
Powers of matrices

Linear algebra
Lecture 13

Gábor V. Nagy
Bolyai Intitute
Szeged, 2020.



Lecture 13 Powers of a matrix 1/5

Definition. The k’th power of a square matrix A is defined as repeated multiplication:

Ak :=

k times︷ ︸︸ ︷
A · A · . . . · A .

Example. 2 0 −1

3 4 1

0 5 2

3

=

 2 0 −1

3 4 1

0 5 2

 ·

 2 0 −1

3 4 1

0 5 2

 ·

 2 0 −1

3 4 1

0 5 2



=

 4 −5 −4

18 21 3

15 30 9

 ·

 2 0 −1

3 4 1

0 5 2

 =

 −7 −40 −17

99 99 9

120 165 33

 .
Remark. In real-life examples, it is often needed to calculate the powers of a matrix, e.g. see
Example 7.10 in the lecture notes.
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We will just see that it is trivial to calculate the powers of diagonal matrices.

Notation. We will denote by Diag(d1, . . . , dn) the n×n diagonal matrix whose diagonal entries
are d1, . . . , dn (from top to bottom). For example,

Diag(2, 5,−3) =

 2 0 0
0 5 0
0 0 −3

 .
Proposition 1. If D = Diag(d1, . . . , dn), then Dk = Diag(dk1, . . . , d

k
n).

In words, the k’th power of a diagonal matrix D is also a diagonal matrix (of the same size),
whose diagonal entries are the k’th power of the diagonal entries of D.

Example.  2 0 0
0 5 0
0 0 −3

3 =
 8 0 0
0 125 0
0 0 −27

 .
Check this by hand!



Lecture 13 Powers of diagonalizable matrices 3/5

Now we consider a much wider class of matrices:

Definition. We say that an n × n matrix A is diagonalizable if there exist an n × n diagonal
matrix D and an invertible n×n matrix S such that A = SDS−1. (We note that not all square
matrices are diagonalizable.)

Proposition 2. Assume that the n× n matrix A is diagonalizable: A = SDS−1. Then
Ak = SDkS−1.

By Proposition 1, the matrix Dk can be easily calculated: If D = Diag(d1, . . . , dn), then
Dk = Diag(dk1, . . . , d

k
n).

Proof.
Ak = A · A · A · . . . · A = (SDS−1) · (SDS−1) · (SDS−1) · . . . · (SDS−1)

= SDS−1SDS−1SDS−1 · · ·SDS−1 = SDIDIDI · · · IDS−1

= SDDD · · ·DS−1 = SDkS−1,

where I is the n × n identity matrix (S−1S = I, by the definition of the inverse matrix), and
so DI = D. �



Lecture 13 n× n matrices with n disctinct eigenvalues 4/5

Theorem. If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable as follows.
Let λ1, . . . , λn be the eigenvalues of A with associated eigenvectors v1, . . . ,vn (that is, vi is
an eigenvector of A that corresponds to the eigenvalue λi). Let D = Diag(λ1, . . . , λn) and
let S be the n× n matrix whose j’th column is vj , for j = 1, . . . , n. With these notations,

A = SDS−1.



Lecture 13 n× n matrices with n disctinct eigenvalues 4/5

Theorem. If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable as follows.
Let λ1, . . . , λn be the eigenvalues of A with associated eigenvectors v1, . . . ,vn (that is, vi is
an eigenvector of A that corresponds to the eigenvalue λi). Let D = Diag(λ1, . . . , λn) and
let S be the n× n matrix whose j’th column is vj , for j = 1, . . . , n. With these notations,

A = SDS−1.

Proof. By the definition of eigenvectors (and matrix multiplication),

AS = A ·

 v1 v2 . . . vn

 =

 λ1v1 λ2v2 . . . λnvn



=

 v1 v2 . . . vn

 ·


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn

 = SD.



Lecture 13 n× n matrices with n disctinct eigenvalues 4/5

Theorem. If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable as follows.
Let λ1, . . . , λn be the eigenvalues of A with associated eigenvectors v1, . . . ,vn (that is, vi is
an eigenvector of A that corresponds to the eigenvalue λi). Let D = Diag(λ1, . . . , λn) and
let S be the n× n matrix whose j’th column is vj , for j = 1, . . . , n. With these notations,

A = SDS−1.

So we obtained that

AS = SD.

Since the eigenvectors v1, . . . ,vn are linearly independent (see the last slide of Lecture 8),
the (column) rank of S is n, which means that S is invertible (as S is an n × n matrix with
determinant rank n).

So using the above equation, we conclude that

A = ASS−1 = SDS−1,

as desired. �



Lecture 13 A worked-out example 5/5

Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

Solution. 1. Find the eigenvalues of A: (This was an exercise of HW#2.)∣∣∣∣ 2− x −3
−1 4− x

∣∣∣∣ = (2− x)(4− x)− 3 = x2 − 6x+ 5.

