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Elementary basis transformation can be used to solve linear systems, too.
1. Initially, the linear system is encoded in an (augmented) basis table as follows.


2x1 − 3x2 + 5x3 + x4 = 1

x1 − x2 + 4x3 − 2x4 = 2

5x1 + 2x3 + 7x4 + 3x4 = 6

←→

x1 x2 x3 x4

e1 2 −3 5 1 1

e2 1 −1 4 −2 2

e3 5 2 7 3 6

This table is essentially the same as the augmented matrix of the linear system, just the rows
are labeled by e1, e2, e3 (ei represents the i’th equation here), and the columns labeled by the
variables x1, x2, x3, and the last column has no label. The second vertical bar represents the
equation signs.
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Elementary basis transformation can be used to solve linear systems, too.
1. Initially, the linear system is encoded in an (augmented) basis table as follows.


2x1 − 3x2 + 5x3 + x4 = 1

x1 − x2 + 4x3 − 2x4 = 2

5x1 + 2x3 + 7x4 + 3x4 = 6

←→

x1 x2 x3 x4

e1 2 −3 5 1 1

e2 1 −1 4 −2 2

e3 5 2 7 3 6

This table is essentially the same as the augmented matrix of the linear system, just the rows
are labeled by e1, e2, e3 (ei represents the i’th equation here), and the columns labeled by the
variables x1, x2, x3, and the last column has no label. The second vertical bar represents the
equation signs.
2. By performing elementary basis transformations on this table, we “ “move some of the variables
into the basis” ”, and we delete the columns of these variables. For example, we reach to this
table: 

x4 + 19x2 − 11x3 = 7

48x2 − 26x3 = 19

x1 − 11x2 + 8x3 = −3
←→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3



Lec. 11-12 Solving linear systems using basis transformation: The augmented basis table 1/12


x4 + 19x2 − 11x3 = 7

48x2 − 26x3 = 19

x1 − 11x2 + 8x3 = −3
←→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3

It is crucial to understand how the corresponding linear system is reconstructed:
• If a row has label ei for some i, then the left-hand side of the corresponding equation is

the linear expression of the variables in the column labels, with the coefficients contained
in this row (between the two vertical bars); and the right-hand side is the last element of
this row.
• If a row has label xi for some i, then corresponding linear equation is obtained in the same

way as above, with the modification that the row label xi is also added to the left-hand
side as a new term.
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1. Construct the initial (augmented) basis table of the linear system, as shown on slide 1.
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Linear systems can be solved by the following method:

1. Construct the initial (augmented) basis table of the linear system, as shown on slide 1.

2. Repeat the following step on the basis table as long as possible: Pick a non-zero element
from a row with label ei (for some i), between the two vertical bar. Perform an elementary basis
transformation indicated by the pivot element, and delete the column of the pivot from the new
table.

x1 x2 x3

x4 2 −3 5 1

e2 5 −7 14 4

e3 −1∗ 11 −8 3

−→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3

We ignore the second vertical bar when performing the EBT. The last column is exceptional in
one aspect only: The pivot element must not be chosen from that column.
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Linear systems can be solved by the following method:

1. Construct the initial (augmented) basis table of the linear system, as shown on slide 1.

2. Repeat the following step on the basis table as long as possible: Pick a non-zero element
from a row with label ei (for some i), between the two vertical bar. Perform an elementary basis
transformation indicated by the pivot element, and delete the column of the pivot from the new
table.

x1 x2 x3

x4 2 −3 5 1

e2 5 −7 14 4

e3 −1∗ 11 −8 3

−→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3

We ignore the second vertical bar when performing the EBT. The last column is exceptional in
one aspect only: The pivot element must not be chosen from that column.
3. The rows with label ei (for some i) containing only 0’s correspond to the equation 0 = 0, so
these rows can be removed from the obtained table.
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Linear systems can be solved by the following method:

1. Construct the initial (augmented) basis table of the linear system, as shown on slide 1.

2. Repeat the following step on the basis table as long as possible: Pick a non-zero element
from a row with label ei (for some i), between the two vertical bar. Perform an elementary basis
transformation indicated by the pivot element, and delete the column of the pivot from the new
table.

