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The dynamics generated by the delay differential equation _xðtÞZKmxðtÞC f ðxðtKtÞÞwith
unimodal feedback is studied. The existence of the global attractor is shown and bounds of
the attractor are given.We find attractive invariant intervals and give sufficient conditions
that guarantee that all solutions enter the domain where f 0 is negative with respect to a
positive equilibrium, so the results for delayed monotone feedback can be applied to
describe the asymptotic behaviour of solutions. In particular, the existence of heteroclinic
orbits from the trivial equilibrium to a periodic orbit oscillating around the positive
equilibrium is established. Numerical examples using Nicholson’s blowflies equation and
the Mackey–Glass equation are provided to illustrate the main results.
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1. Introduction

The delay differential equation
_xðtÞZKmxðtÞC f ðxðtKtÞÞ; mO 0; ð1:1Þ

has been widely investigated in the literature. The global dynamics, structure of
the global attractor, existence and properties of periodic orbits have been discussed
in detail for the monotone positive and the monotone negative feedback cases (see
Walther (1995), Krisztin et al. (1999), Krisztin (2000), Krisztin &Walther (2001)
and Aschwanden et al. (2006) and references thereof ). Some Poincaré–Bendixson
type theorems were proved in Mallet-Paret & Sell (1996), showing that chaotic
behaviour is not possible in the case of monotone feedback.

On the other hand, for the so-called unimodal feedback (when f(x) has exactly
one extremum and changes the monotonicity at only one point), time delay
may lead to complex dynamics, as shown in Lani-Wayda (1999) and many
Proc. R. Soc. A (2007) 463, 2655–2669

doi:10.1098/rspa.2007.1890
Published online 31 July 2007
uthor and address for correspondence: Analysis and Stochastics Research Group, Hungarian
demy of Sciences, Bolyai Institute, University of Szeged, 6720 Szeged, Aradi vértanúk tere 1,
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others. Well-known model equations including the form (1.1) with unimodal
feedback can be found, e.g. the Nicholson’s blowflies equation (Smith 1995),
where f(x)Zax exp(Kbx) or the Mackey–Glass equation (Mackey & Glass 1977),
where f ðxÞZax=ð1CxnÞ, the latter is also a nice example of delay-induced
chaotic behaviour.

Our goal here is to initiate a systematic study of equation (1.1) with the
unimodal feedback in the most challenging case where the unique positive
equilibrium is larger than the critical point of the feedback f. Therefore, full
understanding of the asymptotic behaviour of a trajectory requires description of
the transition process of this trajectory from the domain where f 0 is positive to
the domain where f 0 is negative; as such the approach to be developed here can
be regarded as a ‘domain-decomposition method’ for the study of dynamics of
such a simple-looking equation with nonlinearity that changes its monotonicity
multiple times. A natural and important first step is to determine when such a
system admits an invariant closed interval (with respect to the pointwise
ordering in the usual phase space) that attracts every non-trivial trajectory, and
that belongs to the domain where f 0 is negative. This then enables us to apply the
powerful theory of delay differential equations with negative feedback such as the
Poincaré–Bendixson theorem of Mallet-Paret and Sell. It should be emphasized
that the existence of a non-trivial invariant interval is shown to exist for a very
large parameter range, but this interval falls into the domain where f 0 is negative
only under further restrictions: our numerical examples provided at the end of
this paper clearly show that without these further restrictions chaotic behaviours
can be easily observed.

The paper is organized as follows. We formulate the problem and present
the basic definitions and notations of the background theory in §2. In §3, we
prove the existence of an attractive invariant interval. This gives bounds for
the global attractor of the generated semiflow. We are concerned with the
stability properties of equilibria in §4. Many papers are devoted to the global
attractivity of the positive equilibrium; the equivalence of the local and the
global stability is still an open and interesting problem (for an overview and
related results, see Liz et al. (2002) and references therein). The existence of
heteroclinic orbits from the trivial equilibrium to a periodic orbit oscillating
around the positive equilibrium is shown in §5 and finally §6 provides a
collection of some examples and numerical simulations based on the well-
known Nicholson’s blowflies equation and the Mackey–Glass equation to
illustrate the main results.
2. Preliminaries

We call the delay feedback function f : RC
0 /R

C
0 unimodal, if

f ðxÞR0 for all xR0; f ð0ÞZ 0; and there is a unique x0O0

such that f 0ðxÞO0 if 0%x!x0; f
0ðx0ÞZ 0 and f 0ðxÞ!0 if xOx0;

moreover f 00ðxÞ!0 if 0%x%x0 and lim
x/N

f ðxÞZ 0:

ðUÞ
Proc. R. Soc. A (2007)
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Figure 1. Profile of a unimodal feedback, the straight line is mx.
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A schematic of such a function is given in figure 1. It is easy to check that the
functions f(x)Zax exp(Kbx) and f ðxÞZax=ð1CxnÞ are unimodal. We study
equation (1.1), where m, tO0 and f(x) satisfies (U ).

Let CZCð½Kt; 0�;RÞ denote the Banach space of continuous functions
f:[Kt,0] with the norm given by

jjfjjZ max
Kt%s%0

jfðsÞj:

The Banach space C contains the cone

CCZ ff2C : fðsÞR0; Kt%s%0g;
which generates various order relations on the space C, denoted by usual
notations such as !, % and /. In particular, f%j holds in C if and only if
f(s)%j(s) for all s2[Kt,0]; f!j if and only if f%j and fsj; f/j if and
only if f(s)!j(s) for all s2[Kt,0]. Thus, we can define the order intervals
½f;j�dfz2C : f%z%jg if f%j and ðf;jÞdfz2C : f/z/jg if f/j.

Every f2CC determines a unique continuous function xZxf: [Kt,N)/R,
which is differentiable on (0,N), satisfies (1.1) for all tO0, and x(s)Zf(s) for all
s2[Kt,0]. It is easy to see that if (U ) is satisfied then the cone CC is positively
invariant, i.e. a solution xf(t) with non-negative initial function f remains non-
negative for all tR0. Hereafter, by a solution of (1.1) we always mean a non-
negative solution. The segment xt2C of a solution is defined by the relation
xt(s)Zx(tCs), where s2[Kt,0] and tR0. Then, x0Zf and xt(0)Zx(t). The
family of maps

F : ½0;NÞ!CCHðt;fÞ/xtðfÞdFtðfÞ2CC;

defines a continuous semiflow on CC. Sometimes, we use the notation xf(t) for a
solution with initial function f2CC, thus xft denotes the segment of such a
solution. We shall also use the functional 9 : C/R given by

9ðfÞdKmfð0ÞC f ðfðK1ÞÞ;
Proc. R. Soc. A (2007)
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for any f2C. So equation (1.1) can be written as x 0ðtÞZ9ðxtÞ. For a given
f2CC, the uKlimit set of f is defined as

uðfÞZ fj2CC : there is a sequence tn; n2N ; such that tn/N and

FtnðfÞ/j as n/Ng:

For any x2R, we write x� for the element ofC satisfying x�(s)Zx for all s2[Kt,0].
The set of equilibria of the semiflow generated by (1.1) is given by

E Z fx�2CC : x2R and mxZ f ðxÞg:
Obviously 0�2E. In addition, there exists at most, one positive equilibrium. The
positive equilibrium K�, if exists, is called the carrying capacity.

The semiflow F is said to be monotone if (Smith 1995)

FtðfÞ%FtðjÞ whenever f%j and tR0:

If f 0(x)R0 for all x2R, then (1.1) defines a monotone semiflow for which the
maps Ft:CC/CC, tR0, are injective. However, this injectivity property in the
unimodal case is no longer true, as the following shows.

Proposition 2.1. The time-t map Ft : CC/CC is not injective.

Proof. Let f̂ be the restriction of f to the interval [0,x0]. Then, f̂ is a bijection
between the intervals [0,x0] and [0,f(x0)]. Define the map g : ½x0;NÞ/ ½0; x0� by
x/ f̂

K1ðf ðxÞÞ. Fix a dO0. Consider the functions

fðsÞdx0KdðsÞ; jðsÞdgðx0K dsÞ; s2½Kt; 0�:
Clearly f, j2CC, fsj but f(0)Zx0Zj(0), moreover f(f(s))Zf(j(s)) for all
s2[Kt,0]. By the variation-of-constants formula, for any t2[0,t], we have

xfðtÞZ eKmtfð0ÞC
ðt
0
eKmðtKuÞf ðfðuKtÞÞdu Z xjðtÞ;

that means FtðfÞZFtðjÞ. &

As a consequence, there is no backward uniqueness for the semiflow. In what
follows we shall use the following numbers (figure 1):

bd
f ðx0Þ
m

2R; ad
f ðbÞ
m

Z
f f ðx0Þ

m

� �
m

2R:

The numbers a and b play a crucial role in characterizing the nonlinear dynamics
of equation (1.1).
3. Invariant and attractive intervals

We distinguish three cases, as depicted in figure 2. Case A corresponds to the
condition f 0(0)%m. We are in case B, if f 0(0)Om, but K%x0. Case C represents
the most interesting situation where KOx0. In the absence of delay, when tZ0,
(1.1) reduces to the ordinary differential equation x 0ðtÞZKmxðtÞC f ðxðtÞÞ, for
which all solutions converge to 0 if f 0(0)%m, and to K if f 0(0)Om.
Proc. R. Soc. A (2007)
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Figure 2. Three different situations between the instant friction mx and the delayed feedback f (x):
(a) case A, (b) case B and (c) case C.
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Analogous results to propositions 3.1 and 3.2 below are contained in Smith
(1995) for the special case of the Nicholson’s blowflies equation, where we deal
with general unimodal feedback.

