Asymptotic inference for nearly unstable multidimensional AR processes

by G. Pap* and M. van Zuijlen**

Nearly unstable multidimensional AR models are studied where the coefficient matrices have some special form. Weak convergence of the sequence of the appropriately normalized LSE of the coefficient matrices is proved. A natural connection between the discrete and the corresponding continuous time models is presented.

1. Introduction

Consider the \(d\)-dimensional autoregressive model

\[
\begin{aligned}
X_k &= QX_{k-1} + \varepsilon_k, \quad k = 1, 2, \ldots \\
X_0 &= 0,
\end{aligned}
\]

(1)

where the \(d\)-dimensional random column vector \(\varepsilon_k\) contains the (unobservable) random innovations (disturbances, noises) at time \(k\), and the \(d \times d\) matrix \(Q\) is the unknown parameter of the model. The least-squares estimator (LSE) of \(Q\) based on the observations \(X_1, \ldots, X_n\) is given by

\[
\hat{Q}_n = \left(\sum_{k=1}^n X_kX'_k\right) \left(\sum_{k=1}^n X_k^{-1}X'_k\right)^{-1}.
\]

(2)

Let \(\rho(Q)\) denote the spectral radius of the matrix \(Q\), i.e., the maximum of the absolute value of the eigenvalues of the matrix \(Q\).

When \(\rho(Q) < 1\), the model is said to be asymptotically stationary. Under the assumption that the \(\varepsilon_k\)’s are i.i.d. with \(\mathbb{E}\varepsilon_k = 0, \mathbb{E}\varepsilon_k\varepsilon'_k = \Sigma\), the LSE of \(Q\) is asymptotically normal:

\[
(\hat{Q}_n - Q) \left(\sum_{k=1}^n X_{k-1}X'_k\right)^{1/2} \xrightarrow{d} \mathcal{N}_{d \times d}(0, I), \quad \text{as} \quad n \to \infty,
\]

(3)

*AMS 1980 subject classifications: primary 62M10; secondary 62L12

**Key words and phrases: discrete and continuous time autoregressive processes, nearly unstable models

*Part of this work has been carried out while this author was visiting the Department of Mathematics, University of Nijmegen

**Part of this work has been carried out while this author was visiting the Institute of Mathematics and Informatics, University of Debrecen, and was supported by Grant ERB-CIPA-CT-92-1512 of the European Economic Community
where \(\mathcal{D} \) denotes convergence in distribution and \(I \) is the unit matrix (see Mann and Wald [16] and Anderson [1]). By another normalization:

\[
\sqrt{n} \left(\hat{Q}_n - Q \right) \xrightarrow{\mathcal{D}} N_{d \times d}(0, F^{-1} \otimes \Sigma), \quad n \to \infty,
\]

where \(F = \sum_{k=0}^{\infty} Q^k \Sigma (Q')^k \) is the covariance matrix of the stationary distribution (being the unique solution of the equation \(\Sigma + QFQ' = F \)).

When \(\varrho(Q) = 1 \), the model (1) is said to be unstable. It was shown by White [23] that in the case of the one-dimensional unstable AR(1) model \(X_k = \beta X_{k-1} + \varepsilon_k \), \(k \geq 1 \), with \(\beta = 1 \), the variables \(n(\hat{\beta}_n - \beta) \) converge in law to a random variable:

\[
n(\hat{\beta}_n - \beta) \xrightarrow{\mathcal{D}} \frac{\int_0^1 W(t) \, dW(t)}{\sqrt{\int_0^1 W^2(t) \, dt}},
\]

where \(W(t), \ t \geq 0 \) is a standard Wiener process. In case of the one-dimensional unstable AR(\(p \)) model Chan and Wei [6] proved that with suitable normalizing matrices \(\delta_n \) the sequence \(\delta_n^{-1}(\hat{\beta}_n - \beta) \) converges in law and gave the representation of the limit distribution. This representation involves multiple stochastic integrals with respect to Wiener processes and has a very complicated form.

