Powers of matrices

Linear algebra

Lecture 13

Gábor V. Nagy
Bolyai Intitute
Szeged, 2020.

Definition. The k 'th power of a square matrix A is defined as repeated multiplication:

$$
A^{k}:=\overbrace{A \cdot A \cdot \ldots \cdot A}^{k \text { times }} .
$$

Example.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & 0 & -1 \\
3 & 4 & 1 \\
0 & 5 & 2
\end{array}\right]^{3}=\left[\begin{array}{ccc}
2 & 0 & -1 \\
3 & 4 & 1 \\
0 & 5 & 2
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 0 & -1 \\
3 & 4 & 1 \\
0 & 5 & 2
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 0 & -1 \\
3 & 4 & 1 \\
0 & 5 & 2
\end{array}\right]} \\
=\left[\begin{array}{ccc}
4 & -5 & -4 \\
18 & 21 & 3 \\
15 & 30 & 9
\end{array}\right] \cdot\left[\begin{array}{ccc}
2 & 0 & -1 \\
3 & 4 & 1 \\
0 & 5 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-7 & -40 & -17 \\
99 & 99 & 9 \\
120 & 165 & 33
\end{array}\right]
\end{gathered}
$$

Remark. In real-life examples, it is often needed to calculate the powers of a matrix, e.g. see Example 7.10 in the lecture notes.

We will just see that it is trivial to calculate the powers of diagonal matrices.
Notation. We will denote by $\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$ the $n \times n$ diagonal matrix whose diagonal entries are d_{1}, \ldots, d_{n} (from top to bottom). For example,

$$
\operatorname{Diag}(2,5,-3)=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -3
\end{array}\right]
$$

Proposition 1. If $D=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$, then $D^{k}=\operatorname{Diag}\left(d_{1}^{k}, \ldots, d_{n}^{k}\right)$.
In words, the k 'th power of a diagonal matrix D is also a diagonal matrix (of the same size), whose diagonal entries are the k 'th power of the diagonal entries of D.

Example.

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & -3
\end{array}\right]^{3}=\left[\begin{array}{ccc}
8 & 0 & 0 \\
0 & 125 & 0 \\
0 & 0 & -27
\end{array}\right]
$$

Check this by hand!

Now we consider a much wider class of matrices:
Definition. We say that an $n \times n$ matrix A is diagonalizable if there exist an $n \times n$ diagonal matrix D and an invertible $n \times n$ matrix S such that $A=S D S^{-1}$. (We note that not all square matrices are diagonalizable.)

Proposition 2. Assume that the $n \times n$ matrix A is diagonalizable: $A=S D S^{-1}$. Then

$$
A^{k}=S D^{k} S^{-1}
$$

By Proposition 1, the matrix D^{k} can be easily calculated: If $D=\operatorname{Diag}\left(d_{1}, \ldots, d_{n}\right)$, then $D^{k}=\operatorname{Diag}\left(d_{1}^{k}, \ldots, d_{n}^{k}\right)$.

Proof.

$$
\begin{aligned}
& A^{k}=A \cdot A \cdot A \cdot \ldots \cdot A=\left(S D S^{-1}\right) \cdot\left(S D S^{-1}\right) \cdot\left(S D S^{-1}\right) \cdot \ldots \cdot\left(S D S^{-1}\right) \\
& =S D S^{-1} S D S^{-1} S D S^{-1} \cdots S D S^{-1}=S D I D I D I \cdots I D S^{-1} \\
& \quad=S D D D \cdots D S^{-1}=S D^{k} S^{-1}
\end{aligned}
$$

where I is the $n \times n$ identity matrix ($S^{-1} S=I$, by the definition of the inverse matrix), and so $D I=D$.

