Characterization of Gaussian semigroups on a Lie group

Gyula Pap

Technical Report No. 92/51
Characterization of Gaussian semigroups on a Lie group

by Gyula Pap
Lajos Kossuth University, Debrecen

It is shown that a convolution semigroup of probability measures on a Lie group is Gaussian if and only if the infinitesimal generator of the corresponding semigroup of Fourier transforms satisfies some equation. The result is similar to the characterization of Gaussian measures on a compact Lie group due to Carnal [1].

1. Introduction

Carnal [1] has proved the following characterization of Gaussian measures on a compact Lie group G: let μ be a probability measure on G embeddable into a convolution semigroup; then μ is a Gaussian measure if and only if its Fourier transform $\hat{\mu}$ satisfies the equation

$$|\det(\hat{\mu}(D \otimes D))| \cdot |\det(\hat{\mu}(D \otimes D))| = |\det(\hat{\mu}(D))|^{4n(D)}$$

for all irreducible unitary representation D of G where $n(D)$ is the dimension of the representation space of D. The aim of the present note is to give a similar characterization of Gaussian semigroups on arbitrary Lie groups.

2. Preliminaries

Let G be a Lie group of dimension $m \geq 1$ with neutral element e. Let $G^\times := G \setminus \{e\}$. Let $\mathcal{U}(e)$ denote the system of all neighborhoods of e. By $\mathcal{C}^b(G)$ we denote the space of bounded continuous complex-valued functions on G equipped with the supremum norm $\| \cdot \|_\infty$. Let $\mathcal{D}(G)$ be the space of infinitely differentiable complex-valued functions with compact support on G. The space $\mathcal{E}(G)$ of bounded regular functions on G is defined

This research was partially supported by the Hungarian Foundation for Scientific Researches under grant number OTKA-T4047/1992.

AMS 1980 subject classifications: Primary 60B15; secondary 60F05.

Key words and phrases: convolution semigroup of probability measures, Gaussian semigroups, Lévy-Khinchin formula, unitary representation of groups.
by
\[\mathcal{E}(G) := \left\{ f \in \mathcal{C}^b(G) : f \cdot g \in \mathcal{D}(G) \quad \text{for all} \quad g \in \mathcal{D}(G) \right\}. \]

Let \(G \) be the Lie algebra of \(G \) and \(\exp : \mathcal{G} \mapsto G \) the exponential mapping. An element \(X \in \mathcal{G} \) can be regarded as a (left-invariant) differential operator on \(G \): for \(f \in \mathcal{D}(G) \) we put
\[Xf(x) = \lim_{t \to 0} \frac{f(x \exp tX) - f(x)}{t}. \]

\(\mathcal{M}_+(G) \) is the space of positive Radon measures on \(G \), \(\mathcal{M}^b_+(G) \) the subspace of bounded measures and \(\mathcal{M}^1(G) \) the set of probability measures on \(G \) which, furnished with the operation of convolution \(* \) and the weak topology, is a topological semigroup. The Dirac measure in \(x \in G \) is denoted by \(\delta_x \).

3. Convolution semigroups of probability measures

A family \((\mu_t)_{t \geq 0} \) in \(\mathcal{M}^1(G) \) is said to be a (continuous) convolution semigroup if we have \(\mu_s * \mu_t = \mu_{s+t} \) for all \(s, t \geq 0 \), and \(\lim_{t \uparrow 0} \mu_t = \mu_0 = \delta_e \). Its generating functional \((A, \mathcal{A})\) is defined by
\[A := \left\{ f \in \mathcal{C}^b(G) : A(f) := \lim_{t \to 0} t^{-1} \left(\int f(x) \mu_t(dx) - f(e) \right) \right\} \text{ exists} \right\}. \]

We have \(\mathcal{E}(G) \subset \mathcal{A} \) if \(\{\zeta_1, \ldots, \zeta_m\} \) is a system of canonical coordinates of the first kind in \(\mathcal{G} \) adapted to the basis \(\{X_1, \ldots, X_m\} \) of \(\mathcal{G} \) then on \(\mathcal{E}(G) \) the functional \(A \) admits the canonical decomposition (Lévy-Khintchine formula)
\[A(f) = \sum_{i=1}^m a_i(X_i f)(e) + \sum_{i,j=1}^m a_{ij}(X_i X_j f)(e) \]
\[+ \int_{G^*} \left[f(x) - f(e) - \sum_{i=1}^m \zeta_i(x)(X_i f)(e) \right] \eta(dx), \]
where \(a_1, \ldots, a_m \) are real numbers, \((a_{ij})_{1 \leq i, j \leq m} \) is a real symmetric positive semidefinite matrix and \(\eta \) is a Lévy measure on \(G \), i.e. \(\eta \in \mathcal{M}_+(G^*) \) with \(\int_{G^*} \varphi(x)\eta(dx) < \infty \), where \(\varphi \) is a Hunt function for \(G \) (see Heyer [3], p. 268, Siebert [5] and Hunt [4]). We shall also say that the generating functional \(A \) admits the canonical decomposition \((a_i, a_{ij}, \eta)_{1 \leq i, j \leq m}\).