Fountis and Dickey [8] considered multidimensional unstable models with a matrix \(Q \) having one eigenvalue equal to 1 and the rest less than 1 in magnitude and obtained the limit distribution of the appropriately normalized LSE of the largest eigenvalue. The general multidimensional unstable models are studied in Sims, Stock and Watson [20], and in Tsay and Tiao [22]. Arató [3] has drawn the attention to the connection between discrete and continuous time multidimensional unstable models. This relationship was pointed out by Kormos [10], [11], and by Kormos and Piterbarg [13] in connection with hypothesis testing of nonstationarity for a (real–valued) Gaussian one–dimensional autoregressive time series.

The result (4) led to the study of the following so-called nearly nonstationary one-dimensional AR(1) model (better to call it nearly unstable):

\[
\begin{align*}
X_{n,k} &= \beta_n X_{n,k-1} + \varepsilon_{n,k}, \quad k = 1, 2, \ldots, n \\
X_{n,0} &= 0,
\end{align*}
\]

where \(\beta_n = 1 + h/n \). It was shown by Chan and Wei [4], [5] that

\[
\left(\sum_{k=1}^{n} X_{n,k-1}^2 \right)^{1/2} (\hat{\beta}_n - \beta_n) \xrightarrow{\mathcal{D}} \frac{\int_0^1 Y(t) \, dW(t)}{\left(\int_0^1 Y^2(t) \, dt \right)^{1/2}},
\]

where \(Y(t), \ t \in [0,1] \) is an Ornstein-Uhlenbeck process defined as the solution of the stochastic differential equation

\[
dY(t) = hY(t) \, dt + dW(t), \quad Y(0) = 0.
\]
By another normalization
\[
 n (\hat{\beta}_n - \beta_n) \xrightarrow{\mathcal{D}} \frac{\int_0^1 Y(t) dW(t)}{\int_0^1 Y^2(t) dt},
\]

see, for example, Phillips [18], Jeganathan [9], Dzhaparidze, Kormos, van der Meer and van Zuijlen [7]). (The above model is called also near integrated and is applied often in economic theory; see Phillips [18].)

Recently, Jeganathan [9] has considered nearly nonstationary one-dimensional AR(p) models, i.e., AR(p) models near to an unstable model. He proved that the appropriately normalized LSE of the coefficients converges in law and gave a very complicated representation for the limiting distribution in terms of multiple stochastic integrals with respect to Wiener processes. In the forthcoming paper van der Meer, Pap and van Zuijlen [17] a simpler form and explanation is given for the asymptotic behaviour of the least-squares estimators in the nearly nonstationary AR(p) model and the relation between discrete and continuous time models is clarified.

Nearly unstable multidimensional AR processes are generated according to the scheme
\[
\begin{align*}
 X_{n,k} &= Q_n X_{n,k-1} + \varepsilon_{n,k}, & k = 1, 2, \ldots, n \\
 X_{n,0} &= 0,
\end{align*}
\]

where \(\{\varepsilon_{n,k}\} \) is an array of \(d \)-dimensional random vectors and \(Q_n, n \geq 1 \), is a sequence of \(d \times d \) matrices such that \(Q_n \to Q \), where \(Q \) is a matrix with \(\varrho(Q) = 1 \). Phillips [18] treated the case where \(Q_n = e^{A/n}, n \geq 1 \), where \(A \) is a fixed \(d \times d \) matrix. Kormos and Pap [12] investigated the case where \(Q_n = e^{(\gamma I + A)/n}, n \geq 1 \), where \(\gamma \in \mathbb{R} \) and \(A \) is a skew-symmetric matrix and obtained the weak convergence of the log-likelihood ratio under the assumption that \(\varepsilon_k \)'s are i.i.d. normal. The limit distribution turned out to be the Radon-Nikodym derivative of some continuous time multidimensional Ornstein-Uhlenbeck process. This indicates a natural connection between discrete and continuous time models. Stockmarr and Jacobsen [21] studied essentially the case where \(Q_n = I + n^{-1}A \). We remark that these authors considered in fact an additional matrix in their model. However, this situation will also be covered in our model below, since one can easily include this extra matrix in the noise process.