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ (that is, \mathbf{v}_{i} is an eigenvector of A that corresponds to the eigenvalue $\left.\lambda_{i}\right)$. Let $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and let S be the $n \times n$ matrix whose j 'th column is \mathbf{v}_{j}, for $j=1, \ldots, n$. With these notations,

$$
A=S D S^{-1} .
$$

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ (that is, \mathbf{v}_{i} is an eigenvector of A that corresponds to the eigenvalue λ_{i}). Let $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and let S be the $n \times n$ matrix whose j 'th column is \mathbf{v}_{j}, for $j=1, \ldots, n$. With these notations,

$$
A=S D S^{-1} .
$$

Proof. By the definition of eigenvectors (and matrix multiplication),

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ (that is, \mathbf{v}_{i} is an eigenvector of A that corresponds to the eigenvalue λ_{i}). Let $D=\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and let S be the $n \times n$ matrix whose j 'th column is \mathbf{v}_{j}, for $j=1, \ldots, n$. With these notations,

$$
A=S D S^{-1} .
$$

So we obtained that

$$
A S=S D .
$$

Since the eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent (see the last slide of Lecture 8), the (column) rank of S is n, which means that S is invertible (as S is an $n \times n$ matrix with determinant rank n).
So using the above equation, we conclude that

$$
A=A S S^{-1}=S D S^{-1},
$$

as desired.

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
Solution. 1. Find the eigenvalues of A :
(This was an exercise of HW\#2.)

$$
\left|\begin{array}{cc}
2-x & -3 \\
-1 & 4-x
\end{array}\right|=(2-x)(4-x)-3=x^{2}-6 x+5
$$

The roots of $x^{2}-6 x+5$ are $\lambda_{1}=1, \lambda_{2}=5$, these are the eigenvalues of A. As the 2×2 matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
Solution. 1. Find the eigenvalues of A :
(This was an exercise of HW\#2.)

$$
\left|\begin{array}{cc}
2-x & -3 \\
-1 & 4-x
\end{array}\right|=(2-x)(4-x)-3=x^{2}-6 x+5
$$

The roots of $x^{2}-6 x+5$ are $\lambda_{1}=1, \lambda_{2}=5$, these are the eigenvalues of A. As the 2×2 matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.
2. We have to find an eigenvector \mathbf{v}_{1} corresponding to the eigenvalue $\lambda_{1}=1$, and an eigenvector \mathbf{v}_{2} corresponding to the eigenvalue $\lambda_{2}=5$. We saw in Lecture 8 , that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A-\lambda I_{2}$. We we have to pick one such solution for each eigenvalue λ.
For $\lambda_{1}=1$, the matrix $A-\lambda_{1} I_{2}=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]-1 \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ -1 & 3\end{array}\right]$, so to find an eigenvector \mathbf{v}_{1}, we have to solve the homogeneus linear system

$$
\left[\begin{array}{cc|c}
1 & -3 & 0 \\
-1 & 3 & 0
\end{array}\right]
$$

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
2. We have to find an eigenvector \mathbf{v}_{1} corresponding to the eigenvalue $\lambda_{1}=1$, and an eigenvector \mathbf{v}_{2} corresponding to the eigenvalue $\lambda_{2}=5$. We saw in Lecture 8 , that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A-\lambda I_{2}$. We we have to pick one such solution for each eigenvalue λ.
For $\lambda_{1}=1$, the matrix $A-\lambda_{1} I_{2}=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]-1 \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ -1 & 3\end{array}\right]$, so to find an eigenvector \mathbf{v}_{1}, we have to solve the homogeneus linear system

$$
\left[\begin{array}{cc|c}
1^{*} & -3 & 0 \\
-1 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The second matrix is in row-echelon form, hence $x_{2}=a$ is the free variable and the basic variable is $x_{1}=3 x_{2}$ (from the 1st row), so the solutions are $[3 a, a]^{T}$ where a is arbitrary. To obtain a suitable \mathbf{v}_{1}, pick a non-zerovector solution, e.g., by setting $a=1$ we get $\mathbf{v}_{1}=[3,1]^{T}$.