x1 x2 x3

x4 2 −3 5 1

e2 5 −7 14 4

e3 −1∗ 11 −8 3

−→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3

We ignore the second vertical bar when performing the EBT. The last column is exceptional in
one aspect only: The pivot element must not be chosen from that column.
3. The rows with label ei (for some i) containing only 0’s correspond to the equation 0 = 0, so
these rows can be removed from the obtained table.
4. Read off the solutions of the linear system. (This will be detailed later, trough examples.)
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Key observation. When performing an elementary basis transformation on a basis table corre-
sponding to a linear system, then the obtained basis table corresponds to a linear system which
has exactly the same solutions as the original system.

x1 x2 x3

x4 2 −3 5 1

e2 5 −7 14 4

e3 −1∗ 11 −8 3

−→

x2 x3

x4 19 −11 7

e2 48 −26 19

x1 −11 8 −3
x4 + 2x1 − 3x2 + 5x3 = 1

5x1 − 7x2 + 14x3 = 4

−x1 + 11x2 − 8x3 = 3

∼


x4 + 19x2 − 11x3 = 7

48x2 − 26x3 = 19

x1 − 11x2 + 8x3 = −3

This is because the effect of the elementary basis transformation on the linear system is that
• the equation of the pivot is divided by the pivot element, so the coefficient indicated by

the pivot becomes 1;
• the rectangle rule modifies the other coefficients (and constants) as if we eliminated the

variable indicated by the pivot from all other equations, using row operations.



Lec. 11-12 Solving linear systems using basis transformation: Case 1 3/12

Example 1. Solve the linear system
4x1 + 4x2 + 5x3 = 6

x1 + x2 + 2x3 = 3

7x1 + 7x2 + 8x3 = 10.
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Example 1. Solve the linear system
4x1 + 4x2 + 5x3 = 6

x1 + x2 + 2x3 = 3

7x1 + 7x2 + 8x3 = 10.

Solution.
x1 x2 x3

e1 4 4 5 6

e2 1∗ 1 2 3

e3 7 7 8 10

→

x2 x3

e1 0 −3∗ −6
x1 1 2 3

e3 0 −6 −11

→

x2

x3 0 2

x1 1 −1
e3 0 1

Observe that the 3rd row in the final table corresponds to the equation 0 = 1, which is never
satisfied. So this linear system has no solutions. �
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Example 1. Solve the linear system
4x1 + 4x2 + 5x3 = 6

x1 + x2 + 2x3 = 3

7x1 + 7x2 + 8x3 = 10.

Solution.
x1 x2 x3

e1 4 4 5 6

e2 1∗ 1 2 3

e3 7 7 8 10

→

x2 x3

e1 0 −3∗ −6
x1 1 2 3

e3 0 −6 −11

→

x2

x3 0 2

x1 1 −1
e3 0 1

Observe that the 3rd row in the final table corresponds to the equation 0 = 1, which is never
satisfied. So this linear system has no solutions. �

Definition. We say that a row of an augmented basis table is contradicting, if it has label ei
(for some i), its last element is non-zero, and its all other elements are 0’s.

ei 0 0 . . . 0 0 c (c 6= 0)
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Example 1. Solve the linear system
4x1 + 4x2 + 5x3 = 6

x1 + x2 + 2x3 = 3

7x1 + 7x2 + 8x3 = 10.

Solution.
x1 x2 x3

e1 4 4 5 6

e2 1∗ 1 2 3

e3 7 7 8 10

→

x2 x3

e1 0 −3∗ −6
x1 1 2 3

e3 0 −6 −11

→

x2

x3 0 2

x1 1 −1
e3 0 1

Observe that the 3rd row in the final table corresponds to the equation 0 = 1, which is never
satisfied. So this linear system has no solutions. �

Definition. We say that a row of an augmented basis table is contradicting, if it has label ei
(for some i), its last element is non-zero, and its all other elements are 0’s.