Proposition 3.1. If f 0(0)%m, then for all tO0 the equilibrium 0� is globally
attractive.

Proof. If 0 is the unique non-negative equilibrium, then mx0O f ðx0ÞR f ðxÞ for
any xR0. First note that if x(t) is a solution and x(t0)%x0 for some t0O0, then
x(t)%x0 for all tOt0. Otherwise, there exists a t1Rt0 such that x(t1)Zx0 and
x0(t1)R0. But x 0ðt1ÞZKmx0C f ðxðt1KtÞÞ!0, a contradiction. This implies the
positive invariance of [0�,x0�].

Now we show that all positive solutions eventually enter this interval. Suppose
the contrary, i.e. that there exist a t2O0 and a solution x(t) with x(t)Ox0 for all
tOt2. Let D0dmx0Kf ðx0ÞO0. It follows that x0(t)!KD0 for all tOt2Ct and
hence x(t)/KN as t/N, contradicting to x(t)Ox0 for all tOt2.

The positive invariance of the order interval [0�,x0�] implies x
x0�
t %x0� for

all tR0. In this interval, the semiflow is monotone; hence we have x
x0�
tCu%x

x0�
u ,

for t, uO0. Equivalently, 0�%x
x0�
t %x

x0�
u %x0� whenever 0%u%t. Evaluating at

sZ0, this yields 0%xx0�ðtÞ%xx0�ðuÞ%x0, that is xx0�ðtÞ is monotonically
decreasing. We obtain that limt/Nx

x0�ðtÞ/w for some w2[0,x0], hence the
uKlimit set of x

x0�
t is the singleton {w�} that must be an equilibrium. The only

equilibrium is 0�, thus xx0�ðtÞ converges to 0. Any arbitrary solution x(t) enters
the positively invariant interval [0�,x0�], thus the monotonicity of the semiflow
and the standard comparison argument assure that x(t) converges to 0. &

Proposition 3.2. If f 0(0)Om, but K%x0, then for all tO0 the equilibrium K� is
globally attractive.

Proof. Similar argument to that for proposition 3.1 shows that every solution
enters [0�,x0�], which is positively invariant, and the semiflow is monotone
restricted to this interval. Hence, xx0�ðtÞ is monotonically decreasing and
converges to an equilibrium, but now we have two equilibria, 0� and K�. If
32(0, K ), then f(x)Om3 for all x2[3,x0] and [3�,x0�] is also positively invariant,
because 9ðxðtÞÞZKm3C f ðxðtKtÞÞO0 whenever xt2[3�,x0�] and x(t)Z3. This
implies that xx0�ðtÞ must converge to K, because K� is the only equilibrium in
[3�,x0�]. Analogously we can deduce that x3�ðtÞ is increasing and converges to K.
Note that if fO0�, then there is a t0 such that xft [0� for all tOt0. It follows
that if fs0�, then there exists an 32(0, K ) such that x0�Rxft R3� for some t, thus
xf(t) is forced to converge to K. &
Proc. R. Soc. A (2007)
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In the remaining part of this section, we assume that we are in the case C,
namely KOx0. In this situation 9ðx0�ÞO0 and the interval [0�,x0�] is no longer
positively invariant.

Proposition 3.3. The inequality a!K!b holds.

Proof. In case C we have f(K)ZmK and KOx0, which yields f(K)!f(x0), thus
bZðf ðx0Þ=mÞOðf ðKÞ=mÞZK . Furthermore, bOK implies f(b)!f(K ), therefore
aZðf ðbÞ=mÞ!ðf ðKÞ=mÞZK , and the proposition is proved. &

Accordingly, a� and b� define an order interval Jd½a�; b��3CC.

Proposition 3.4. The interval J is positively invariant.

Proof. Suppose the contrary. Then there is a f2J and a corresponding
solution x(t)Zxf(t) such that there exists a TR0 with either (i) xT2J, x(T )Za,
x0(T )!0 or (ii) xT2J, x(T )Zb, x0(T )O0.

