Powers of matrices

Linear algebra

Lecture 13

Gábor V. Nagy Bolyai Intitute Szeged, 2020. **Definition.** The k'th power of a square matrix A is defined as repeated multiplication:

$$A^k := \overbrace{A \cdot A \cdot \ldots \cdot A}^{k \text{ times}}.$$

Example.

$$\begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 1 \\ 0 & 5 & 2 \end{bmatrix}^{3} = \begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 1 \\ 0 & 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 1 \\ 0 & 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 1 \\ 0 & 5 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & -5 & -4 \\ 18 & 21 & 3 \\ 15 & 30 & 9 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & -1 \\ 3 & 4 & 1 \\ 0 & 5 & 2 \end{bmatrix} = \begin{bmatrix} -7 & -40 & -17 \\ 99 & 99 & 9 \\ 120 & 165 & 33 \end{bmatrix}$$

Remark. In real-life examples, it is often needed to calculate the powers of a matrix, e.g. see Example 7.10 in the lecture notes.

We will just see that it is trivial to calculate the powers of diagonal matrices.

Notation. We will denote by $Diag(d_1, \ldots, d_n)$ the $n \times n$ diagonal matrix whose diagonal entries are d_1, \ldots, d_n (from top to bottom). For example,

$$\mathsf{Diag}(2,5,-3) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

Proposition 1. If $D = \text{Diag}(d_1, \ldots, d_n)$, then $D^k = \text{Diag}(d_1^k, \ldots, d_n^k)$.

In words, the k'th power of a diagonal matrix D is also a diagonal matrix (of the same size), whose diagonal entries are the k'th power of the diagonal entries of D.

Example.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -3 \end{bmatrix}^3 = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 125 & 0 \\ 0 & 0 & -27 \end{bmatrix}.$$

Check this by hand!

Now we consider a much wider class of matrices:

Definition. We say that an $n \times n$ matrix A is diagonalizable if there exist an $n \times n$ diagonal matrix D and an invertible $n \times n$ matrix S such that $A = SDS^{-1}$. (We note that not all square matrices are diagonalizable.)

Proposition 2. Assume that the $n \times n$ matrix A is diagonalizable: $A = SDS^{-1}$. Then $A^k = SD^kS^{-1}$.

By Proposition 1, the matrix D^k can be easily calculated: If $D = \text{Diag}(d_1, \ldots, d_n)$, then $D^k = \text{Diag}(d_1^k, \ldots, d_n^k)$.

Proof.

$$\begin{aligned} A^k &= A \cdot A \cdot A \cdot \ldots \cdot A = (SDS^{-1}) \cdot (SDS^{-1}) \cdot (SDS^{-1}) \cdot \ldots \cdot (SDS^{-1}) \\ &= SDS^{-1}SDS^{-1}SDS^{-1} \cdots SDS^{-1} = SDIDIDI \cdots IDS^{-1} \\ &= SDDD \cdots DS^{-1} = SD^kS^{-1}, \end{aligned}$$

where I is the $n \times n$ identity matrix ($S^{-1}S = I$, by the definition of the inverse matrix), and so DI = D.

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ (that is, \mathbf{v}_i is an eigenvector of A that corresponds to the eigenvalue λ_i). Let $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ and let S be the $n \times n$ matrix whose j'th column is \mathbf{v}_j , for $j = 1, \ldots, n$. With these notations,

$$A = SDS^{-1}.$$

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ (that is, \mathbf{v}_i is an eigenvector of A that corresponds to the eigenvalue λ_i). Let $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ and let S be the $n \times n$ matrix whose j'th column is \mathbf{v}_j , for $j = 1, \ldots, n$. With these notations, $A = SDS^{-1}$

Proof. By the definition of eigenvectors (and matrix multiplication),

$$AS = A \cdot \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{v}_1 & \lambda_2 \mathbf{v}_2 & \dots & \lambda_n \mathbf{v}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = SD.$$

Theorem. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable as follows. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A with associated eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ (that is, \mathbf{v}_i is an eigenvector of A that corresponds to the eigenvalue λ_i). Let $D = \text{Diag}(\lambda_1, \ldots, \lambda_n)$ and let S be the $n \times n$ matrix whose j'th column is \mathbf{v}_j , for $j = 1, \ldots, n$. With these notations, $A = SDS^{-1}$

So we obtained that

AS = SD.

Since the eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent (see the last slide of Lecture 8), the (column) rank of S is n, which means that S is invertible (as S is an $n \times n$ matrix with determinant rank n).

So using the above equation, we conclude that

$$A = ASS^{-1} = SDS^{-1},$$

as desired.

Exercise. Calculate
$$\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$$
, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$.

Exercise. Calculate $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$. **Solution. 1.** Find the eigenvalues of A: (This was an exercise of HW#2.)

$$\begin{vmatrix} 2-x & -3 \\ -1 & 4-x \end{vmatrix} = (2-x)(4-x) - 3 = x^2 - 6x + 5.$$

The roots of $x^2 - 6x + 5$ are $\lambda_1 = 1$, $\lambda_2 = 5$, these are the eigenvalues of A. As the 2×2 matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.

Exercise. Calculate $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$. **Solution. 1.** Find the eigenvalues of A: (This was an exercise of HW#2.)

$$\begin{vmatrix} 2-x & -3\\ -1 & 4-x \end{vmatrix} = (2-x)(4-x) - 3 = x^2 - 6x + 5.$$

The roots of $x^2 - 6x + 5$ are $\lambda_1 = 1$, $\lambda_2 = 5$, these are the eigenvalues of A. As the 2×2 matrix A has 2 distinct eigenvalues, A is diagonalizable by the previous theorem.