Case 1. If a contradicting row appears during the solution of a linear system, then the system
has no solutions.
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Another example. Solve the linear system
x1 + x2 − x3 = 0

2x1 − x2 − x3 = −2
4x1 + x2 − 3x3 = 5.
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Another example. Solve the linear system
x1 + x2 − x3 = 0

2x1 − x2 − x3 = −2
4x1 + x2 − 3x3 = 5.

Solution.
x1 x2 x3

e1 1∗ 1 −1 0

e2 2 −1 −1 −2
e3 4 1 −3 5

→

x2 x3

x1 1 −1 0

e2 −3 1 −2
e3 −3 1∗ 5

→

x2

x1 −2 5

e2 0 −7
x3 −3 5

The 2rd row in the final is contradicting, so this linear system has no solutions. �
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Remark. We note that it can happen that a contradicting row has no zeros! This is the case
when all variables can be moved into the basis (i.e. there is no column between the two vertical
bars), but the table still has a row with label ei with non-zero (last) element:

. . . →

x2 4

x3 −1
x1 3

e4 2
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Example 2. Solve the linear system
2x1 − x2 − x3 = 6

3x1 + 4x2 − 2x3 = 3

3x1 − 2x2 + 4x3 = 15.
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Example 2. Solve the linear system
2x1 − x2 − x3 = 6

3x1 + 4x2 − 2x3 = 3

3x1 − 2x2 + 4x3 = 15.

Solution.

x1 x2 x3

e1 2 −1∗ −1 6

e2 3 4 −2 3

e3 3 −2 4 15

→

x1 x3

x2 −2 1 −6
e2 11 −6 27

e3 −1∗ 6 3

→

x3

x2 −11 −12
e2 60∗ 60

x1 −6 −3

→
x2 −1
x3 1

x1 3

The last table yields the solution immediately, because it corresponds to the equations x2 = −1,
x3 = 1, x1 = 3. So the system has one solution: [3,−1, 1]T in vector form. (Remember to write
the values of the variables to the vector form in correct order.) �



Lec. 11-12 Solving linear systems using basis transformation: Case 2 4/12

Example 2. Solve the linear system
2x1 − x2 − x3 = 6

3x1 + 4x2 − 2x3 = 3

3x1 − 2x2 + 4x3 = 15.

Solution.

x1 x2 x3

e1 2 −1∗ −1 6

e2 3 4 −2 3

e3 3 −2 4 15

→

x1 x3

x2 −2 1 −6
e2 11 −6 27

e3 −1∗ 6 3

→

x3

x2 −11 −12
e2 60∗ 60

x1 −6 −3

→
x2 −1
x3 1

x1 3

The last table yields the solution immediately, because it corresponds to the equations x2 = −1,
x3 = 1, x1 = 3. So the system has one solution: [3,−1, 1]T in vector form. (Remember to write
the values of the variables to the vector form in correct order.) �

Case 2. If all variables can be moved into the basis and there are no contradicting rows in
the final table, then the linear system has exactly one solution: The values of the variables are
provided by the corresponding rows of the final table.
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Another example. Solve the linear system
x1 + x2 + x3 = 1

2x1 + 3x2 + x3 = 1

2x1 − x2 + 4x3 = 2

4x1 + 4x2 + 3x3 = 1.
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Another example. Solve the linear system
x1 + x2 + x3 = 1

2x1 + 3x2 + x3 = 1

2x1 − x2 + 4x3 = 2

4x1 + 4x2 + 3x3 = 1.

Solution.

x1 x2 x3

e1 1∗ 1 1 1

e2 2 3 1 1

e3 2 −1 4 2

e4 4 4 3 1

→

x2 x3

x1 1 1 1

e2 1 −1 −1
e3 −3 2 0

e4 0 −1∗ −3

→

x2

x1 1 −2
e2 1∗ 2

e3 −3 −6
x3 0 3

→

x1 −4
x2 2

e3 0

x3 3

All variables could be moved to the basis, and there are no contradicting rows in the last
table (the 3rd row could be removed, because it is an all-zero row with label ei, and hence it
corresponds to the equation 0 = 0). So the linear system has one solution, which can be read
off from the rows of the final table: x1 = −4, x2 = 2, x3 = 3, or [−4, 2, 3]T in vector form. �
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Example 3. Solve the linear system
2x1 − x2 + x3 + 2x4 + 3x5 = 2