In the case of (i) it follows that 9ðxTÞ!0, but 9ðxTÞZKmaC f ðxðTKtÞÞR0, a
contradiction. Similarly, for the case of (ii) it follows that 9ðxTÞO0, but
9ðxTÞZKmaC f ðxðTKtÞÞ%0, a contradiction. Hence, JZ ½a�; b�� is positively
invariant.

Theorem 3.5. J attracts every solution, or equivalently, if x is a solution, then
lim inft/N x(t)Ra and lim supt/N x(t)%b.

Proof. First we show that every solution eventually enters [0,b] and remains
there. Note that it is impossible that a solution crosses the level bC3 for any 3O0
from below. Otherwise, for some T, xðTÞZbC3Oðf ðx0Þ=mÞ and 0%x 0ðTÞZ
KmðbC3ÞC f ðxðTKtÞÞ!0, a contradiction. It is also impossible that x(t)Rb for
all tOT0 with some T0, because in this case

x 0ðtÞZKmxðtÞC f ðxðtKtÞÞ!KmbC f ðbÞ!0 for all tOT0 Ct;

hence x(t)/N as t/N, contradicting to x(t)Rb for all tOT0. We have thus
proved that lim supt/N x(t)%b.

Now suppose that jZlim inft/N x(t)!a for a solution x. Then j!K, f( j )Omj
and there is an 3O0 such that D:ZMKm( jC33)O0 and jC33!a, where Id
½jK3; j C 33�3R and Mdminff ðxÞjx2Ig. Since j is the lim inf, there exists a
T0 such that x(t)OjK3 for all tRT0. Let I�d½ðjK3Þ�; ðjC33Þ��3CC. Note that
xt2I� implies x0(t)RD. We define two sets,

VdftjtRT0 and xðtÞ! jC3g; WdftjtRT0 and xðtÞO jC33g:
If W is bounded, then there is a T1 such that x(t)2I for all tOT1, but then xt2I�
and x 0(t)RD for all tOT1Ct, implying x(t)/N as t/N, a contradiction,
because lim supt/N x(t)%b. Thus W is unbounded. On the other hand, V is
unbounded too, because j is the lim inf. We can conclude that the solution
‘oscillates’ between V and W, and there exists a sequence sn/N, n2N such
that snOT0Ct, xðsnÞ! jC23 and x 0ðsnÞ!0. But

0Ox 0ðsnÞZKmxðsnÞC f ðxðsnKtÞÞOKmðjC23ÞC f ðxðsnKtÞÞ;
implies f ðxðsnKtÞÞ!mðjC23Þ. There are two distinct values x1 and x2 such that
f ðx1ÞZ f ðx2ÞZmðjC23Þ and x1!x0!x2. By the unimodal property of f, we obtain
that xðsnKtÞ!x1 or xðsnKtÞOx2. We have MOmðjC33ÞOmðjC23ÞZ f ðx1Þ;
Proc. R. Soc. A (2007)
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hence x1;I, thus x1!jK3. From snKtOT0, we get xðsnKtÞO jK3 and we
obtain that x(snKt)!x1 is impossible and xðsnKtÞOx2 holds. But on the other
hand, f ðx2ÞZmðjC23Þ!maZ f ðbÞ, implying xðsnKtÞOx2Ob for all n2N.
This means that lim supt/N x(t)Ob.

We have thus arrived to a contradiction. Therefore, lim inft/N x(t)Ra. &

Theorem 3.6. There exists a global attractor A of the semiflow F, i.e. a non-
empty compact set A3CC, which is invariant in the sense that FtðAÞZA for all
tR0 and attracts bounded sets. Moreover, A3J .

Proof. Proposition 3.4 guarantees that the interval J is a bounded set that
attracts each non-zero point of CC, therefore the semiflow is point dissipative.
Applying theorem 3.4.8 of Hale (1988), if there is a t1R0 such that the operators
Ft are completely continuous for tRt1 and F is point dissipative, then there
exists a global attractor A. It is easy to check using the Arzelà–Ascoli theorem
that the maps Ft are completely continuous (compact) for any tRt. Clearly
A3J , hence theorem 3.5 provides estimates for the global attractor. &

Under the additional condition

aZ
f f ðx0Þ

m

� �
m

Ox0: ðLÞ

[a, b]3[x0,N], where f 0(x)!0 and every solution, independently of t, eventually
enters this domainwhere f ismonotone (decreasing).Thus, it is natural forus toapply
the comprehensive results of monotone-delayed feedback theory to describe the
dynamics. The condition (L) is fulfilled for a wide range of parameters, but it is also
not satisfied in many situations, see §6 for examples of both. Numerical experiments
(tobediscussedbelow) suggest that ift is largeenough, then theremayexist solutions
x(t) with lim inft/N x(t)Ra and lim supt/N x(t) arbitrarily close to a and b.
Therefore, if (L) does not hold and the delay is large, we cannot expect solutions to
enter and remain in a domain where the feedback f is monotone.