The aim of the present paper is to investigate nearly unstable models (8) where the coefficient matrices have some special form which includes the situations considered by the authors mentioned above. First we give a necessary and sufficient condition on the innovations \(\{\varepsilon_{n,k}\} \) for convergence (in the Skorokhod space \(D([0,1] \to \mathbb{R}^d) \)) of the rotated sequence
\[
\frac{1}{\sqrt{n}} e^{-[nt]B} X_{n,[nt]}, \quad t \in [0,1], \quad n = 1, 2, \ldots
\]
to a \(d \)-dimensional continuous time AR(1) process, where \(B \) is a suitable \(d \times d \) matrix. Then we shall prove weak convergence of the sequence of appropriately normalized LSE’s
and finally we give a natural connection between the discrete and the related continuous
time models. It should be remarked that our results essentially include the earlier work
of the above mentioned authors and our method is completely different.

2. Convergence results

For every \(n = 1, 2, \ldots \) consider the \(d \)-dimensional AR(1) model

\[
\begin{aligned}
X_n &= Q_n e^B X_{n-1} + \varepsilon_n, \\
X_{n,0} &= 0,
\end{aligned}
\]

(9)

where \(\{ \varepsilon_n \} \) is an array of \(d \)-dimensional random vectors and \(Q_n = e^{A_n/n}, \ n \geq 1 \) are \(d \times d \) matrices such that \(A_n \to A, \ B \) is a known skew-symmetric \(d \times d \) matrix, and \(A_n B = B A_n, \ n \geq 1 \). (We remark that for each orthogonal matrix \(C \) there exists uniquely a matrix \(B \) such that \(C = e^B \) and \(B \) is a skew-symmetric matrix, i.e. \(B' = -B \).) The model (9) is nearly unstable, since \(Q_n e^B \to e^B \) and \(e^B \) is an orthogonal matrix.

Since the matrices \(e^{A_n} \) and \(e^B \) also commute, the rotated observations

\[
Z_{n,k} = e^{-kB} X_{n,k}, \ k = 0, 1, \ldots, n; \ n = 1, 2, \ldots
\]

form again a nearly unstable \(d \)-dimensional model

\[
\begin{aligned}
Z_n &= e^{A_n/n} Z_{n-1} + \zeta_n, \\
Z_{n,0} &= 0,
\end{aligned}
\]

(10)

where \(\{ \zeta_n \} = \{ e^{-kB} \varepsilon_n \} \) is the rotated array of the random disturbances.

The random step functions

\[
Y_n(t) = \frac{1}{\sqrt{n}} e^{-[nt]B} X_{n,[nt]}, \quad t \in [0, 1]
\]

\[
M_n(t) = \frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]} e^{-kB} \varepsilon_{n,k}, \quad t \in [0, 1]
\]

can be considered as random elements in the Skorokhod space \(D([0, 1] \to \mathbb{R}^d) \). We denote by \(C([0, 1] \to \mathbb{R}^d) \) the space of \(\mathbb{R}^d \)-valued continuous functions endowed with the supremum norm. The supremum norm and the Skorokhod metric on the space \(D([0, 1] \to \mathbb{R}^d) \) will be denoted by \(\| \cdot \|_\infty \) and \(\rho \), respectively. We shall need the following simple lemma, which is based on the continuous mapping theorem and the Skorokhod-construction.

Lemma 1. Let \(\Phi, \Phi_n : D([0, 1] \to \mathbb{R}^k) \to D([0, 1] \to \mathbb{R}^\ell), \ n = 1, 2, \ldots \) be measurable mappings such that \(\| \Phi_n(x_n) - \Phi(x) \|_\infty \to 0 \) for all \(x, x_n \in D([0, 1] \to \mathbb{R}^k) \) with
\[\|x_n - x\|_\infty \to 0. \] Let \(Z, Z_n, \ n = 1, 2, \ldots \) be stochastic processes with values in \(D([0, 1] \to \mathbb{R}^k) \) such that \(Z_n \xrightarrow{D} Z \) in \(D([0, 1] \to \mathbb{R}^k) \) and almost all trajectories of \(Z \) are continuous. Then \(\Phi_n(Z_n) \xrightarrow{D} \Phi(Z) \) in \(D([0, 1] \to \mathbb{R}^\ell) \).