6x1 − 3x2 + 2x3 + 4x4 + 5x5 = 3

6x1 − 3x2 + 4x3 + 8x4 + 13x5 = 9

4x1 − 2x2 + x3 + x4 + 2x5 = 1.
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Example 3. Solve the linear system
2x1 − x2 + x3 + 2x4 + 3x5 = 2

6x1 − 3x2 + 2x3 + 4x4 + 5x5 = 3

6x1 − 3x2 + 4x3 + 8x4 + 13x5 = 9

4x1 − 2x2 + x3 + x4 + 2x5 = 1.

Solution.
x1 x2 x3 x4 x5

e1 2∗ −1 1 2 3 2

e2 6 −3 2 4 5 3

e3 6 −3 4 8 13 9

e4 4 −2 1 1 2 1

→

x2 x3 x4 x5

x1 −1
2

1
2 1 3

2 1

e2 0 −1 −2 −4 −3
e3 0 1∗ 2 4 3

e4 0 −1 −3 −4 −3

→

x2 x4 x5

x1 −1
2 0 −1

2 −
1
2

e2 0 0 0 0

x3 0 2 4 3

e4 0 −1∗ 0 0

→

x2 x5

x1 −1
2 −

1
2 −

1
2

e2 0 0 0

x3 0 4 3

x4 0 0 0

(The 2nd row can be discarded, because it is an all-zero row with label ei.) There are no
contradicting rows, but not all variables could be moved into the basis.
In this case, the remaining variables in column labels are the free variables: x2, x5; and the
variables in the final basis (in row labels) are the basic variables: x1, x3, x4.

...
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x1 x2 x3 x4 x5

e1 2∗ −1 1 2 3 2

e2 6 −3 2 4 5 3

e3 6 −3 4 8 13 9

e4 4 −2 1 1 2 1

→

x2 x3 x4 x5

x1 −1
2

1
2 1 3

2 1

e2 0 −1 −2 −4 −3
e3 0 1∗ 2 4 3

e4 0 −1 −3 −4 −3

→

x2 x4 x5

x1 −1
2 0 −1

2 −
1
2

e2 0 0 0 0

x3 0 2 4 3

e4 0 −1∗ 0 0

→

x2 x5

x1 −1
2 −

1
2 −

1
2

e2 0 0 0

x3 0 4 3

x4 0 0 0

Free variables: x2, x5. Basic variables: x1, x3, x4.
The expression of basic variables in terms of free variables can be immediately read off from the
corresponding rows of the final table:

x1 −
1

2
x2 −

1

2
x5 = −

1

2
=⇒ x1 = −

1

2
+

1

2
x2 +

1

2
x5

x3 + 4x5 = 3 =⇒ x3 = 3− 4x5

x4 = 0 =⇒ x4 = 0

The free variables can take any value: x2 = a, x5 = b; so the linear system has infinitely many
solutions: [−1

2 +
1
2a+

1
2b, a, 3− 4b, 0, b]T , where a and b can be arbitrary numbers. �
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x1 x2 x3 x4 x5

e1 2∗ −1 1 2 3 2

e2 6 −3 2 4 5 3

e3 6 −3 4 8 13 9

e4 4 −2 1 1 2 1

→

x2 x3 x4 x5

x1 −1
2

1
2 1 3

2 1

e2 0 −1 −2 −4 −3
e3 0 1∗ 2 4 3

e4 0 −1 −3 −4 −3

→

x2 x4 x5

x1 −1
2 0 −1

2 −
1
2

e2 0 0 0 0

x3 0 2 4 3

e4 0 −1∗ 0 0

→

x2 x5

x1 −1
2 −

1
2 −

1
2

e2 0 0 0

x3 0 4 3

x4 0 0 0

Case 3. If not all variables can be moved into the basis and there are no contradicting rows
in the final table, then the linear system has infinitely many solutions: The column labels of
the final table are the free variables, and the rest of the variables (in the row labels) are the
basic variables. The basic variables can be directly expressed in terms of free variables, using
the corresponding rows of the final table (see the solution of Example 3).
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Let’s turn our attention to linear optimization:
Definition. A standard linear programming (LP) problem is the following:

Minimize the linear objective function z = c1x1 + · · · + cnxn of the variables x1, . . . , xn
subject to a finite set of linear constraints:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm,

where the ci’s and ai,j ’s are arbitrary given numbers, and the bi’s are given nonnegative
numbers, and the variables are all required to be nonnegative.
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Let’s turn our attention to linear optimization:
Definition. A standard linear programming (LP) problem is the following:

Minimize the linear objective function z = c1x1 + · · · + cnxn of the variables x1, . . . , xn
subject to a finite set of linear constraints:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm,

where the ci’s and ai,j ’s are arbitrary given numbers, and the bi’s are given nonnegative
numbers, and the variables are all required to be nonnegative.

Remark 1. More precisely, the objective function should be written as
z(x1, . . . , xn) = c1x1 + · · ·+ cnxn,

since z is a function of x1, . . . , xn.
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Definition. A standard linear programming (LP) problem is the following:

Minimize the linear objective function z = c1x1 + · · · + cnxn of the variables x1, . . . , xn
subject to a finite set of linear constraints:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm,

where the ci’s and ai,j ’s are arbitrary given numbers, and the bi’s are given nonnegative
numbers, and the variables are all required to be nonnegative.

Remark 1. More precisely, the objective function should be written as
z(x1, . . . , xn) = c1x1 + · · ·+ cnxn,

since z is a function of x1, . . . , xn.
Remark 2. If S denotes the set of those n-tuples of nonnegative numbers [x1, . . . , xn]T that
satisfy all m linear inequalities above, then the above LP problem is to minimize the function z
on the set S. (And we also want to find an n-tuple s ∈ S where the minimum is attained.)



Lec. 11-12 The standard LP problem 6/12

Definition. A standard linear programming (LP) problem is the following:

Minimize the linear objective function z = c1x1 + · · · + cnxn of the variables x1, . . . , xn
subject to a finite set of linear constraints:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm,

where the ci’s and ai,j ’s are arbitrary given numbers, and the bi’s are given nonnegative
numbers, and the variables are all required to be nonnegative.

Remark 3. In short, we will write the above standard LP problem as
a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1

...
am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm

(x1, x2, . . . , xn ≥ 0)

c1x1 + · · ·+ cnxn → min
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Definition. A standard linear programming (LP) problem is the following:

Minimize the linear objective function z = c1x1 + · · · + cnxn of the variables x1, . . . , xn
subject to a finite set of linear constraints:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
...

am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm,

where the ci’s and ai,j ’s are arbitrary given numbers, and the bi’s are given nonnegative
numbers, and the variables are all required to be nonnegative.

Example of a standard LP problem.
3x1 + 4x2 + x3 ≤ 56

x1 − 5x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

(x1, x2, x3 ≥ 0)

−2x1 + 3x2 − x3 → min
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We will see that standard LP problems can be solved using the so-called simplex algorithm.
However, standard LP problems have a very special form.

Sometimes we have to maximize the objective function z instead of minimization, some of
the constraints may be linear equalities, some of the constraints have negative constant on
their right-hand side, and some of the variables might be allowed to be negative. Optimization
problems of this form are called general LP problems.

Example of a general LP problem.
3x1 + 4x2 + x3 ≤ 56

x1 − 5x2 + 2x3 ≤ 17

x1 + x2 − x3 = 20

(x1, x3 ≥ 0)

4x1 + 3x2 − x3 → max
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We will see that standard LP problems can be solved using the so-called simplex algorithm.
However, standard LP problems have a very special form.

Sometimes we have to maximize the objective function z instead of minimization, some of
the constraints may be linear equalities, some of the constraints have negative constant on
their right-hand side, and some of the variables might be allowed to be negative. Optimization
problems of this form are called general LP problems.

Example of a general LP problem.
3x1 + 4x2 + x3 ≤ 56

x1 − 5x2 + 2x3 ≤ 17

x1 + x2 − x3 = 20

(x1, x3 ≥ 0)

4x1 + 3x2 − x3 → max

Remark. It turns out that every general LP problem can be reduced to a standard LP problem
(and so can be solved by simplex algorithm). That is why we only focus on standard LP problems.
We only give an insight through examples how this reduction is done.
Online (general) LP solver: https://linprog.com/

https://linprog.com/
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Example 1. A company produces two products: chairs and tables. They make a profit of $40
on each chair and $50 on each table. A chair requres the following resources to produce: 2
man-hours, 3 hours of machine time, and 1 unit of wood. The table requires 2 man-hours, 1
hour of machine time, and 4 units of wood. The factory has 60 man-hours, 75 machine hours,
and 84 units of wood available each day. How should the resources (man-hours, machine-hours,
and wood) be allocated between the two products in order to maximize the factory’s profit?
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Example 1. A company produces two products: chairs and tables. They make a profit of $40
on each chair and $50 on each table. A chair requres the following resources to produce: 2
man-hours, 3 hours of machine time, and 1 unit of wood. The table requires 2 man-hours, 1
hour of machine time, and 4 units of wood. The factory has 60 man-hours, 75 machine hours,
and 84 units of wood available each day. How should the resources (man-hours, machine-hours,
and wood) be allocated between the two products in order to maximize the factory’s profit?
The corresponding LP problem. 

2c+ 2t ≤ 60

3c+ t ≤ 75

c+ 4t ≤ 84

(c, t ≥ 0)

40c+ 50t→ max
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Example 2. A feed company wants each feed bag that they produce to contain a minimum
of 120 units of protein and 80 units of calcium. Corn contains 10 units of protein and 5 units
of calcium per pound, and bone-meal contains 2 units of protein and 5 units of calcium per
pound. If corn costs 8 cents per pound and bone-meal costs 4 cents per pound, how much of
each should they put in each bag, in order to minimize costs?
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Example 2. A feed company wants each feed bag that they produce to contain a minimum
of 120 units of protein and 80 units of calcium. Corn contains 10 units of protein and 5 units
of calcium per pound, and bone-meal contains 2 units of protein and 5 units of calcium per
pound. If corn costs 8 cents per pound and bone-meal costs 4 cents per pound, how much of
each should they put in each bag, in order to minimize costs?
The corresponding LP problem. 

10c+ 2b ≥ 120

5c+ 5b ≥ 80

(c, b ≥ 0)

8c+ 4b→ min
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As noted before, general LP problems can be reduced to standard LP problems. We demonstrate
this by showing how to reduce the maximization of z to minimization. (This is the most common
reduction needed in practice.)

Claim. If an LP problem P asks for maximization of the objective function z then it is enough
to solve the LP problem P ′ that asks for minimization of the objective function −z subject to
the same constraints:
If the minimum of −z is M , then the maximum of z is −M (attained at the same n-tuple).
Or if −z is unbounded below, then z is unbounded above.

Example. 
3x1 + 4x2 + x3 ≤ 56

x1 − 5x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

(x1, x2, x3 ≥ 0)

2x1 − 3x2 + x3 → max


3x1 + 4x2 + x3 ≤ 56

x1 − 5x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

(x1, x2, x3 ≥ 0)

−2x1 + 3x2 − x3 → min

≡
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Now we present the simplex algorithm that can be used to solve standard LP problems:

Exercise. Solve the following standard LP problem:
3x1 + x2 + x3 ≤ 60

x1 − x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

(x1, x2, x3 ≥ 0)

−2x1 + x2 − x3 → min
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Step 1. Create the (initial) simplex tableau of the standard LP problem:
3x1 + x2 + x3 ≤ 60

x1 − x2 + 2x3 ≤ 10

x1 + x2 − x3 ≤ 20

(x1, x2, x3 ≥ 0)