A convolution semigroup \((\mu_t)_{t \geq 0} \) of non-degenerate measures in \(\mathcal{M}^1(G) \) is called a Gaussian semigroup if \(\lim_{t \to 0} t^{-1} \mu_t(G \setminus U) = 0 \) for all \(U \in \mathcal{U}(e) \). A non-degenerate convolution semigroup \((\mu_t)_{t \geq 0} \) in \(\mathcal{M}^1(G) \) with canonical decomposition \((a_i, a_{ij}, \eta)_{1 \leq i, j \leq m}\) is a Gaussian semigroup if and only if \(\eta = 0 \). A non-degenerate measure \(\mu \in \mathcal{M}^1(G) \) is called a Gaussian measure if there exists a Gaussian semigroup \((\mu_t)_{t \geq 0} \) such that \(\mu_1 = \mu \). (For information on Gauss semigroups cf. Heyer [3].)
4. Unitary representations and Fourier transforms

A (continuous) unitary representation of G is a homomorphism D of G into the group of unitary operators on a complex Hilbert space \mathcal{H} such that the mapping $x \to D(x)u$ of G into \mathcal{H} is continuous for all $u \in \mathcal{H}$. The space \mathcal{H} is called the representation space of D and is denoted by $\mathcal{H}(D)$. The inner product and the norm in $\mathcal{H}(D)$ are denoted by $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$, respectively.

The class of all (continuous) unitary representations of G is denoted by $\text{Rep}(G)$. A representation $D \in \text{Rep}(G)$ is said to be irreducible if the only closed subspaces of $\mathcal{H}(D)$ invariant under D are $\{0\}$ and $\mathcal{H}(D)$. By $\text{Irr}(G)$ we denote the class of all irreducible representations in $\text{Rep}(G)$.

If $(D, \mathcal{H}(D))$ is a representation of G, the conjugate representation \overline{D} is modeled in $\overline{\mathcal{H}(D)}$, the \mathbb{C}-linear dual of $\mathcal{H}(D)$. For $u \in \mathcal{H}(D)$ define $\bar{u} \in \overline{\mathcal{H}(D)}$ via $\bar{u}(v) = \langle v, u \rangle$. This map $\mathcal{H}(D) \to \overline{\mathcal{H}(D)}$ is bijective, but conjugate linear. The inner product in $\overline{\mathcal{H}(D)}$ is $\langle \bar{u}, \bar{v} \rangle = \langle u, v \rangle$, and the conjugate representation \overline{D} of G is given by $\overline{D}(x)\bar{u} := \overline{D(x)u}$. Thus the matrix element of $\overline{D}(x)$ are the complex conjugates of those for $D(x)$.

If $(D_1, \mathcal{H}(D_1))$ and $(D_2, \mathcal{H}(D_2))$ are representations of G, we define the tensor product $\mathcal{H}(D_1) \otimes \mathcal{H}(D_2)$ of Hilbert spaces to be the spaces of all Hilbert-Schmidt operators $S : \overline{\mathcal{H}(D_2)} \to \mathcal{H}(D_1)$. If $\mathcal{H}(D_1) \otimes \mathcal{H}(D_2)$ is the algebraic tensor product of $\mathcal{H}(D_1)$ and $\mathcal{H}(D_2)$ as vector spaces, it corresponds to a dense subspace of $\mathcal{H}(D_1) \otimes \mathcal{H}(D_2)$ if we identify $u \otimes v$ with the rank-1 operator $(u \otimes v)(\bar{w}) := \langle v, w \rangle u$, and we have $\langle u_1 \otimes v_1, u_2 \otimes v_2 \rangle = \langle u_1, u_2 \rangle \langle v_1, v_2 \rangle$. The tensor product representation $D_1 \otimes D_2$ is given on $\mathcal{H}(D_1) \otimes \mathcal{H}(D_2)$ by $(D_1 \otimes D_2)(x)(u \otimes v) := D_1(x)u \otimes D_2(x)v$ for all $x \in G$, $u \in \mathcal{H}(D_1)$, $v \in \mathcal{H}(D_2)$. It extends to a unitary representation on $\mathcal{H}(D_1) \otimes \mathcal{H}(D_2)$ given by $(D_1 \otimes D_2)(x)S := D_1(x) \circ S \circ (\overline{D_2}(x))^{-1}$ for all $x \in G$.