On the other hand, the following result shows that condition (L) can always be
satisfied for some carefully chosen m.

Proposition 3.7. For any f satisfying (U ), there exists a non-empty interval
H3R, such that the condition (L) is fulfilled for all m2H.

Proof. Suppose that a unimodal f is given. Then the condition (L) is
equivalent with

FðmÞdf
f ðx0Þ
m

� �
Kmx0O0:

Let m0Zðf ðx0Þ=x0Þ. Then mZm0 corresponds to the situation x0ZK, and the case
C KOx0 is characterized by m!m0. Note that F(m0)Z0. The derivative

F 0ðmÞZ f 0
f ðx0Þ
m

� �
K

f ðx0Þ
m2

� �
K x0;

at mZm0 is given by

F 0ðm0ÞZ f 0ðx0Þ K
x20

f ðx0Þ

� �
K x0 ZKx0!0;
Proc. R. Soc. A (2007)
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thus there is a m�!m0 such that F(m) is positive and the condition (L) is satisfied
if m2ðm�;m0Þ. &

The following result shows that, in the absence of condition (L), we can get similar
results at least for small delays. Define a mapP: (0,K )/[K,N] as follows:

PðxÞdfK1ðmxÞ;
where fK1 is well defined if we restrict f to [K,N). Clearly P(K )ZK, P is
continuous and P(x)Kx is monotonically decreasing on (0, K ].

Theorem 3.8. If

t!t�d
Pðx0ÞK x0

f ðx0ÞKf f ðx0Þ
m

� � ; ðLtÞ

then every solution enters the domain where f 0 is negative.

Proof. Remark that K is between x0 and P(x0), hence P(x0)Kx0O0 and the
condition (Lt) is meaningful. Using the arguments of theorem 3.5 we obtain that
if for a solution x(t), jZ lim inft/NxðtÞ!x1 for some x1, then there is an sn/N
such that x(sn)!x1, but x(snKt)OP(x1). For any 3O0, there exists a T0 such
that xðtÞ2½aK3; b� for all tOT0, and there exists an n02N such that snKtOT0

for all nRn0. Then for any nRn0, we have

Pðx1ÞKðx1Þ!xðsnKtÞKxðsnÞ%
ðsn
snKt

jx 0ðuÞjdu

Z

ðsn
snKt

jKmxðuÞC f ðxðuKtÞÞjdu%tðf ðx0ÞKmðaK3ÞÞ: ð3:1Þ

Letting 3/0, we obtain that for any x1 if t!ðPðx1ÞK x1=f ðx0ÞKmaÞ, then lim
infx(t)Rx1 for all solutions. Taking particularly x1Zx0, we arrive to the condition
formulated in the theorem. This means if t is small enough, every solution
eventually enters the domain where f 0 is negative. &

We note that propositions 3.1, 3.2, 3.4 and theorem 3.5 can be derived using
theorems 2.1–2.3 of Ivanov & Sharkovsky (1992). All these results are
independent of the delay. However, our approach is different and can be applied
to obtain delay-dependent results as illustrated in theorem 3.8.
4. Stability of equilibria

It becomes natural now that we should consider the stability properties of the
equilibria. It is clear from §3 that in case A, 0 is stable and there is no positive
equilibrium, and in case B, 0 is unstable and K is stable. In case C, 0 is unstable
as well, therefore the interesting question is the local stability of K in case C. Let
x(t) be a solution and y(t):Zx(t)KK. Then we have

y 0ðtÞZKmðyðtÞCKÞC f ðyðtKtÞCKÞ;
the corresponding linear variational equation is

z 0ðtÞZKmzðtÞC f 0ðKÞzðtKtÞ:
Proc. R. Soc. A (2007)
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The operators DFt(K�), tR0 form a strongly continuous semigroup, the
spectrum of its generator consists of the solutions l2C of the characteristic
equations

lCmKf 0ðKÞeKtl Z 0:

Our primary interest is the sign of the real part of the roots whereas this
determines the local stability. Normalizing with wZtl, the real parts of l and w
have the same sign and we obtain

w ZKtmCtf 0ðKÞeKw: ð4:1Þ
Detailed analysis of characteristic equations of this form can be found in
Diekmann et al. (1995), ch. XI, where one can find the stability chart
corresponding to (4.1) and the number of roots in the right half of the complex
plane can be given in terms of the parameters of (4.1). As we can see, this
depends on the delay t as well. Let us briefly summarize these findings. When
mR0, tO0 and f 0(K)!0, the roots of (4.1) are in conjugated pairs, and a finite
number of them have positive real parts. Every root has negative real part
and the equilibrium K is locally stable if mOKf 0(K). The interesting case is
m!Kf 0(K ), when K is stable only for small delays, and as t increases, a series of
Hopf bifurcations occurs and periodic solutions arise from the equilibrium K. The
critical delays when the bifurcation occurs are given by

tk Z
cosK1 m

f 0ðKÞ

� �
C2kpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0ðKÞ2Km2

q :

Thus, when m!Kf 0(K ),K is stable if t!t0 and unstable if tOt0. The bifurcation
of the Nicholson’s blowflies equation was studied in Wei & Li (2005), and it was
shown that there is a supercritical bifurcation at tZt0 and under some additional
technical conditions, an application of a global Hopf bifurcation theorem of Wu
(1998) ensures that the emerged periodic solution is always present when tOt0.
Similar bifurcation analysis was done for the Mackey–Glass equation in Song et al.
(2004). We note that the direction of the Hopf bifurcation depends also on the
third-order derivative of f, but here exist explicit algorithms that can be used to
determine the direction of the bifurcation in particular cases.

There are many interesting studies for the global attractivity of the positive
equilibrium with either specific or general nonlinearity f, and several sufficient
conditions were given to guarantee the global attractivity of K. Smith formulated
the conjecture that the local asymptotic stability of the positive equilibrium
implies its global asymptotic stability for the Nicholson’s blowflies equation;
unfortunately this remains an open and very interesting question. In Győri &
Trofimchuk (1999), the negative Schwarzian derivative has been used to prove
global attractivity, other interesting results and a very nice overview of the
problem can be found in Liz et al. (2002, 2003), where an application of the negative
Schwarzian approach yields the global stability of the positive equilibrium for
Mackey–Glass type equations near the boundary of the local stability region.

An interesting situation arises naturally when there is a Hopf bifurcation of
stable periodic solutions bifurcated from the positive equilibrium. Should the
global dynamics be characterized by the transition from the trivial equilibrium to
this periodic orbit? This question will be addressed in §§5 and 6.
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5. Heteroclinic orbits from zero to a periodic orbit

In this section, we show the existence of heteroclinic orbits. Assume that (L) or
(Lt) is satisfied and every solution eventually enters the domain where f 0 is
negative. Define two new modified nonlinearities fi : R/R, iZ1, 2 as

f1ðxÞd
f ðxÞ if xRx1

f ðx0ÞCðf ðx1ÞKf ðx0ÞÞexpðxK x1Þ if x!x1;

(

with some x1Ox0 (to be determined later) and

f2ðxÞd
f ðxÞ if xR0

Kf ðKxÞ if x!0:

(

The delay differential equations

y 0ðtÞZKmyðtÞC fiðyðtKtÞÞ; i Z 1; 2; ð5:1Þ
generate semiflows F1 and F2 on the whole space C.

Theorem 5.1. For any f2CC, u(f) is {K�} or a periodic orbit oscillating
about K.

Proof. By the assumptions, for any solution xf of F, jZlim inft/N xf(t)Ox0.
Fix a x12(x0, j ). It is easy to check that lim infx/N f1(x)Zf(x0) and f1(x) is
monotonically decreasing. Hence the corresponding semiflow F1 is generated by a
scalar delay differential equation with delayed negative feedback, and we can
apply the Poincaré–Bendixson type theorem 10.1 of Walther (1995) to conclude
that the u-limit set of a solution of F1 is the positive equilibrium K� or a periodic
orbit oscillating about K. There is a T0 such that x(t)Ox1 for all tOT0.
The functions f and f1 coincide on [x1,N), thus we have FsðxtÞZF1

sðxtÞ whenever
tOT0Ct and sR0. We obtain that the u-limit set of f with respect to F is the
positive equilibrium K� or a periodic orbit oscillating about K as well. &

Theorem 5.2. Assuming (L) or (Lt), there exists a heteroclinic orbit xt, which
connects 0� with K� or with a periodic orbit oscillating about K.

