the  SEAIR  model,  the  arrows  indicate  the  movement  of  individuals
between compartments.
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The chart flow on the SEAIR- model

The model equations take the form

(4)S¢HtL � - b SHtL Hd AHtL + IHtLL,

(5)E¢HtL � b SHtL Hd AHtL + IHtLL - mE EHtL,

(6)I¢HtL � p mE EHtL - mI IHtL,

(7)A¢HtL � H1- pL mE EHtL- mA AHtL,

(8)R¢HtL � mA AHtL+ mI IHtL,

with initial conditions

SH0L � S0, EH0L � E0, IH0L � I0, AH0L � A0, RH0L � R0.

For a single influenza outbreak, we can neglect natural death, birth and migration, which takes place on a much
longer  time  scale.  The  equations  do  not  account  for the  disease  induced  deaths,  but  once  the  mortality rate  is
known, the number of the fatal cases can be easily computed from the total number of infections. 

Taking into account the average times spent is compartments, we can express the expected number of secondary
infections generated by a single infective in a susceptible population as 

R0 = b SH0L J p

mI
+ d

1-p

mA
N.

Parameter Description Value

β transmission rate 0 − 0.00003
1

µI
duration of infectious period

HsymptomaticL
2.85 days

1

µA
duration of infectious period

HasmyptomaticL
4.1 days

1

µE
latency period 1.25 days

δ reduction of infectiveness for

asymptomatic infections

0.071

SH0L susceptibles initially 60 000 − 100 000 ê 100 000
EH0L latent initially 0 − 150 ê 100 000

p probability of developing symptoms 0.5 − 0.7

N population size 100 000

R0 basic reproduction number SH0L β J H1−pL δ

µA
+

p

µI
N
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Typical model parameters

Table  1  summarizes  the  parameter  ranges  used  in  the following  simulation.  Since  a  fraction  of  population  is
expected to have some residual immunity against circulating seasonal strains, we let SH0L vary on a wide range. 

p: prob. of developing symptoms 0.7

b: transmission rate 9.1µ 10-6

E0: exposed at the beginning 50

S0: susceptibles at the beginning 95800

0 20 40 60 80 100
0

1000

2000
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6000

7000

time Hin daysL

ca
se

sê
10

0.
00

0

R0= 1.81533
S•= 25 085.

A

I

3.2. Preseasonal vaccination
The  most  effective  control  strategy  against  influenza  is  vaccination.  For  seasonal  influenza,  vaccination  cam-
paigns precede the outbreak, so from a modeling point of view to incorporate vaccination we simply remove the
immunized population from the susceptible compartment and start the model with a lower value of SH0L.  In the
presence  of  an  intervention  strategy,  the  reproduction  number  is  modified,  and  called  control  reproduction
number,  denoted  by Rc.  Rc  can  be  calculated  analogously  as  R0  in  the  absence  of  vaccination.  To  control  the
outbreak, Rc  should be less than one. However, any reduction in the reproduction number mitigates the severity
of  the  epidemic.  Since  vaccination  is  not  100  %  effective,  in  the  interactive  simulation  next  we  introduce  an
additional parameter q which expresses the chance that vaccination is successful. The initial values are given so
that Rc º 1.4.
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p: prob. of developing symptoms 0.7

b: transmission rate 9.3µ10-6

E0: exposed at the beginning 50

V: protected initially by vaccination 43200

q: vaccine efficacy 0.73
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0

500

1000

1500

2000

time Hin daysL
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se
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10
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00

0

Rc= 1.32322

S•= 37 915.5

A

I

3.3. Antiviral treatment
Another  possible  intervention  strategy against  influenza  is  antiviral  treatment,  specially  when  for  some  reason

there is no vaccine available. Antiviral treatment reduces the duration of the infection to 1

mT
, and also the infectiv-

ity of a treated person by a factor s. Let t be the rate symptomatic infected individuals receive treatment and q is
the rate of relapse. An unsuccessfully treated person can not be treated again, which menans this person moves to
a new class denoted by IU . The compartment of treated individuals is denoted by IT . Then we have the following
model:

(9)S¢HtL � - b SHtL H d AHtL + IHtL + s ITHtL + IUHtLL,

(10)E¢HtL � b SHtL Hd AHtL+ IHtL+ s IT HtL + IUHtLL - mE EHtL,

(11)I¢HtL � p mE EHtL- mI IHtL - t I HtL,

(12)IT
¢HtL � t IHtL - q ITHtL - mT IT HtL,

(13)IU
¢HtL � q ITHtL - mI IU HtL,

(14)A¢HtL � H1- pL mE EHtL- mA AHtL,

(15)R¢HtL � mA AHtL + mI IHtL+ mT IT HtL + mI IU HtL ,

whit initial conditions

SH0L � S0, EH0L � E0, IH0L � I0, IT H0L � IT0, IU H0L � IU0, AH0L � A0, RH0L � R0.
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The control reproduction number for this model can be computed as :

Rc = b SH0L p
1

mI + t
+

t

mI + t

s

q + mT

+
q

q + mT

1

mI

+
H1- pL d

mA

p: prob. of developing symptoms 0.7

b: transmission rate 9.µ 10-6

E0: exposed at the beginning 50

t: treatment rate 0.3

q: relapse rate 0.2

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

time Hin daysL

ca
se

sê
10

0.
00

0

Rc= 1.40742
S•= 48 315.5

A

I

3.4. Other interventions
There  are  other  possible  intervention  strategies,  such  as  lowering  the  contact  number  (and  thus  b)  by  school
closures  or  campaigning  to  avoid  crowded  places.  Prophylaxis  can  be  given  to  strategic  personnel  or  close
contacts  of  symptomatic  infectives.  Such  measures  or  the  combinations  of  them  can  be  incorporated  into the
SEAIR model. For various simple models with vaccination and antiviral treatment, we refer to  Arino et al. 2006,
2008, Brauer 2008. 

4. A pandemic model with age structure and delayed 
vaccination campaign
In the spring of 2009 in Mexico, a new influenza strain appeared and spread quickly all over the world. Vaccina-
tion campaigns started all  around the  world  as a  primary mitigation strategy against the  first  wave of the  2009
A(H1N1)v  pandemic,  though  in  several  countries  the  vaccine  became  available  only  in  a  later  phase  of  the
pandemics or with limited supplies. In a pandemic situation it is typical that there is an ongoing race between the
vaccination  campaign  and  the  dynamics  of  the  outbreak,  which  is  a  more  challenging  modeling  problem than
preseasonal vaccination.

We  developed  a  compartmental  model  based  on  the  SEIR  model  (S:  susceptible,  E:  exposed,  I:  infected,  R:
recovered) incorporating three important aspects of pandemic influenza to make the model more realistic.
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recovered) incorporating three important aspects of pandemic influenza to make the model more realistic.
i)  Age structured models  are  necessary for  multiple reasons:  various age groups have different  contact profiles
thus playing different roles in transmitting the disease, and several important parameters are age dependent. We
introduced age structure with five age groups (0-9, 10-19, 20-39,
40-64 and 65+ years old), where the contacts between age groups are derived from the European survey Mossong
et al. 2008. The importance of age specificity has been addressed in several studies (Longini & Halloran 2005,
Medlock & Galvani 2009).
ii)  According  to  serological  studies,  it  takes  about  14  days  for  the  human  body  to  develop  antibodies  after
vaccination to acquire immunity. During this intermediate period an individual might contract the disease. This
time delay can be significant when vaccination is given during the outbreak.
ii) Optimal distribution of vaccines among different groups has been studied. Here we focus on the effect of the
scheduling of immunization of age groups.

We compare five vaccination strategies which differ in prioritizing the age groups in the timing of their vaccina-
tion. We targeted a 60 % vacination coverage by the end of a three months vaccination campaign. The model has
been discussed in detail in Knipl & Röst 2011, in the sequel we outline the main results and provide a Mathemat-
ica code that can be used to simulate various scenarios.

4.1. Model description

Figure 3

Flow chart without age structure

Since we model a single pandemic wave, natural death, birth, migration are ignored. We assume no pre-existing
immunity in the first four age groups, and 20 % reduction in susceptibility in the elder age group. Since the latent
period  is  relativily  short  (1.25  days),  we  neglect  the  small  probability  of  someone  receiving  the  vaccine  while
bleing in class E. Vaccination is only administered for individulas in the class S until we reach the targeted 60 %
population  levele  coverage.  Vaccinees  move  into  the classW  for  an  itermediate  period  during that  infection  is
still  spossible.  After  14  days  they become  either  immune  with  probability  q  and  move  into  class  RW  or  if  the
vaccine was ineffective,  they move into SV  meaning that they are still  susceptible to the disease despite having
been  vaccinated.  Such  individulas  will  not  receive  the  vaccine  again,  but  still  can  contract  the  disease.  It  is
assumed in  the  baseline  scenario that  the  same epidemiological  parameters  apply to these individulas as to the
non-vaccinated (mEV

= mE andmIV
= mI, the durations of the incubation and the infective period), and we assume

that  vaccinated  infected  individuals  (IV )  are  less  intefctious  by  the  reduction  parameter  d  ).  For  values  of  the
parameters of the baseline scenario, see Table 2.
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Parameter Description Value
1

µE
latent period 1.25 days

1

µI
infectious period 3 days

qi, i = 1, ... 4 vaccine efficiency for

0 − 65 years old

0.8

q5 vaccine efficiency for

65 + years old

0.6

βi,j transmission rate see 4.3.

1

µW
time to develop antibodies 14 days

δ reduction in infectiousness 0.75

The key Model parameters. Sources : Balcan et al. 2009,

Basta et al. 2008, Nichol 1998

We have 10 different classes for each age groups, and 5 age groups, so overall there are 50 compartments. The
corresponding system of differential equations follow, where the upper index i,  i = 1,... 5 denotes the age groups,

liHtL =⁄j=1
5 bi, j JI jHtL + d IV

j HtLN  denotes the  force  of  infection,  and V i = V iHtL  is  the  prescribed vaccination rate

function determined by the specific strategy.

(16)Si ' HtL = -SiHtL liHtL- V iHtL,

(17)Ei ' HtL = ISiHtL + W iHtLM liHtL - mEi EiHtL,

(18)I i ' HtL = mEi EiHtL - mI i I iHtL,

(19)Ri ' HtL = mI i I iHtL,

(20)W i ' HtL = V iHtL - W iHtL liHtL - mW W iHtL,

(21)SV
i ' HtL = H1- qiL mW W iHtL - SV

i HtL liHtL,

(22)EV
i ' HtL = SV

i HtL liHtL - mEV
i EiHtL,

(23)IV
i ' HtL = mEV

i EiHtL- mIV
i I iHtL,

(24)RV
i ' HtL = mIV

i I iHtL.

Our model starts at t = 0, time is measured in days. We assume that the initial number of infected individuals is
low. The time T refers to the delay in start of the campaign, meaning that the vaccination starts on day T . In the
baseline  scenario  it  takes  90  days  to  reach  the  targeted  60%  vaccination  coverage.  Vaccination  strategies  are
compared  to  each  other  by  two  outcome  measures:  the overall  attack  rates  and  mortality.  Attack  rate  is the
cumulative incidence of the infection during the whole time period of the pandemic wave.

4.2. Age structure
The  age  distribution  of  the  population  is  based  on  Eurostat  2006  (see  Table  3).  We  can  observe  the  contact
structure  of  the  population  in  the  contact  matrix  C HTable 4L,  where  the  elements  ci, j  represent  the  number  of

contacts of an individual in age group i has with individuals in age group j, is derived from Mossong et al. 2008
by applying an averaging and symmetrization method. 

N1 N2 N3 N4 N5

10500 12000 28500 32500 16500
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Age distribution of the population per 100 000 (source: Eurostat 2006)

Table 3

C= 

5, 3580 1, 0865 3, 0404 2, 4847 0, 8150
0, 9507 10, 2827 2, 8148 3, 6215 0, 7752
1, 1201 1, 1852 6, 5220 4, 1938 0, 9016
0, 8027 1, 3372 3, 6776 5, 2632 1, 3977
0, 5187 0, 5638 1, 5573 2, 7531 2, 0742

Contact matrix for the five age groups, constructed by the data of Mossong et al. 2008 and  Eurostat 2006

Age specific contact rates can be converted to age specific transmission rates bi, j as follows. The average number

of  contacts  made by a  member  of  the  age group i with a  member  of  age group j  is  ci, j.  At  time t,   S jHtL
N j  is  the

proportion of susceptibles, 
SV

j HtL
N j  is the proportion of vaccinated susceptibles, W jHtL

N j  is the proportion of those who

have already been vaccinated but not yet protected in age group j. From this we obtain that the rates of infections
in  age  group  j  by  individuals  in  age  group  i,  and  letting  b  be  the  transmission  parameter  which  involves  the

normalization  of  the  contacts  to  unit  time  and  the  infectiousness  of  the  virus,  bi, j = b
ci, j

N j  gives  the  correct

parameters used in the differential equations.

4.3. Reproduction number

The elements of  the next generation matrix  N  are given by the formula HNLi, j = ni, j = B bi, j S0
j

mI
i F

i, j
,  expressing the

number of  infections in age group j  generated by an infected individual of  age group i  during the course of  its
infection  in  the  early  phase  of  the  pandemic.  The  reproduction  number  is  the  largest  eigenvalue  of  the next
generation matrix (see Diekmann 2010) . We can scale the matrix by b to achieve any value of the reproduction
number. In the baseline scenraio, we consider R0=1.4, which corresponds to b = 0.0334.

4.4. Vaccination strategies
We evaluated five different vaccination scheduling, which are described below.

'A' - Conventional strategy 
It  describes  a  common  vaccination  campaign  which  are  applied  in  many  countries  in  epidemic  situations. It
consists of three phases:

Phase 1: 42 days, vaccination of high risk groups, elder people, emergency and health care personel, workers of
critical infrastructure facilities.
Phase 2: 18 days long, vaccination of children under 19.
Phase 3: In the last 30 days, vaccination is given to the general population such that we achieve the 60 % cover-
age by the end of this phase in each age groups.

'B' - Uniform strategy
This is a universal vaccination strategy, when there are no prioritized age groups, so we assume that vaccination
is completely random and 0.667% of each age group is vaccinated daily, throughout 90 days.

'C' - Elderly first
Phased vaccination of elder people (older than 65) first up to 60 % coverage (15 days) before vaccine is delivered
to the other part of the population (75 days). 

'D' - Children first
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Phased vaccination of children (younger than 19) first up to 60 % coverage (20 days) before vaccine is delivered
to the other part of the population (70 days).

'E' - By contacts
Here we take adventage of  the full  contact structure of  the five age groups, and vaccinate them in five phases
according to the decreasing order of their total contact numbers (according to the contact matrix).
Phase 1: 10-19 years old, 11 days
Phase 2: 20-39 years old, 26 days
Phase 3: 0-9 years old, 10 days
Phase 4: 40-64 years old, 29 days
Phase 5: 65 and elder, 15 days

4.5. Main results
We have evaluated and compared the above described five strategies for  various delays in start of  the vaccina-
tion. Our main outcome measures are the (age specific) attack rates.

Figure 4

Total attack rates for the 5 strategies with various delays in start of the vaccination campaign

Figure 4 shows the attack rates for the five strategies. We consistently obtained the lowest attack rates by strategy
E, followed by D,  B,  A  and C,  for  all  values of T . However,  an unbalanced age specific mortality pattern may
cause that not necessarily the lowest attack rate corresponds to the lowest fatality rate.

Figure 5

Age specific attack rates for the 5 strategies (A-E) and in the absence of vaccination (0). The colors indicate the 
increases inthe attack rates for longer delays in start of the campaign (T = 0, T = 25 and T = 50).

Younger age groups tend to have higher contact numbers than others, which leads to the interesting phenomenon
that  sometimes  an  age  group  benefits  from having vaccinated  later,  since  the  early  vaccinated  key groups  can
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that sometimes an age group benefits from having vaccinated later, since the early vaccinated key groups can
provide  indirect  protection.  Such  results  are  detailed  in  Knipl  and  Röst  2011,  together  with  a  comprehensive
sensitivity analysis.  Next  we  present  a  Mathematica code  that  simulates this  age structured  SEIR-model model
with  five  age  groups.  It  includes  the  full  structure  of  vaccination  (as  in  Figure  3),  where  the  functions  that
describe  vaccination  are  temporarily  set  according  to  a  uniform  strategy  (we  do  not  give  priority  to  any  age
group).  One can easily define  any other vaccination strategy, calculate  the  corresponding vaccination functions
and incorporate them into the code, and then run simulations to explore the possible outcomes. 

RunModel @q_, T0_, brn_, e30_ D : =

Module @

8sol, NGMu, β, AR, ARALL, e0, s0, l, h, T, beta, δ, vf, s, s1, s2, s3, s4, s5, w, w0,

w1, w2, w3, w4, w5, e, e1, e2, e3, e4, e5, ii, i0, ii1, ii2, ii3, i i4, ii5, r,

r0, r1, r2, r3, r4, r5, rw, rw0, rw1, rw2, rw3, rw4, rw5, sv, sv0 , sv1, sv2, sv3,

sv4, sv5, ev, ev0, ev1, ev2, ev3, ev4, ev5, iv, iv0, iv1, iv2, i v3, iv4, iv5, rv,

rv0, rv1, rv2, rv3, rv4, rv5, model, t, c, ps, ag = 5, µw = 1 ê 14, µe = 1 ê 1.25,