Proof. Due to the Skorokhod-construction we can find processes \(\tilde{Z}_n \) and a process \(\tilde{Z} \), such that \(\tilde{Z}_n \xrightarrow{D} Z_n \), \(\tilde{Z} \xrightarrow{D} Z \) and
\[\rho(\tilde{Z}_n, \tilde{Z}) \to 0 \] a.s.

Using the fact that \(\tilde{Z} \) has continuous trajectories a.s., we conclude that
\[\|\tilde{Z}_n - \tilde{Z}\|_\infty \to 0 \] a.s.

Thus we have
\[\|\Phi_n(\tilde{Z}_n) - \Phi(\tilde{Z})\|_\infty \to 0 \] a.s.

and hence
\[\Phi_n(\tilde{Z}_n) \xrightarrow{D} \Phi(\tilde{Z}) \] in \(D([0, 1] \to \mathbb{R}^\ell) \).

The last relation implies the desired result. \(\square \)

Let \(M(t), \ t \in [0, 1], \) be a continuous semimartingale with values in \(\mathbb{R}^d \). Consider the continuous time autoregressive process \(Y(t), \ t \in [0, 1], \) defined as the solution of the stochastic differential equation
\[dY(t) = AY(t) \, dt + dM(t), \quad Y(0) = 0. \] (11)

Our first theorem gives a necessary and sufficient condition for the weak convergence \(Y_n \xrightarrow{D} Y \) in \(D([0, 1] \to \mathbb{R}^d) \).

Theorem 1. The following statements are equivalent:

(i) \(M_n \xrightarrow{D} M \) in \(D([0, 1] \to \mathbb{R}^d) \)

(ii) \(Y_n \xrightarrow{D} Y \) in \(D([0, 1] \to \mathbb{R}^d) \)

(iii) \((M_n, Y_n) \xrightarrow{D} (M, Y) \) in \(D([0, 1] \to \mathbb{R}^{2d}) \).

Remark. The statement (i) is in other words: the functional central limit theorem holds for the rotated triangular array \(\{e^{-kB_{n,k}}\}_{k=1, \ldots, n; n \geq 1} \).

Proof. (i)\(\Rightarrow \) (iii). Using It\'o’s formula we obtain
\[Y(t) = M(t) + A \int_0^t e^{(t-s)A} M(s) \, ds, \quad t \in [0, 1]. \]

A similar formula holds for the random step functions \(Y_n(t), \ t \in [0, 1] \):
\[Y_n(t) = M_n(t) + A_n \int_0^{[nt]/n} e^{\gamma_n([nt]/n-s)} M_n(s) \, ds, \] (12)
since (10) implies
\[Y_n(t) = \frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]} e^{(\lfloor nt \rfloor - k)A_n/k} \zeta_{n,k}, \]
and
\[A_n \int_0^{[nt]/n} e^{-sA_n} M_n(s) ds = A_n \sum_{j=1}^{[nt]} \int_{(j-1)/n}^{j/n} e^{-sA_n} ds M_n((j-1)/n) \]
\[= \sum_{j=1}^{[nt]} (e^{-(j-1)A_n/n} - e^{-jA_n/n}) M_n((j-1)/n) \]
\[= \frac{1}{\sqrt{n}} \sum_{j=1}^{[nt]} \sum_{k=1}^{j-1} (e^{-(j-1)A_n/n} - e^{-jA_n/n}) \zeta_{n,k} \]
\[= \frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]-1} \sum_{j=k+1}^{[nt]} (e^{-kA_n/n} - e^{-[nt]A_n/n}) \zeta_{n,k} \]
\[= \frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]} (e^{-kA_n/n} - e^{-[nt]A_n/n}) \zeta_{n,k} \]
\[= e^{-[nt]A_n/n}(Y_n(t) - M_n(t)). \]