−2x1 + x2 − x3 → min

 

x1 x2 x3

x4 3 1 1 60

x5 1 −1 2 10

x6 1 1 −1 20

−2 1 −1 0

• The simplex tableau is similar to the augmented basis table of linear equations, just with
one extra (unlabeled) row added, separated by a horizontal bar.
• The column labels are the variables of the LP problem. In the row labels new distinct

variables are introduced (these “virtual” variables are called slack variables).
• The linear constraints (inequalities) are encoded in the labeled rows of the table, in a

natural way, see the above example. (The inequalities x1, . . . , xn ≥ 0 are discarded here.)
• The last (unlabeled) row of the table contains the coefficients of the objective function,

between the two vertical bars.
• The bottom-right element is always 0 initially.
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Step 2/a. Find the smallest negative number (coefficient) in the last row of the tableau between
the two vertical bars. (If there are no negative numbers there, we are done, go to Step 4.) In
case of a tie, choose arbitrarily.

x1 x2 x3

x4 3 1 1 60

x5 1 −1 2 10

x6 1 1 −1 20

−2 1 −1 0



Lec. 11-12 The simplex algorithm 10/12

Step 2/a. Find the smallest negative number (coefficient) in the last row of the tableau between
the two vertical bars. (If there are no negative numbers there, we are done, go to Step 4.) In
case of a tie, choose arbitrarily.
Step 2/b. Consider the column of the found negative coefficient. For each positive number a in
this column, calculate the ratio b/a, where b is the last element in the row of a. (If there are no
positive numbers in that column, we are done, go to Step 4.) Find the smallest b/a ratio among
these, and designate the corresponding a element as pivot. In case of a tie, choose arbitrarily.

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

ratio

60/3 = 20

10/1 = 10

20/1 = 20
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Step 2/a. Find the smallest negative number (coefficient) in the last row of the tableau between
the two vertical bars. (If there are no negative numbers there, we are done, go to Step 4.) In
case of a tie, choose arbitrarily.
Step 2/b. Consider the column of the found negative coefficient. For each positive number a in
this column, calculate the ratio b/a, where b is the last element in the row of a. (If there are no
positive numbers in that column, we are done, go to Step 4.) Find the smallest b/a ratio among
these, and designate the corresponding a element as pivot. In case of a tie, choose arbitrarily.
Step 3. Perform an elementary basis transformation on the simplex tableau, indicated by the
selected pivot element. (All numbers of the tableaux are considered, when performing the EBT.)
In this algorithm the column of the pivot must not be deleted!

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

→

x5 x2 x3

x4 −3 4 −5 30

x1 1 −1 2 10

x6 −1 2 −3 10

2 −1 3 20
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Step 4. Repeat Steps 2-3 (pivot selection, then EBT) until one of the following occurs:

Case 1: If there are no negative coefficients in the last row of the tableaux, then the minimum
of the objective function z subject to the constraints is −c, where c denotes the last element of
the last row. And this minimum value is attained when the non-slack variables in row labels are
set to the last element of their row, and the non-slack variables in column labels are set to 0.
(As you see, we simply ignore the slack variables here.)

Case 2: If there exists a negative coefficient in the last row of the tableaux whose column does
not contain any positive number, then the objective function z subject to the constraints is
unbounded below (i.e., for any real number r, the function z attains smaller values than r on
the solution set of the constraints), there is no minimum.

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

→

x5 x2 x3

x4 −3 4 −5 30

x1 1 −1 2 10

x6 −1 2 −3 10

2 −1 3 20
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Step 4. Repeat Steps 2-3 (pivot selection, then EBT) until one of the following occurs:

Case 1: If there are no negative coefficients in the last row of the tableaux, then the minimum
of the objective function z subject to the constraints is −c, where c denotes the last element of
the last row. And this minimum value is attained when the non-slack variables in row labels are
set to the last element of their row, and the non-slack variables in column labels are set to 0.
(As you see, we simply ignore the slack variables here.)

Case 2: If there exists a negative coefficient in the last row of the tableaux whose column does
not contain any positive number, then the objective function z subject to the constraints is
unbounded below (i.e., for any real number r, the function z attains smaller values than r on
the solution set of the constraints), there is no minimum.