Let $D \in \text{Rep}(G)$. The vector $u \in \mathcal{H}(D)$ is said to be differentiable for D if the coefficient function $x \to \langle D(x)u, v \rangle$ of G into $\mathcal{E}(G)$ is in $\mathcal{E}(G)$ for any $v \in \mathcal{H}(D)$. By $\mathcal{H}_0(D)$ we denote the space of all vectors in $\mathcal{H}(D)$ differentiable for D.

For a probability measure μ on G we define its Fourier transform $\hat{\mu}$ by

$$\langle \hat{\mu}(D)u, v \rangle := \int \langle D(x)u, v \rangle \mu(dx)$$

for all $D \in \text{Rep}(G)$ $(u, v \in \mathcal{H}(D))$. Then $\hat{\mu}(D)$ is a bounded linear operator on $\mathcal{H}(D)$ such that $\|\hat{\mu}(D)\| \leq 1$.

Let $D \in \text{Rep}(G)$. By the usual properties of the Fourier transformation $(\hat{\mu}_t(D))_{t \geq 0}$ is a strongly continuous semigroup of contractions on $\mathcal{H}(D)$. We denote its infinitesimal
generator by \((A(D), \mathcal{A}(D))\). We recall some results due to Siebert (see [6]):

\[
\mathcal{A}(D) = \{u \in \mathcal{H}(D) : \langle Du, v \rangle \in \mathcal{A} \text{ for all } v \in \mathcal{H}(D) \}
\]

and

\[
\langle A(D)u, v \rangle = A(\langle Du, v \rangle)
\]

for all \(u \in \mathcal{A}(D)\) and \(v \in \mathcal{H}(D)\). Moreover, \(\mathcal{H}_0(D) \subseteq \mathcal{A}(D)\).

5. Characterisation of Gaussian semigroups

For any \(D \in \text{Rep}(G)\) and \(u \in \mathcal{H}_0(D)\) we introduce a function \(f_{D,u}\) on \(G\) defined by

\[
f_{D,u}(x) := \text{Re}[\langle u, u \rangle - \langle D(x)u, u \rangle]
\]

for all \(x \in G\).

The following characterisation of Gauss semigroups is similar to the result valid for Gauss measures on almost periodic Lie projective groups (cf. Heyer, [3]).

Theorem 1. Let \(G\) be a Lie group. Let \((\mu_t)_{t \geq 0}\) be a non-degenerate convolution semigroup in \(M^1(G)\) with generating functional \(A\) and Lévy-measure \(\eta\). The following statements are equivalent:

1. \((\mu_t)_{t \geq 0}\) is a Gaussian semigroup;
2. \(\eta = 0\);
3. \(\lim_{t \to 0} \frac{1}{t} \int_G f(x) \mu_t(dx) = 0\) for all \(f \in C^b(G)\) with \(e \notin \text{supp}(f)\);
4. \(A(f_{D,u}^2) = 0\) for all \(D \in \text{Irr}(G),\ u \in \mathcal{H}_0(D)\);
5. we have the (Gauss) condition

\[
\text{Re}(A(D \otimes D)(u \otimes u), u \otimes u) + \text{Re}(A(D \otimes \overline{D})(u \otimes \overline{u}), u \otimes \overline{u}) = 4\|u\|^2\text{Re}(A(D)u, u)
\]

for all \(D \in \text{Irr}(G),\ u \in \mathcal{H}_0(D)\).

Proof. (i) \(\iff\) (ii) \(\iff\) (iii) is well known (cf. Heyer [3]).

(ii) \(\implies\) (iv) follows immediately from the Lévy-Khinchin formula since for all \(D \in \text{Irr}(G),\ u \in \mathcal{H}_0(D)\) we have \(f_{D,u}(e) = 0\) and \((X_if_{D,u})(e) = 0\) for \(i = 1, \ldots, m\), thus

\[
(X_i f_{D,u}^2)(e) = 0, \quad (X_i X_j f_{D,u}^2)(e) = 0
\]
(iv) \iff (v). For every $D \in \text{Irr}(G)$, $u \in \mathcal{H}_0(D)$ one has the identities

\begin{align*}
 f_{D \otimes D, u \otimes u}(x) &= \|u\|^4 - \text{Re}\langle (D(x)u, u)^2 \rangle \\
 f_{D \otimes D, u \otimes u}(x) &= \|u\|^4 - \text{Re}\langle (D(x)u, u)\overline{D(x)\bar{u}, \bar{u}} \rangle \\
 4\|u\|^2 f_{D, u}(x) - 2f_{D, u}^2(x) &= 2f_{D, u}(x)(2\|u\|^2 - f_{D, u}(x)) \\
 &= 2\|u\|^4 - 2(\text{Re}(D(x)u, u))^2 \\
 &= 2\|u\|^4 - \text{Re}\langle (D(x)u, u)(D(x)\bar{u}, \bar{u}) + \overline{D(x)u, u}) \rangle.
\end{align*}