µi = 1 ê 3, µev = 1 ê 1.25, µiv = 1 ê 3, n = 810 500, 12 000, 28 500, 32 500, 16 500 <<,

c =

885.358, 1.0865, 3.0404, 2.4847, 0.815 <,

80.9507, 10.2827, 2.8184, 3.6215, 0.7752 <,

81.1201, 1.1852, 6.522, 4.1938, 0.9016 <,

80.8027, 1.3372, 3.6776, 5.2632, 1.3977 <,

80.5187, 0.5638, 1.5573, 2.7531, 2.0742 <<;

ps = Total @nD;

w0 = ConstantArray @0, ag D;

i0 = ConstantArray @0, ag D;

r0 = ConstantArray @0, ag D;

rw0 = ConstantArray @0, ag D;

sv0 = ConstantArray @0, ag D;

ev0 = ConstantArray @0, ag D;

iv0 = ConstantArray @0, ag D;

rv0 = ConstantArray @0, ag D;

s = 8s1@t D, s2 @t D, s3 @t D, s4 @t D, s5 @t D<;

w = 8w1@t D, w2 @t D, w3 @t D, w4 @t D, w5 @t D<;

e = 8e1@t D, e2 @t D, e3 @t D, e4 @t D, e5 @t D<;

ii = 8ii1 @t D, ii2 @t D, ii3 @t D, ii4 @t D, ii5 @t D<;

r = 8r1 @t D, r2 @t D, r3 @t D, r4 @t D, r5 @t D<;

rw = 8rw1 @t D, rw2 @t D, rw3 @t D, rw4 @t D, rw5 @t D<;

sv = 8sv1 @t D, sv2 @t D, sv3 @t D, sv4 @t D, sv5 @t D<;

ev = 8ev1 @t D, ev2 @t D, ev3 @t D, ev4 @t D, ev5 @t D<;

iv = 8iv1 @t D, iv2 @t D, iv3 @t D, iv4 @t D, iv5 @t D<;

rv = 8rv1 @t D, rv2 @t D, rv3 @t D, rv4 @t D, rv5 @t D<;

model = 8s, w, e, ii, r, rw, sv, ev, iv, rv <;

e0 = 80, 0, e30, e30, 0 <;

s0 = n − e0;

H∗Here you can set all the four

parameters necessary to describe a vaccination strategy. ∗L

δ = 0.75; H∗Previously unsuccessfully vaccinated,

infected individuals are considered to be less infective. ∗L

l = 890, 90, 90, 90, 90 <; H∗Determine the length of the

duration of vaccination in each age group. Note that

vaccination in various age groups can run parallel, as well. ∗L

h = Table @60 000 ê l @@i DD, 8i, 1, ag <D;

H∗Set the amount of vaccine provided for the age groups per day. ∗L

T = T0 + 80, 0, 0, 0, 0 <; H∗List 'T' is for

scheduling: how many days after the outbreak should vaccina tion

begin in the age groups. T0 is the number of days elapsed

L
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after the outbreak until the global start of the campaign. ∗L

NGMu= Table @Hc@@i, j DD ê n@@j DDL ∗ s0@@j DD ê µi, 8i, 1, ag <, 8j, 1, ag <D;

β = brn ê Max@Map@Re, Eigenvalues @NGMuDDD;

beta = Table @β ∗ c@@i, j DD ê n@@j DD, 8i, 1, ag <, 8j, 1, ag <D;

vf =

Table @h@@i DD ∗ UnitStep @t − T@@i DDD ∗ UnitStep @T@@i DD − t + l @@i DDD, 8i, 1, ag <D;

sol =

NDSolve @

Union @

Table @

D@s, t D@@i DD ==

−s@@i DD ∗ Sum@beta @@j, i DD ∗ Hii @@j DD + δ ∗ iv @@j DDL, 8j, 1, ag <D − vf @@i DD

, 8i, 1, ag <D,

Table @

D@w, t D@@i DD � vf @@i DD −

w@@i DD ∗ Sum@beta @@j, i DD ∗ Hii @@j DD + δ ∗ iv @@j DDL, 8j, 1, ag <D − µw∗ w@@i DD