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

→

x5 x2 x3

x4 −3 4 −5 30

x1 1 −1 2 10

x6 −1 2∗ −3 10

2 −1 3 20

ratio

30/4 = 7.5

10/2 = 5
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Step 4. Repeat Steps 2-3 (pivot selection, then EBT) until one of the following occurs:

Case 1: If there are no negative coefficients in the last row of the tableaux, then the minimum
of the objective function z subject to the constraints is −c, where c denotes the last element of
the last row. And this minimum value is attained when the non-slack variables in row labels are
set to the last element of their row, and the non-slack variables in column labels are set to 0.
(As you see, we simply ignore the slack variables here.)

Case 2: If there exists a negative coefficient in the last row of the tableaux whose column does
not contain any positive number, then the objective function z subject to the constraints is
unbounded below (i.e., for any real number r, the function z attains smaller values than r on
the solution set of the constraints), there is no minimum.

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

→

x5 x2 x3

x4 −3 4 −5 30

x1 1 −1 2 10

x6 −1 2∗ −3 10

2 −1 3 20

→

x5 x6 x3

x4 −1 −2 1 10

x1 1/2 1/2 1/2 15

x2 −1/2 1/2 −3/2 5

3/2 1/2 3/2 25
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Step 4. Repeat Steps 2-3 (pivot selection, then EBT) until one of the following occurs:

Case 1: If there are no negative coefficients in the last row of the tableaux, then the minimum
of the objective function z subject to the constraints is −c, where c denotes the last element of
the last row. And this minimum value is attained when the non-slack variables in row labels are
set to the last element of their row, and the non-slack variables in column labels are set to 0.
(As you see, we simply ignore the slack variables here.)

Case 2: . . .

Solution. The minimum of the objective function (subject to the constraints) is −25. This
value is attained at x1 = 15, x2 = 5, x3 = 0. �

x1 x2 x3

x4 3 1 1 60

x5 1∗ −1 2 10

x6 1 1 −1 20

−2 1 −1 0

→

x5 x2 x3

x4 −3 4 −5 30

x1 1 −1 2 10

x6 −1 2∗ −3 10

2 −1 3 20

→

x5 x6 x3

x4 −1 −2 1 10

x1 1/2 1/2 1/2 15

x2 −1/2 1/2 −3/2 5

3/2 1/2 3/2 25
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Remark 1. The ratio comparison in Step 2/b ensures that during the algorithm the elements in
the last column of the simplex tableau are all nonnegative, always. If this is not the case, then
something went wrong . . .

Remark 2. Unfortunately, the algorithm can lead to cycling (that is, Step 4 is never reached,
because the sequence of simplex tableaus we creating contain the same tableau twice and so
continue to loop indefinitely). For example, see Exercise 5.3.7 in the lecture notes. This can be
eliminated by modifying the column selection in Step 2/a. We skip the details.

Remark 3. Keep in mind that the simplex algorithm can be used to solve standard LP problems
only. General LP problems must be reduced to a standard LP problem first, as illustrated on
slide ‘The reduction of maximization to minimization’.
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Exercise 2. Solve the following standard LP problem:
−x1 + x2 ≤ 1

x1 − 2x2 ≤ 2

(x1, x2 ≥ 0)

−2x1 − x2 → min
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Exercise 2. Solve the following standard LP problem:
−x1 + x2 ≤ 1

x1 − 2x2 ≤ 2

(x1, x2 ≥ 0)

−2x1 − x2 → min

Solution.
x1 x2

x3 −1 1 −1
x4 1∗ −2 2

−2 −1 0

→

x4 x2

x3 1 −1 1

x2 1 −2 2

2 −5 4

There exists a negative coefficient in the last row of the tableaux whose column does not contain
any positive number, so the objective function z subject to the constraints is unbounded below,
there is no minimum. (See Case 2 in Step 4.) �
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Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

Worked-out example 3. See Example 5.10 in the lecture notes. (Fractions are involved here.)

http://www.math.u-szeged.hu/~ngaba/linear/ex_simplex_algorithm_1.pdf
http://www.math.u-szeged.hu/~ngaba/linear/ex_simplex_algorithm_2.pdf