Hence the processes \((M, Y)\) and \((M_n, Y_n)\) can be expressed as
\[(M, Y) = \Phi(M), \quad (M_n, Y_n) = \Phi_n(M_n), \quad n = 1, 2, \ldots, \]
where the measurable mappings \(\Phi, \Phi_n : D([0, 1] \to \mathbb{R}^d) \to D([0, 1] \to \mathbb{R}^{2d}), \quad n = 1, 2, \ldots\) are defined as
\[\Phi(x)(t) = (x(t), x(t) + A \int_0^t e^{(t-s)A} x(s) ds), \]
\[\Phi_n(x)(t) = (x(t), x(t) + A_n \int_0^{[nt]/n} e^{([nt]/n-s)A_n} x(s) ds). \]

Applying Lemma 1 we obtain \((M_n, Y_n) \overset{D}{\to} (M, Y)\) in \(D([0, 1] \to \mathbb{R}^{2d}).\)

(iii)\(\implies\)(i) and (iii)\(\implies\)(ii) are trivial.

(ii)\(\implies\)(iii). Since the process \(Y(t), \; t \in [0, 1],\) is a solution of the stochastic differential equation (11) we have
\[Y(t) = A \int_0^t Y(s) ds + M(t), \]
thus
\[M(t) = Y(t) - A \int_0^t Y(s) ds. \]
A similar formula holds for the partial sum process \(M_n(t), \; t \in [0, 1]:\)
\[M_n(t) = \frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]} (Z_{n,k} - e^{A_n/n} Z_{n,k-1}) \]
\[= \frac{1}{\sqrt{n}} Z_{n,[nt]} - \frac{1}{\sqrt{n}} (e^{A_n/n} - I) \sum_{k=1}^{[nt]-1} Z_{n,k} \]
\[= Y_n(t) - n(e^{A_n/n} - I) \int_0^{[nt]/n} Y_n(s) ds. \]
Hence the processes \((M, Y)\) and \((M_n, Y_n)\) can be expresses as
\[
(M, Y) = \Psi(Y), \quad (M_n, Y_n) = \Psi_n(Y_n), \quad n = 1, 2, \ldots
\]
where the measurable mappings \(\Psi, \Psi_n : D([0, 1] \to \mathbb{R}^d) \to D([0, 1] \to \mathbb{R}^{2d}), \quad n = 1, 2, \ldots\) are defined as follows
\[
\Psi(x)(t) = \left(x(t) - A \int_0^t x(s) ds, x(t) \right), \\
\Psi_n(x)(t) = \left(x(t) - n(e^{A_n/n} - I) \int_0^{[nt]} x(s) ds, x(t) \right).
\]
Applying Lemma 1 we obtain \((M_n, Y_n) \xrightarrow{D} (M, Y)\) in \(D([0, 1] \to \mathbb{R}^{2d})\).

3. Least-squares estimators

The least-squares estimator of the matrix \(Q_n\) in the model (9) can be obtained minimizing the sum of squares
\[
\sum_{k=1}^n \|X_{n,k} - Q_n e^B X_{n,k-1}\|^2.
\]
The orthogonality of \(e^B\) implies that the above sum is equal to
\[
\sum_{k=1}^n \|Z_{n,k} - Q_n Z_{n,k-1}\|^2,
\]
consequently the LSE is
\[
\hat{Q}_n = \left(\sum_{k=1}^n Z_{n,k} Z_{n,k-1}' \right) \left(\sum_{k=1}^n Z_{n,k-1} Z_{n,k-1}' \right)^{-1}.
\]