, 8i, 1, ag <D,

Table @

D@e, t D@@i DD � Hs@@i DD + w@@i DDL ∗

Sum@beta @@j, i DD ∗ Hii @@j DD + δ ∗ iv @@j DDL, 8j, 1, ag <D − e@@i DD ∗ µe

, 8i, 1, ag <D,

Table @

D@ii, t D@@i DD � e@@i DD ∗ µe − ii @@i DD ∗ µi

, 8i, 1, ag <D,

Table @

D@r, t D@@i DD � ii @@i DD ∗ µi

, 8i, 1, ag <D,

Table @

D@rw, t D@@i DD � q ∗ µw∗ w@@i DD

, 8i, 1, ag <D,

Table @

D@sv, t D@@i DD � H1 − qL ∗ µw∗ w@@i DD −

sv @@i DD ∗ Sum@beta @@j, i DD ∗ Hii @@j DD + δ ∗ iv @@j DDL, 8j, 1, ag <D

, 8i, 1, ag <D,

Table @

D@ev, t D@@i DD � sv @@i DD ∗

Sum@beta @@j, i DD ∗ Hii @@j DD + δ ∗ iv @@j DDL, 8j, 1, ag <D − µev ∗ ev@@i DD

, 8i, 1, ag <D,

Table @

D@iv, t D@@i DD � µev ∗ ev@@i DD − µiv ∗ iv @@i DD

, 8i, 1, ag <D,

Table @

D@rv, t D@@i DD � µiv ∗ iv @@i DD

, 8i, 1, ag <D,

Table @Hs@@i DD ê. t → 0L � s0@@i DD, 8i, 1, ag <D,

Table @Hii @@i DD ê. t → 0L � i0 @@i DD, 8i, 1, ag <D,

Table @He@@i DD ê. t → 0L � e0@@i DD, 8i, 1, ag <D,

Table @Hr @@i DD ê. t → 0L � r0 @@i DD, 8i, 1, ag <D,

Table @Hw@@i DD ê. t → 0L � w0@@i DD, 8i, 1, ag <D,

Table @Hrw@@i DD ê. t → 0L � rw0 @@i DD, 8i, 1, ag <D,

Table @Hsv @@i DD ê. t → 0L � sv0 @@i DD, 8i, 1, ag <D,

Table @Hiv @@i DD ê. t → 0L � iv0 @@i DD, 8i, 1, ag <D,

Table @Hev@@i DD ê. t → 0L � ev0 @@i DD, 8i, 1, ag <D,

Table @Hrv @@i DD ê. t → 0L � rv0 @@i DD, 8i, 1, ag <D

D

, Flatten @Table @�@@0DD &ê@ variable,

DD D
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8variable, 8s, e, ii, r, w, rw, sv, iv, ev, rv <<DD, 8t, 0, 250 <D;

AR= Flatten @Table @1 − HHHs@@i DD ê. sol L ê. t → 200L +

HHsv @@i DD ê. sol L ê. t → 200L + HHrw@@i DD ê. sol L ê. t → 200L +

HHw@@i DD ê. sol L ê. t → 200LL ê n@@i DD, 8i, 1, ag <D;

ARALL= Total @AR∗ nD ê Total @nD;

8HTable @�@@0DD &ê@ variable, 8variable, 8s, e, ii, r, w, rw, sv, iv, ev, rv <<D ê.

sol L@@1, 83, 8 <DD, AR, ARALL, h, l, T <

D

vaccinatedPopulation @h_, l_, T_, t_, ag_ D : = Table @

Piecewise @880, t <= T@@i DD<, 8h@@i DD Ht − T@@i DDL, T @@i DD + l @@i DD >= t > T@@i DD<,

8h@@i DD l @@i DD, t > T@@i DD + l @@i DD<<D, 8i, 1, ag <D

plotColors = 88Thick, RGBColor @0., 0.66, 0.05 D<,

8Thick, RGBColor @1, 0.58, 0.066 D<, 8Thick, RGBColor @0.25, 0., 0.8 D<,

8Thick, RGBColor @1., 0., 0. D<, 8Thick, RGBColor @0., 0., 0. D<<;

tableColors = 8RGBColor @0.4, 1, 0.66 D, RGBColor @1, 0.81, 0.53 D,

RGBColor @0.6, 0.7, 1. D, RGBColor @1., 0.6, 0.6 D, RGBColor @0.75, 0.75, 0.75 D<;

ageGroups = 8"0 −9", "10 −19", "20 −39", "40 −64", "65 −" <;

Manipulate @

DynamicModule @

8solution, ar, overallAR, h, l, T, attackRates,

t, vacc = 0.6, ag = 5, n = 810 500, 12 000, 28 500, 32 500, 16 500 <,

ii, ii1, ii2, ii3, ii4, ii5, iv, iv1, iv2, iv3, iv4, iv5 <,

8solution, ar, overallAR, h, l, T < = RunModel @q, T0, brn, e30 D;

attackRates = Round@�, 0.01 D &ê@ H100. Flatten @8ar, overallAR <DL;

ii = 8ii1, ii2, ii3, ii4, ii5 <;

iv = 8iv1, iv2, iv3, iv4, iv5 <;