Proof. Consider (5.1) with iZ2. Since f2(0)Z0, 0� is an equilibrium of F2. The
linearization about the 0 solution gives

z 0ðtÞZKmzðtÞC f 02ð0ÞzðtKtÞ;
with the corresponding characteristic equation

lZKmC f 02ð0ÞeKlt:

In case C, we have f 02ð0ÞZ f 0ð0ÞOm and there is one leading real eigenvalue l0O
0. Furthermore, the other roots form a sequence of complex conjugate pairs
ðlj ; �ljÞ with Re ljC1!Re lj!l0 for all integers jR1. There is a gO0 such
that l0OgORe lj for all jR1. The corresponding eigenfunction is given
by c0ðtÞdel0t; t2½Kt; 0�: The phase space C can be decomposed as
CZX04X1, where the function c02C spans the linear eigenspace
X0dfcc0 : c2Rg. There exist open neighbourhoods N0, N1 in X0, X1,
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respectively, and a C 1-map w:N0/X1 with range in N1 and w(0)Z0, Dw(0)Z0,
so that the g-unstable set of the equilibrium 0�, namely

W0ð0Þdff2N0CN1 : there is a trajectory yt; t2R with y0 Zf;

yt2N0CN1when t%0 and yðtÞeKgt/0 as t/KNg;

coincides with the graph

WdffCwðfÞ : f2N0g:
(For details see Krisztin et al. (1999)).

For any f2N0, there is a c2R such that fZcc0. We have jjc0jjZ1 and
c0ðtÞReKl0tO0 for all t2[Kt,0]. It follows from Dw(0)Z0 that

lim
jjfjj/0

jjwðfÞjj
jjfjj Z 0;f2N0;

which means

lim
c/0

jjwðcc0Þjj
jcj Z 0:

Therefore, there exists a c0O0 such that ðjjwðcc0Þjj=jcjÞ!ðeKlt=2Þ whenever
c2ð0; c0Þ, or, equivalently jjwðcc0Þjj!ðc=2ÞeKlt. Then

minfcc0ðtÞCwðcc0ÞðtÞ : t2½Kt; 0�; c2ð0; c0ÞgRceKltK
c

2
eKlt Z

c

2
eKltO0;

thus
fcdcc0 Cwðcc0Þ2WhCC for all c2ð0; c0Þ:

The unstable set W0ð0Þ intersects the positive cone, for any function fc of this
intersection, there is a complete solution yðtÞ : R/R

C
0 such that y0Zfc and yt/

0� as t/KN. We also know that u(fc) is K� or a periodic solution oscillating
about K, hence the trajectory fyfc

t : t2Rg is a heteroclinic orbit for the semiflow
F2. By the negative invariance of W0ð0Þ, the trajectory is completely in the cone
CC, where F2 and F coincide, hence we have proved the existence of the
heteroclinic orbit for the semiflow F. &

Weconclude this sectionwith a general remark that as long as (L) or (Lt) holds,we
have the situation of a monotone negative-delayed feedback with respect to K in a
positively invariant domainwhere f 0 is negative and intowhich every solution enters,
all the rich results for monotone negative-delayed feedback are then applicable.
6. Examples and simulations

In this section, we discuss several examples and numerical experiments with
Mackey–Glass and Nicholson’s blowflies equations in different scenarios: whether
the condition (L) or (Lt) is satisfied or not, with different delays and frictions.
Our purpose is to illustrate the sharpness of the results in the previous sections,
particularly §§3 and 5. The numerical values of different quantities given below
are mostly approximations up to the third digit, and the plotted solutions always
start from constant initial data. We always plot two distinct solutions for the sake
of comparison.
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Figure 3. Nicholson equation with different parameters. (a) tZ3, mZ0.05, (b) tZ30, mZ0.05, (c)
tZ60, mZ0.05 and (d ) tZ60, mZ0.3.
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Our first example is the following Nicholson’s blowflies equation

x 0ðtÞZKmxðtÞCxðtKtÞexpðKxðtKtÞÞ:

For this nonlinearity, x0Z1 and f(x0)Z0.368. Non-trivial solutions in cases A and
B are always convergent to an equilibrium as described by propositions 3.1 and
3.2. So, we focus on the case C. To be in the case C, m!m0dðf ðx0Þ=x0ÞZ0:368
must hold. It is easy to check numerically that the condition (L) is not satisfied
for m!m�Z0.105 and satisfied for any m2(m�, m0), with some m� predicted by
proposition 3.7.