(C) \(\varepsilon_{n,k}, \quad k = 1, \ldots, n, \quad n \geq 1\) is a triangular array of \(d\)-dimensional square integrable martingale differences with respect to the filtrations \((\mathcal{F}_{nk})_{k=0,1,\ldots;n\geq 1}\) such that for all \(t \in [0, 1]\)
\[
\frac{1}{n} \sum_{k=1}^{[nt]} \mathbb{E}(\varepsilon_{n,k} \varepsilon_{n,k}' | \mathcal{F}_{n,k-1}) \xrightarrow{\mathbb{P}} I, \quad \text{as } n \to \infty
\]
and
\[
\forall \alpha > 0 \quad \frac{1}{n} \sum_{k=1}^{[nt]} \mathbb{E}(\|\varepsilon_{n,k}\|^2 \chi_{\{\|\varepsilon_{n,k}\| > \alpha \sqrt{n}\}} | \mathcal{F}_{n,k-1}) \xrightarrow{\mathbb{P}} 0, \quad \text{as } n \to \infty.
\]
Theorem 2. Suppose that the array \(\varepsilon_{n,k}, \ k = 1, \ldots, n, \ n \geq 1, \) satisfies the condition (C). Then
\[
n(\hat{Q}_n - Q_n) \xrightarrow{D} \int_0^1 (dW(t)) Y'(t) \left(\int_0^1 Y(t)Y'(t) dt \right)^{-1},
\]
where the process \(Y(t), \ t \in [0,1], \) is given by
\[
dY(t) = AY(t)dt + dW(t), \quad Y(0) = 0,
\]
and \(W(t), \ t \in [0,1], \) is a standard \(d \)-dimensional Wiener process.

By another normalization
\[
(\hat{Q}_n - Q_n) \left(\sum_{k=1}^{n} X_{k-1}X'_{k-1} \right)^{1/2} \xrightarrow{D} \int_0^1 (dW(t)) Y'(t) \left(\int_0^1 Y(t)Y'(t) dt \right)^{-1/2}.
\]

Proof. Orthogonality of the matrix \(e^B \) implies that the rotated array \(\zeta_{n,k}, \ k = 1, \ldots, n, \ n \geq 1, \) also satisfies the condition (C), so using a version of the functional central limit theorem on the space \(D([0,1] \to \mathbb{R}^d) \) (Theorem 7.11 in Liptser and Shiryayev [15]) we obtain \(M_n \xrightarrow{D} W \) in \(D([0,1] \to \mathbb{R}^d). \) Applying Theorem 1 we can conclude \((M_n, Y_n) \xrightarrow{D} (W,Y) \) in \(D([0,1] \to \mathbb{R}^{2d}). \) This implies weak convergence of the stochastic integrals
\[
\left(\int_0^1 Y_n(t)Y'_n(t) dt, \int_0^1 (dM_n(t)) Y'_n(t) \right) \xrightarrow{D} \left(\int_0^1 Y(t)Y'(t) dt, \int_0^1 (dW(t)) Y'(t) \right)
\]
(see, for example, Proposition 6 in Jeganathan [9]). Moreover,
\[
\hat{Q}_n = \left(\sum_{k=1}^{n} (Q_nz_{n,k-1} + \zeta_{n,k})z'_{n,k-1} \right) \left(\sum_{k=1}^{n} z_{n,k-1}z'_{n,k-1} \right)^{-1}
= Q_n + \frac{1}{n} \left(\int_0^1 (dM_n(t)) Y'_n(t) \right) \left(\int_0^1 Y_n(t)Y'_n(t) dt \right)^{-1}.
\]
Since the matrix \(\int_0^1 Y(t)Y'(t) dt \) is invertible with probability 1 we can apply the continuous mapping theorem. \(\square \)

4. Connection with continuous time AR processes

Let \(W(t), \ t \in [0,1], \) be a standard \(d \)-dimensional Wiener process. Consider the continuous time autoregressive process given by
\[
dY(t) = AY(t)dt + dW(t), \quad Y(0) = 0. \quad (14)
\]
Consider the measures \(\mathbb{P}_W \) and \(\mathbb{P}_Y \) on \(C([0,1] \to \mathbb{R}^d) \) generated by the processes \(W \) and \(Y \), respectively. It is known that \(\mathbb{P}_Y \) is absolutely continuous with respect to the measure \(\mathbb{P}_W \) and the Radon-Nikodym derivative has the form

\[
\frac{d\mathbb{P}_Y}{d\mathbb{P}_W}(Y) = \exp\left\{ -\frac{1}{2} \int_0^1 \|AY(t)\|^2 dt + \int_0^1 \langle AY(t), dY(t) \rangle \right\}.
\] (15)