Plot @

Evaluate @

Table @Hsolution @@1, i DD@t D + solution @@2, i DD@t DL, 8i, 1, ag <DD,

8t, 0, 150 <, PlotRange → 80, 1200 <, PlotStyle → plotColors,

ImageSize → 8300, 250 <, AspectRatio → 0.9, AxesLabel −> 8"t Hdays L", "cases" <,

PlotLabel → Grid @88Style @"AR=", Large, 16 D, Style @overallAR , Large, 16 D< <D,

PlotLegend → 8"0 −9", "10 −19", "20 −39", "40 −64", "65 +" <,

LegendBorder → White, LegendShadow → None, LegendPosition −> 80.6, −0.4 <D

D,

Grid @

8

8"vaccine efficacy", Control @

88q, 0.6, "" <, 0.5, 0.9, 0.01, ImageSize → Small, Appearance → "Labeled" <D<,

8"starting time of vaccination", Control @

88T0, 40, "" <, 0, 50, 5, ImageSize → Small, Appearance → "Labeled" <D<,

8"basic reproduction number", Control @88brn, 1.55, "" <, 1.2,

1.7, 0.01, ImageSize → Small, Appearance → "Labeled" <D<,

8"infected initially", Control @88e30, 7, "" <, 0, 20, 1,

ImageSize → Small, Appearance → "Labeled" <D<

<, Alignment → Left

D, Initialization : > HNeeds@"PlotLegends`" DL, SaveDefinitions → True

D
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vaccine efficacy 0.6

starting time of vaccination 40

basic reproduction number 1.55

infected initially 7
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4.6. Application to the first wave of A/H1N1 in Hungary
Here we briefly illustrate how this 50-compartment model can be applied in a real life situation. Our example is
the  first  wave  of  A/H1N1  in  Hungary.  Epidemic  curves  were  reconstructed  using  the  public  reports  of  the
National Center of Epidemiology (www.oek.hu). For the simulations, we fixed the epidemiological parameters as
in  Table  2,  employed  publicly  available  vaccination data  (www.jarvany.hu)  and  performed  a  grid  search  with
respect  to  the  basic  reproduction  number  and  the  reduction  of  contacts  during  holidays  to  find  the  best  fit  by
means  of  ordinary  least  square  method.  The  result  can  be  seen  in  Figure  6,  where
the first day corresponds to August 24 andR0~1.3.  The  vaccination  started  on  day  36,  the  red  curve  was  made
about  day 80,  so that  was a  prediction  for  the  part of  the  epidemic  curve  after  that  day.  The model  accurately
predicted the peak size of the outbreak and also that the number of infections would not increase after Christmas
break.
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Hungarian epidemic curve and model prediction

5. Further advanced models
There are many more features that one can easily incorporate into the models and the codes presented here. For
example,  we  assumed  in  all  the  models  that  the  duration  of  latent  and  infectious  periods  follow  exponential
distributions. By the so-called linear chain trick, by artificially dividing a period into smaller subperiods, having
exponential distribution in each, we can model gamma-distributed infectious or latency periods, and still having
ordinary differential equations. The 14 days period that required to develop immunity after vaccination was also
assumed  to  follow  exponential  distribution,  however the  fixed  14  days  assumption  seems  more  realistic. By
assuming that  for  every individual  it  takes  exactly 14  days to  acquire  immunity,  we obtain  a  delay differential
equation, which is mathematically rather complicated. In particular, for classW  we have the equation

W ' HtL = V HtL - lHtL - V Ht - 14L ‰-Ÿt-14
t

lHsL „s,

where we omitted the indices and l(t) is the infection term that expresses the rate recent vaccinees contract the
infection, and may depend on the state of many other compartments. This is a differential equation with discrete
and  distributed  delays.  Another  modeling  approach  also  leads  to  differential  equations  with  distributed  and
discrete delays, namely the age since infection model of antiviral treatment, which takes into account the window
of opportunity for initiating treatment and the dependence of the treatment rate on the time elapsed since infec-
tion. This model family have been studied in detail in Alexander et al. 2007, 2008 Moghadas et al. 2008, 2009,
where the possibility of emergence of a resistant strain and antiviral prophylaxis have also been considered. The
command 'NDSolve' we used in this paper can handel differential equations with discrete delays, i.e. equations of
the form

x ' HtL = f HxHt - T1L, xHt - T2L, ..., xHt - TkLL.