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
2. We have to find an eigenvector \mathbf{v}_{1} corresponding to the eigenvalue $\lambda_{1}=1$, and an eigenvector \mathbf{v}_{2} corresponding to the eigenvalue $\lambda_{2}=5$. We saw in Lecture 8 , that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A-\lambda I_{2}$. We we have to pick one such solution for each eigenvalue λ.
For $\lambda_{1}=1$, the matrix $A-\lambda_{1} I_{2}=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]-1 \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & -3 \\ -1 & 3\end{array}\right]$, so to find an eigenvector \mathbf{v}_{1}, we have to solve the homogeneus linear system

$$
\left[\begin{array}{cc|c}
1^{*} & -3 & 0 \\
-1 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The second matrix is in row-echelon form, hence $x_{2}=a$ is the free variable and the basic variable is $x_{1}=3 x_{2}$ (from the 1st row), so the solutions are $[3 a, a]^{T}$ where a is arbitrary. To obtain a suitable \mathbf{v}_{1}, pick a non-zerovector solution, e.g., by setting $a=1$ we get $\mathbf{v}_{1}=[3,1]^{T}$. For $\lambda_{2}=5$, we proceed analogously. Here $A-\lambda_{2} I_{2}=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]-5 \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}-3 & -3 \\ -1 & -1\end{array}\right]$. After solving the linear system $\left[\begin{array}{cc|c}-3 & -3 & 0 \\ -1 & -1 & 0\end{array}\right]$, we obtain $\mathbf{v}_{2}=[-1,1]^{T}$ (for example).

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
3. Now we apply the previous Theorem with $\lambda_{1}=1, \lambda_{2}=5$ and $\mathbf{v}_{1}=[3,1]^{T}, \mathbf{v}_{2}=[-1,1]^{T}$:

With

$$
D=\operatorname{Diag}(1,5)=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2} \\
&
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right],
$$

we have that

$$
A=S D S^{-1} .
$$

Thus by Proposition 2, we know that

$$
\begin{equation*}
A^{100}=S D^{100} S^{-1} . \tag{*}
\end{equation*}
$$

Exercise. Calculate $\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]^{100}$, using the diagonalization of $A=\left[\begin{array}{cc}2 & -3 \\ -1 & 4\end{array}\right]$.
3. Now we apply the previous Theorem with $\lambda_{1}=1, \lambda_{2}=5$ and $\mathbf{v}_{1}=[3,1]^{T}, \mathbf{v}_{2}=[-1,1]^{T}$: With

$$
D=\operatorname{Diag}(1,5)=\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2} \\
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right],
$$

we have that

$$
A=S D S^{-1} .
$$

Thus by Proposition 2, we know that

$$
\begin{equation*}
A^{100}=S D^{100} S^{-1} . \tag{*}
\end{equation*}
$$

Proposition 1 shows that $D^{100}=\left[\begin{array}{cc}1 & 0 \\ 0 & 5^{100}\end{array}\right]$. We also need to compute the inverse of S : $S^{-1}=\left[\begin{array}{cc}1 / 4 & 1 / 4 \\ -1 / 4 & 3 / 4\end{array}\right]$ (see Lec. 9, the details are skipped). Substituting these into ($*$) yields
$A^{100}=S D^{100} S^{-1}=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{cc}1 & 0 \\ 0 & 5^{100}\end{array}\right] \cdot\left[\begin{array}{cc}1 / 4 & 1 / 4 \\ -1 / 4 & 3 / 4\end{array}\right]=\left[\begin{array}{ll}\frac{1}{4}\left(3+5^{100}\right) & \frac{1}{4}\left(3-3 \cdot 5^{100}\right) \\ \frac{1}{4}\left(1-5^{100}\right) & \frac{1}{4}\left(1+3 \cdot 5^{100}\right)\end{array}\right]$.