We chose mZ0.05. Then aZ0.094, bZ7.358 and (L) is not satisfied. We have
KZ2.996, f 0(K )ZK0.1 and the first bifurcation point is t0Z24.184, where K�
undergoes a supercritical Hopf bifurcation and a stable periodic orbit emerges.
For small delays, the solutions converge to the positive equilibrium. Increasing
the delay, we observe the convergence to periodic solutions. As we increase the
delay further, we see slower oscillations with greater amplitudes and we observe
that the lim inf and lim sup of the solutions get closer and closer to a and b. See
figure 3a,b and c, where the delay is 3, 30 and 60, respectively.
Proc. R. Soc. A (2007)
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Figure 4. Mackey–Glass equation in the absence of the condition (L). (a) tZ0.15, mZ1, (b) tZ0.3,
mZ1, (c) tZ2, mZ1 and (d ) tZ5, mZ1.
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Increasing m, we see that a is increasing and b is decreasing, thus the
attractive interval J is slowly shrinking. Passing m�, a becomes greater than x0
and the condition (L) holds. In particular, if we set mZ0.3, we then have bZ1.23
and aZ1.12O1, (L) is satisfied. We have KZ1.204 and JZ[1.199, 1.226]. In this
case, all solutions are attracted by the tiny interval [1.199, 1.226] regardless of
the size of the delay, therefore only very small (amplitude) oscillations are
possible. Practically this is like a global convergence, regardless of t.

Next we consider the Mackey–Glass equation

x 0ðtÞZKmxðtÞC 2xðtKtÞ
1CxðtKtÞ20

:

Now x0Z0.863 and f(x0)Z1.64. First let mZ1, this yields that the positive
equilibrium is KZ1, f 0(K )ZK9, a/0.1 and bZ1.64, we can see that (L) is not
satisfied, the first bifurcation point is t0Z0.188. For small delays, the solutions
converge to 1 very quickly (figure 4a), then after tZ0.188, where the first Hopf
bifurcation occurs, we can see the convergence to a periodic solution (figure 4b).
Increasing the delay further, the solutions become more irregular, but still
asymptotically periodic with several extrema within one period (figure 4c). Finally,
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Figure 5. Mackey–Glass equation when (L) is fulfilled. (a) tZ0.2, mZ1.78 and (b) tZ3, mZ1.78).
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we observe apparently aperiodic behaviours (figure 4d ) where the delay is still not
very large. We remark that even in the chaotic case, the lim sup and lim inf of
solutions tend to increase as the delay increases, getting closer and closer to a and b.

One can check that (L) is satisfied if mOm�Z1.774. To stay in case C, we need
m!m0Z1.9. Setting mZ1.78, we obtain KZ0.901, f 0(K )ZK2.136, aZ0.867Ox0
and bZ0.921. Since jf 0ðKÞjOm, K undergoes a series of Hopf bifurcations as the
delay increases, but chaotic behaviour is not possible for any delay, since (L) holds.
As figure 5 shows, we have quick convergence to the equilibrium for small delays,
and for greater delays periodic oscillations appear, bounded by [a, b]. When tZ3,
the lim inf and the lim sup of the periodic solution are indistinguishable from a and
b. The picture does not change much for larger delays.

In the previous examples, t� was typically smaller than t0, thus condition (Lt)
does not play much of a role. However, it is easy to construct examples when (Lt)
becomes more important. Suppose that f and m satisfies (Lt). We construct a new
nonlinearity f3 such that f3(x)Zf(x) whenever x;ðKK3;KC3Þ, 3O0, moreover
f3(K )Zf(K ), and f3 is smooth and monotonically decreasing in [KK3,KC3]. If 3
is sufficiently small, then it does not affect t� and such a modification is possible

with arbitrarily large jf 03ðKÞj. By tk!ð2kC1Þp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 03ðKÞ2Km2

q
, choosing jf 03ðKÞj

sufficiently big, t� is greater than an arbitrary bifurcation point. Therefore, the
dynamics cannot be complicated even after a series of Hopf bifurcations; we
cannot create chaos by a small local perturbation (which preserves the unimodal
property) of f, if (Lt) holds.

To conclude this section, we recall that the easily checkable condition (L) is
indeed satisfied in some particular situations and this excludes chaos even for the
Mackey–Glass equation for certain parameters. We note that sometimes [a, b] is a
tiny interval, as such our attractivity theorem is especially useful for applications. In
particular cases, [a, b] seems to be a very sharp bound for the global attractor in
the sense that both the Nicholson and the Mackey–Glass equations may
exhibit solutions with their lim inf and lim sup close to a and b. Some results of
Mallet-Paret & Nussbaum (1989) and Ivanov & Sharkovsky (1992) seem to suggest
that the smallest interval which contains the global attractor for all tmay be smaller
than [a, b], and in the limit case aZx0 these two intervals coincide.
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