2. We have to find an eigenvector \mathbf{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$, and an eigenvector \mathbf{v}_2 corresponding to the eigenvalue $\lambda_2 = 5$. We saw in Lecture 8, that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A - \lambda I_2$. We we have to pick one such solution for each eigenvalue λ .

For $\lambda_1 = 1$, the matrix $A - \lambda_1 I_2 = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -1 & 3 \end{bmatrix}$, so to find an eigenvector \mathbf{v}_1 , we have to solve the homogeneus linear system

$$\begin{bmatrix} 1 & -3 & | & 0 \\ -1 & 3 & | & 0 \end{bmatrix}.$$

Exercise. Calculate
$$\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$$
, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$.

2. We have to find an eigenvector \mathbf{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$, and an eigenvector \mathbf{v}_2 corresponding to the eigenvalue $\lambda_2 = 5$. We saw in Lecture 8, that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A - \lambda I_2$. We we have to pick one such solution for each eigenvalue λ .

For $\lambda_1 = 1$, the matrix $A - \lambda_1 I_2 = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -1 & 3 \end{bmatrix}$, so to find an eigenvector \mathbf{v}_1 , we have to solve the homogeneus linear system

$$\begin{bmatrix} 1^* & -3 & | & 0 \\ -1 & 3 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$

The second matrix is in row-echelon form, hence $x_2 = a$ is the free variable and the basic variable is $x_1 = 3x_2$ (from the 1st row), so the solutions are $[3a, a]^T$ where a is arbitrary. To obtain a suitable \mathbf{v}_1 , pick a non-zerovector solution, e.g., by setting a = 1 we get $\mathbf{v}_1 = [3, 1]^T$.

Exercise. Calculate
$$\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$$
, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$.

2. We have to find an eigenvector \mathbf{v}_1 corresponding to the eigenvalue $\lambda_1 = 1$, and an eigenvector \mathbf{v}_2 corresponding to the eigenvalue $\lambda_2 = 5$. We saw in Lecture 8, that the eigenvectors corresponding to λ are precisely the non-zerovector solutions of the homogeneous linear system with matrix $A - \lambda I_2$. We we have to pick one such solution for each eigenvalue λ .

For $\lambda_1 = 1$, the matrix $A - \lambda_1 I_2 = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} - 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ -1 & 3 \end{bmatrix}$, so to find an eigenvector \mathbf{v}_1 , we have to solve the homogeneus linear system

$$\begin{bmatrix} 1^* & -3 & | & 0 \\ -1 & 3 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$

The second matrix is in row-echelon form, hence $x_2 = a$ is the free variable and the basic variable is $x_1 = 3x_2$ (from the 1st row), so the solutions are $[3a, a]^T$ where a is arbitrary. To obtain a suitable \mathbf{v}_1 , pick a non-zerovector solution, e.g., by setting a = 1 we get $\mathbf{v}_1 = [3, 1]^T$.

For
$$\lambda_2 = 5$$
, we proceed analogously. Here $A - \lambda_2 I_2 = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} - 5 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -3 \\ -1 & -1 \end{bmatrix}$.
After solving the linear system $\begin{bmatrix} -3 & -3 & | & 0 \\ -1 & -1 & | & 0 \end{bmatrix}$, we obtain $\mathbf{v}_2 = [-1, 1]^T$ (for example).

Exercise. Calculate $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$. **3.** Now we apply the previous Theorem with $\lambda_1 = 1$, $\lambda_2 = 5$ and $\mathbf{v}_1 = [3, 1]^T$, $\mathbf{v}_2 = [-1, 1]^T$: With

$$D = \text{Diag}(1,5) = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$
 and $S = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$,

we have that

$$A = SDS^{-1}.$$

Thus by Proposition 2, we know that

$$A^{100} = SD^{100}S^{-1}.$$
 (*)

With

Exercise. Calculate $\begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}^{100}$, using the diagonalization of $A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$. **3.** Now we apply the previous Theorem with $\lambda_1 = 1$, $\lambda_2 = 5$ and $\mathbf{v}_1 = [3, 1]^T$, $\mathbf{v}_2 = [-1, 1]^T$:

$$D = \mathsf{Diag}(1,5) = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \quad \mathsf{and} \quad S = \begin{bmatrix} \boxed{\mathbf{v}_1} & \boxed{\mathbf{v}_2} \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix},$$

we have that

$$A = SDS^{-1}.$$

Thus by Proposition 2, we know that

$$A^{100} = SD^{100}S^{-1}.$$
 (*)

Proposition 1 shows that $D^{100} = \begin{bmatrix} 1 & 0 \\ 0 & 5^{100} \end{bmatrix}$. We also need to compute the inverse of S: $S^{-1} = \begin{bmatrix} 1/4 & 1/4 \\ -1/4 & 3/4 \end{bmatrix}$ (see Lec. 9, the details are skipped). Substituting these into (*) yields $A^{100} = SD^{100}S^{-1} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 5^{100} \end{bmatrix} \cdot \begin{bmatrix} 1/4 & 1/4 \\ -1/4 & 3/4 \end{bmatrix} = \begin{bmatrix} \frac{1}{4}(3+5^{100}) & \frac{1}{4}(3-3\cdot5^{100}) \\ \frac{1}{4}(1+3\cdot5^{100}) & \frac{1}{4}(1+3\cdot5^{100}) \end{bmatrix}$.