Then, instead of the initial value x[0] ã c , the initial history function x[t /; t § 0] ã h[t] should be specified in
the  ' NDSolve '  command.  At  the  moment,  'NDSolve'  does  not  seem  to  be  able  to  handle  disributed  delays.
However, the integral terms that represent the distributed delay can be approximated by their Riemann sums, for

example Ÿt-14
t

lHsL „ s º⁄j=0
13 lHt - jL. This way we can construct an approximative equation 

W ' HtL = V HtL - lHtL - V Ht - 14L ‰-⁄j=0
13 lHt- jL

with several discrete delays that can be treated by 'NDSolve'.
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Appendix
Here we shortly introduce how to use Wolfram Mathematica commands for simulations. To solve a differential
equation analytically,  one may use the command 'DSolve'.  Since most of  the systems used in  epidemiology are
not  analytically  solvable,  we  mostly  treat  them numerically  by  using  'NDSolve'.  An  example  is  detailed here,
however, one can find many other options in the Help Menu. Comments can be left with (* text *) in any Mathe-
matica code.

Clear @s, i, r D

α = 1 ê 3; β = 1.5;
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H∗first give the parameters used in the differential equation s∗L

sys = NDSolve @

H∗the differential equation system is labeled,

here by 'sys', for further references ∗L

8s ' @t D � −β ∗ s@t D ∗ i @t D,

H∗the differential equation system consists of 3 equations,

which are divided from each other by commas ∗L

i ' @t D == β ∗ s@t D ∗ i @t D − α ∗ i @t D,

r ' @t D � α ∗ i @t D,

i @0D � 0.001, r @0D � 0,

s@0D � 1 − 0.001 H∗initial values are given here ∗L

<,

8s, i, r <,

H∗variables are given here we solve the system for. ∗L

8t, 0, 150 <

H∗independent variable must be given with its domain ∗L

D

88s → InterpolatingFunction@880., 150.<<, <>D,
i → InterpolatingFunction@880., 150.<<, <>D,
r → InterpolatingFunction@880., 150.<<, <>D<<

To  plot  functions  on  the  screen  the  command  'Plot'  can  be  used,  see  below.  The  Mathematica  documentation
center (see Help menu) provides comprehensive information about the several additional options available.  

Plot @i @t D ê. sys, 8t, 0, 40 <D
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A  very  useful  and  convenient  command  to  observe  the outcomes  of  a  model  for  varying  input  parameters  is
'Manipulate'. By simply moving the sliders we can control as many parameters as we wish.

Manipulate @

DynamicModule @8α, sys, s, i, r, s0, r0 <,

s0 = 1 − i0; r0 = 0; α = 1 ê l; H∗the parameters i0,

β and l are not given here, they will be varied on the sliders ∗L

sys = NDSolve @

8s ' @t D � −β ∗ s@t D ∗ i @t D,

i ' @t D == β ∗ s@t D ∗ i @t D − α ∗ i @t D,

r ' @t D � α ∗ i @t D,

s@0D � s0, i @0D � i0, r @0D � r0 <, 8s, i, r <, 8t, 0, 150 <D;

Plot @8s@t D ê. sys, i @t D ê. sys, r @t D ê. sys <, 8t, 0, 30 <,

H∗several curves can be plotted on the same figure ∗L

D
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PlotStyle → 8Darker @Green D, Red, Blue <, PlotRange → 80, 1 <D

H∗specification of the figure,

for example the colors of the curves and the domain of the y −axis. ∗L

D,

88i0, 0.001, "I 0: initially infected" <, 0, 0.005, 0.001,

ImageSize → Tiny, Appearance → "Labeled" <, H∗first the variable,

the initial value and the title which will be displayed next t o the slider

is specified here in this order, then the range and the step si ze follow ∗L

88β, 1.5, " β: transmission rate" <, 0.5, 5, 0.5,

ImageSize → Tiny, Appearance → "Labeled" <,

88l, 3, "1 êα: duration of the infection Hin days L" <,

1, 7, 1, ImageSize → Tiny, Appearance → "Labeled" <,

Initialization : > Hi0 = 0.001; Needs @"PlotLegends`" DL, SaveDefinitions → True

D

I0: initially infected 0.001

b: transmission rate 1.5

1êa: duration of the infection Hin daysL 3
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