Therefore

$$f_{D \otimes D, u \otimes u} + f_{D \otimes D, u \otimes \bar{u}} = 4\|u\|^2 f_{D, u} - 2f_{D, u}^2$$

and

$$Af_D = -\text{Re}\langle A(D)u, u \rangle$$

imply the assertion.

(iv) \implies (ii). For every $D \in \text{Irr}(G)$ and $u \in \mathcal{H}_0(D)$ we have by the Lévy-Khinchin formula

$$0 = A(f_{D, u}^2) = \int_{G^d} f_{D, u}^2(x)\eta(dx).$$

Since

$$\bigcap_{u \in \mathcal{H}_0(D)} \{x \in G : f_{D, u}^2(x) = 0\} = \ker(D)$$

for every $D \in \text{Irr}(G)$ (see Siebert [6], the proof of Lemma 5.2) and

$$\bigcap_{D \in \text{Irr}(G)} \ker(D) = e$$

Remark 1. Obviously the Gauss condition (v) can be formulated also for the generating functional of the convolution semigroup $(\mu_t)_{t \geq 0}$:

$$\text{Re} A(\langle (D \otimes D)(u \otimes u), u \otimes u \rangle) + \text{Re} A(\langle (D \otimes \overline{D})(u \otimes \bar{u}), u \otimes \bar{u} \rangle) = 4\|u\|^2 \text{Re} A(\langle (D)u, u \rangle)$$

for all $D \in \text{Irr}(G), u \in \mathcal{H}_0(D)$.

Remark 2. Unfortunately in general the Gauss condition (v) does not implies that the Fourier transform $\hat{\mu}_t$ itself satisfies some equation as in the case when G has only finite dimensional irreducible representation. Thus we cannot conclude, for example, that the definition of a Gaussian measure is independent of its embedding semigroup.
Remark 3. If \((\mu_t)_{t \geq 0}\) is a Gaussian semigroup on a Lie group then using the identity
\[f_{D \otimes D, u \otimes v} + f_{D \otimes \overline{D}, u \otimes \overline{v}} = 2(\|u\|^2 f_{D, v} + \|v\|^2 f_{D, u} - f_{D, u} f_{D, v}) \]
we can conclude
\[
\text{Re}(A(D \otimes D)(u \otimes v), u \otimes v) + \text{Re}(A(D \otimes \overline{D})(u \otimes \overline{v}), u \otimes \overline{v})
= 2(\|u\|^2 \text{Re}(A(D)v, v) + \|v\|^2 \text{Re}(A(D)u, u))
\]
valid for all \(D \in \text{Rep}(G), \ u, v \in H_0(D)\).

Introducing notation
\[
f_{D, u, v}(x) := \text{Re}[\langle u, v \rangle - \langle D(x)u, v \rangle]
\]
for all \(D \in \text{Rep}(G), \ u, v \in H_0(D)\) and \(x \in G\) we have the identity
\[
f_{D \otimes D, u_1 \otimes v_1, u_2 \otimes v_2} + f_{D \otimes \overline{D}, u_1 \otimes \overline{v}_1, u_2 \otimes \overline{v}_2}
= 2(\text{Re}(u_1, u_2) f_{D, v_1, v_2} + \text{Re}(v_1, v_2) f_{D, u_1, u_2} - f_{D, u_1, u_2} f_{D, v_1, v_2})
\]
and conclude that the infinitesimal generator \(A\) satisfies the equation
\[
\text{Re}(A(D \otimes D)(u_1 \otimes v_1), u_2 \otimes v_2) + \text{Re}(A(D \otimes \overline{D})(u_1 \otimes \overline{v}_1), u_2 \otimes \overline{v}_2)
= 2(\text{Re}(u_1, u_2) \text{Re}(A(D)v_1, v_2) + \text{Re}(v_1, v_2) \text{Re}(A(D)u_1, u_2))
\]
valid for all \(D \in \text{Rep}(G), \ u_1, u_2, v_1, v_2 \in H_0(D)\).

References

Mathematical Institute
Lajos Kossuth University
Pf. 12
H-4010 Debrecen, Hungary