Consequently the maximum likelihood estimator (MLE) of the matrix \(A \) based on the observations \(Y(t), \ t \in [0,1] \), in the model (14) is given by

\[
\hat{A} = \int_0^1 (dY(t))Y'(t) \left(\int_0^1 Y(t)Y'(t) dt \right)^{-1}.
\]

(See, for example, Le Breton [14], Arató [2]).

Corollary 1. Suppose that the array \(\varepsilon_{n,k}, \ k = 1, \ldots, n, \ n \geq 1 \), satisfies the condition (C). Then

\[
n(\hat{Q}_n - I) \xrightarrow{D} \hat{A},
\]

where \(\hat{A} \) is the maximum likelihood estimator of the matrix \(A \) based on the observations \(Y(t), \ t \in [0,1] \), in the model (14).

Proof. Using Itô’s formula we obtain

\[
\hat{A} = A + \int_0^1 (dW(t))Y'(t) \left(\int_0^1 Y(t)Y'(t) dt \right)^{-1}.
\]

Theorem 2 implies

\[
n(\hat{Q}_n - I) = n(\hat{Q}_n - Q_n) + n(e^{\hat{A}_n/n} - I) \xrightarrow{D} \hat{A}.
\]

Consider now the quadratic form

\[
L_n(X_{n,1}, \ldots, X_{n,n}) = -\frac{1}{2} \left(\sum_{k=1}^n \|X_{n,k} - Q_ne^BX_{n,k-1}\|^2 - \sum_{k=1}^n \|X_{n,k} - e^BX_{n,k-1}\|^2 \right),
\]

connected with the LSE \(\hat{Q}_n \). We remark that if the innovations \(\{\varepsilon_{n,n}\} \) are normal then \(L_n(X_{n,1}, \ldots, X_{n,n}) \) is just the log-likelihood ratio. Denote the log-likelihood ratio of the process \(Y(t), \ t \in [0,1] \) by

\[
L(Y) = \log \frac{d\mathbb{P}_Y}{d\mathbb{P}_W}(Y).
\]

Corollary 2. Suppose that the array \(\varepsilon_{n,k}, \ k = 1, \ldots, n, \ n \geq 1 \), satisfies the condition (C). Then

\[
L_n(X_{n,1}, \ldots, X_{n,n}) \xrightarrow{D} L(Y)
\]

in \(\mathbb{R} \).
Proof. Using the same arguments as in the proof of Theorem 1 we obtain

\[-2L_n(X_{n,1}, \ldots, X_{n,n}) = \]
\[= \sum_{k=1}^{n} \| (Q_n - I) Z_{n,k-1} \|^2 - 2 \sum_{k=1}^{n} \langle Z_{n,k} - Z_{n,k-1}, (Q_n - I) Z_{n,k-1} \rangle \]
\[= \int_0^1 n(Q_n - I) Y_n(t) \| dt - 2 \int_0^1 \langle dY_n(t), n(Q_n - I) Y_n(t) \rangle \]
\[\overset{P}{\longrightarrow} \int_0^1 \| AY(t) \|^2 dt - 2 \int_0^1 \langle dY(t), AY(t) \rangle. \]

The assertion is proved. \[\square\]

References

Gyula Pap
Institute of Mathematics
and Informatics
Lajos Kossuth University
Pf.12
H–4010 Debrecen
Hungary
PAPGY@MATH.KLTE.HU

Martien C. A. van Zuijlen
Department of Mathematics
University of Nijmegen
Toernooiveld 1
6525 ED Nijmegen
The Netherlands
ZUIJLEN@SCI.KUN.NL