The roots of x2 − 6x + 5 are λ1 = 1, λ2 = 5, these are the eigenvalues of A. As the 2 × 2
matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

Solution. 1. Find the eigenvalues of A: (This was an exercise of HW#2.)∣∣∣∣ 2− x −3
−1 4− x

∣∣∣∣ = (2− x)(4− x)− 3 = x2 − 6x+ 5.

The roots of x2 − 6x + 5 are λ1 = 1, λ2 = 5, these are the eigenvalues of A. As the 2 × 2
matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.
2. We have to find an eigenvector v1 corresponding to the eigenvalue λ1 = 1, and an eigen-
vector v2 corresponding to the eigenvalue λ2 = 5. We saw in Lecture 8, that the eigenvectors
corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system
with matrix A− λI2. We we have to pick one such solution for each eigenvalue λ.

For λ1 = 1, the matrix A − λ1I2 =
[

2 −3
−1 4

]
− 1 ·

[
1 0
0 1

]
=
[

1 −3
−1 3

]
, so to find an

eigenvector v1, we have to solve the homogeneus linear system[
1 −3
−1 3

∣∣∣∣ 00
]
.
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

2. We have to find an eigenvector v1 corresponding to the eigenvalue λ1 = 1, and an eigen-
vector v2 corresponding to the eigenvalue λ2 = 5. We saw in Lecture 8, that the eigenvectors
corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system
with matrix A− λI2. We we have to pick one such solution for each eigenvalue λ.

For λ1 = 1, the matrix A − λ1I2 =
[

2 −3
−1 4

]
− 1 ·

[
1 0
0 1

]
=
[

1 −3
−1 3

]
, so to find an

eigenvector v1, we have to solve the homogeneus linear system[
1∗ −3
−1 3

∣∣∣∣ 00
]
∼
[
1 −3
0 0

∣∣∣∣ 00
]
.

The second matrix is in row-echelon form, hence x2 = a is the free variable and the basic
variable is x1 = 3x2 (from the 1st row), so the solutions are [3a, a]T where a is arbitrary. To
obtain a suitable v1, pick a non-zerovector solution, e.g., by setting a = 1 we get v1 = [3, 1]T .
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

2. We have to find an eigenvector v1 corresponding to the eigenvalue λ1 = 1, and an eigen-
vector v2 corresponding to the eigenvalue λ2 = 5. We saw in Lecture 8, that the eigenvectors
corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system
with matrix A− λI2. We we have to pick one such solution for each eigenvalue λ.

For λ1 = 1, the matrix A − λ1I2 =
[

2 −3
−1 4

]
− 1 ·

[
1 0
0 1

]
=
[

1 −3
−1 3

]
, so to find an

eigenvector v1, we have to solve the homogeneus linear system[
1∗ −3
−1 3

∣∣∣∣ 00
]
∼
[
1 −3
0 0

∣∣∣∣ 00
]
.

The second matrix is in row-echelon form, hence x2 = a is the free variable and the basic
variable is x1 = 3x2 (from the 1st row), so the solutions are [3a, a]T where a is arbitrary. To
obtain a suitable v1, pick a non-zerovector solution, e.g., by setting a = 1 we get v1 = [3, 1]T .

For λ2 = 5, we proceed analogously. Here A−λ2I2 =
[

2 −3
−1 4

]
−5 ·

[
1 0
0 1

]
=
[−3 −3
−1 −1

]
.

After solving the linear system
[
−3 −3
−1 −1

∣∣∣∣ 00
]
, we obtain v2 = [−1, 1]T (for example).
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

3. Now we apply the previous Theorem with λ1 = 1, λ2 = 5 and v1 = [3, 1]T ,v2 = [−1, 1]T :
With

D = Diag(1, 5) =
[
1 0
0 5

]
and S =

[
v1 v2

]
=

[
3 −1
1 1

]
,

we have that
A = SDS−1.

Thus by Proposition 2, we know that
A100 = SD100S−1. (∗)
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Exercise. Calculate
[

2 −3
−1 4

]100
, using the diagonalization of A =

[
2 −3
−1 4

]
.

3. Now we apply the previous Theorem with λ1 = 1, λ2 = 5 and v1 = [3, 1]T ,v2 = [−1, 1]T :
With

D = Diag(1, 5) =
[
1 0
0 5

]
and S =

[
v1 v2

]
=

[
3 −1
1 1

]
,

we have that
A = SDS−1.

Thus by Proposition 2, we know that
A100 = SD100S−1. (∗)

Proposition 1 shows that D100 =

[
1 0
0 5100

]
. We also need to compute the inverse of S:

S−1 =

[
1/4 1/4
−1/4 3/4

]
(see Lec. 9, the details are skipped). Substituting these into (∗) yields

A100 = SD100S−1 =

[
3 −1
1 1

]
·
[
1 0
0 5100

]
·
[

1/4 1/4
−1/4 3/4

]
=

[ 1
4(3 + 5100) 1

4(3− 3 · 5100)
1
4(1− 5100) 1

4(1 + 3 · 5100)

]
.

�


