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Lecture 9 Introduction 1/8

1. Assume that we know the coordinate vector of a vector u with respect to a basis E . In this
lecture we investigate how the coordinate vector changes when we replace a basis vector in E
to an other vector of the vector space. This is called elementary basis transformation.
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1. Assume that we know the coordinate vector of a vector u with respect to a basis E . In this
lecture we investigate how the coordinate vector changes when we replace a basis vector in E
to an other vector of the vector space. This is called elementary basis transformation.

2. To obtain the coordinate vector of u with respect to an other basis E ′, we can replace the
vectors in E to the vectors of E ′ one by one, and repeatedly apply elementary basis transforma-
tion.
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lecture we investigate how the coordinate vector changes when we replace a basis vector in E
to an other vector of the vector space. This is called elementary basis transformation.

2. To obtain the coordinate vector of u with respect to an other basis E ′, we can replace the
vectors in E to the vectors of E ′ one by one, and repeatedly apply elementary basis transforma-
tion.

3. In Rn, the basis E is usually chosen to be the standard basis, because we know the coordinate
vector of u without calculation with respect to the standard basis: it is the vector u itself. (Recall
from Lecture 6.)
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1. Assume that we know the coordinate vector of a vector u with respect to a basis E . In this
lecture we investigate how the coordinate vector changes when we replace a basis vector in E
to an other vector of the vector space. This is called elementary basis transformation.

2. To obtain the coordinate vector of u with respect to an other basis E ′, we can replace the
vectors in E to the vectors of E ′ one by one, and repeatedly apply elementary basis transforma-
tion.

3. In Rn, the basis E is usually chosen to be the standard basis, because we know the coordinate
vector of u without calculation with respect to the standard basis: it is the vector u itself. (Recall
from Lecture 6.)

4. The basis transformation is usually performed on more vectors u1, . . . ,un simultaneously,
working in a table. This has many applications: It can be used to evaluate rank of vectors/matrix,
find the inverse of a matrix, or solve linear systems, etc.
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Theorem 1. Let V be an n-dimensional vector space, and let E denote a basis v1, . . . ,vn

of V . Assume that the vector w ∈ V has coordinate vector [α1, . . . , αn]T with respect to E ,
i.e. let w = α1 · v1 + · · ·+ αn · vn.
(a) Then

v1,v2, . . . ,vi−1,w,vi+1,vi+2, . . . ,vn

is a basis in V if and only if αi 6= 0.
(b) Assume that αi 6= 0 holds, and let E ′ denote the basis in (a). Let u ∈ V be a vector

with coordinate vector [β1, . . . , βn]T with respect to E . Then the coordinate vector of u
with respect to E ′ is[

αiβ1 − βiα1
αi

, . . . ,
αiβi−1 − βiαi−1

αi
,
βi
αi
,
αiβi+1 − βiαi+1

αi
, . . . ,

αiβn − βiαn
αi

]T
.

(c) Assume again that αi 6= 0 holds, and let E ′ denote the basis in (a). Then the coordinate
vector of vi with respect to E ′ is[

−α1
αi
,−α2

αi
, . . . ,−αi−1

αi
,
1

αi
,−αi+1

αi
,−αi+2

αi
, . . . ,−αn

αi

]T
.

Note that both in (b) and (c) the i’th coordinate has a different structure than the others.



Lecture 9 The main theorem 2/8

Proof of (b). We have that
w = α1v1 + · · ·+ αnvn, (1)
u = β1v1 + · · ·+ βnvn, (2)

and we have to express u as a linear combination of v1, . . . ,vi−1,w,vi+1, . . . ,vn.
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Proof of (b). We have that
w = α1v1 + · · ·+ αnvn, (1)
u = β1v1 + · · ·+ βnvn, (2)

and we have to express u as a linear combination of v1, . . . ,vi−1,w,vi+1, . . . ,vn.
From (1), we can express vi in terms of v1, . . . ,vi−1,w,vi+1, . . . ,vn:

αivi = −α1v1 − · · · − αi−1vi−1 + w − αi+1vi+1 − · · · − αnvn,

and so
vi = −

α1
αi

v1 − · · · −
αi−1
αi

vi−1 +
1

αi
w − αi+1

αi
vi+1 − · · · −

αn
αi

vn (3)

(note that αi 6= 0 by the assumptions).
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Proof of (b). We have that
w = α1v1 + · · ·+ αnvn, (1)
u = β1v1 + · · ·+ βnvn, (2)

and we have to express u as a linear combination of v1, . . . ,vi−1,w,vi+1, . . . ,vn.
From (1), we can express vi in terms of v1, . . . ,vi−1,w,vi+1, . . . ,vn:

αivi = −α1v1 − · · · − αi−1vi−1 + w − αi+1vi+1 − · · · − αnvn,

and so
vi = −

α1
αi

v1 − · · · −
αi−1
αi

vi−1 +
1

αi
w − αi+1

αi
vi+1 − · · · −

αn
αi

vn (3)

(note that αi 6= 0 by the assumptions). Then we substitute (3) into (2):

u = β1v1+ · · ·+βi−1vi−1+βi
(
− α1
αi

v1−· · ·−
αi−1
αi

vi−1+
1

αi
w− αi+1

αi
vi+1−· · ·−

αn
αi

vn

)
+ βi+1vi+1 + · · ·+ βnvn =

αiβ1 − βiα1
αi

v1 + · · ·+
αiβi−1 − βiαi−1

αi
vi−1+

βi
αi

vi +
αiβi+1 − βiαi+1

αi
vi+1 + · · ·+

αiβn − βiαn
αi

vn,

and the desired coordinate vector is obtained by reading off the coefficients. �
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Proof of (c).
First proof. In the proof of (b), vi is expressed as linear combination of the vectors

v1, . . . ,vi−1,w,vi+1, . . . ,vn,

see expression (3):

vi = −
α1
αi

v1 − · · · −
αi−1
αi

vi−1 +
1

αi
w − αi+1

αi
vi+1 − · · · −

αn
αi

vn (3)

and so the desired coordinate vector with respect to E is indeed[
−α1
αi
,−α2

αi
, . . . ,−αi−1

αi
,
1

αi
,−αi+1

αi
,−αi+2

αi
, . . . ,−αn

αi

]T
.

�
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Proof of (c).
First proof. In the proof of (b), vi is expressed as linear combination of the vectors

v1, . . . ,vi−1,w,vi+1, . . . ,vn,

see expression (3):

vi = −
α1
αi

v1 − · · · −
αi−1
αi

vi−1 +
1

αi
w − αi+1

αi
vi+1 − · · · −

αn
αi

vn (3)

and so the desired coordinate vector with respect to E is indeed[
−α1
αi
,−α2

αi
, . . . ,−αi−1

αi
,
1

αi
,−αi+1

αi
,−αi+2

αi
, . . . ,−αn

αi

]T
.

�

Second proof. The statement in (c) is a special case of (b) with u := vi.
The coordinate vector of vi with respect to the basis E is obviously [0, 0, . . . , 0, 1, 0, 0, . . . , 0]T

where the element 1 is in the i’th position. [Why?]
So the result in (c) is implied by (b), with β1 = · · · = βi−1 = βi+1 = · · · = βn = 0 and βi = 1.

�
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From now on, we use a table (called basis table) for storing coordinate vectors in a vector
space V , see an example below:
• The row labels represent vectors in V that form a basis of V .
• The column labels represent arbitrary vectors in V .
• Each column contains the coordinate vector of the vector in the column label, with respect

to the basis given by the row labels.

v1 v2 v3 v4

e1 1 −1 0 2

e2 1 2 3 −1
e3 0 5 1 −1

In this example, e1, e2, e3 is a basis of the vector space, and the second column of the table
shows that the coordinate vector of v2 with respect to the basis e1, e2, e3 is [−1, 2, 5]T , i.e.

v2 = (−1) · e1 + 2 · e2 + 5 · e3.
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Working with basis tables, an elementary basis transformation is the interchange of a row label
with a column label (this is permitted only if the new row labels still form a basis!) and the
recalculation of the basis table. Theorem 1 describes how this recalculation is done, using the
old table (the details are discussed on the next slide).
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Working with basis tables, an elementary basis transformation is the interchange of a row label
with a column label (this is permitted only if the new row labels still form a basis!) and the
recalculation of the basis table. Theorem 1 describes how this recalculation is done, using the
old table (the details are discussed on the next slide).

Example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 v2 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2 8 −1
e3 2/3 1/3 −2/3 4/3

In this example the vectors e3 and v2 are interchanged. This is said as “v2 is moved into the
basis (in place of e3)”.
Note that the interchange of e3 and v2 is indicated by marking the element 2, lying in the row
of e3 and column of v2, by a star. This element is called the pivot element in the table.
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Working with basis tables, an elementary basis transformation is the interchange of a row label
with a column label (this is permitted only if the new row labels still form a basis!) and the
recalculation of the basis table. Theorem 1 describes how this recalculation is done, using the
old table (the details are discussed on the next slide).

Example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 v2 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2 8 −1
e3 2/3 1/3 −2/3 4/3

In this example the vectors e3 and v2 are interchanged. This is said as “v2 is moved into the
basis (in place of e3)”.
Note that the interchange of e3 and v2 is indicated by marking the element 2, lying in the row
of e3 and column of v2, by a star. This element is called the pivot element in the table.

Now we reformulate Theorem 1 in the language of basis tables . . .
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Elementary basis transformation. A basis table is given.

(1) Pick a non-zero number a in the table. This will be the pivot element. (To avoid fractions,
±1 is preferred again.)

(2) Interchange the row label of the pivot with its column label.
(3) Write 1/a in place of the pivot element a.
(4) Divide by a every other element in the row of the pivot. (‘Other’ = ‘not pivot’.)
(5) Divide by −a every other element in the column of the pivot. (‘Other’ = ‘not pivot’.)
(6) All elements that are not in the row or column of the pivot are calculated by the ‘rectangle

rule’: Let d be an element in the old table, outside the row and column of a. Let b be
the element in the intersection of the row of d and the column of a, and let c be the
element in the intersection of the column of d and the row of a. And let b and c denote
the two other elements. (So the elements a, b, c, d are in the corners of a rectangle, see
the figure below). Then in the new basis table write ad−bc

a in place of d.
...

...
· · · b · · · d · · ·

...
...

· · · a∗ · · · c · · ·
...

...

→

...
...

· · · · · · ad−bc
a · · ·

...
...

· · · · · · · · ·
...

...



Lecture 9 Elementary basis transformation: Examples 5/8

A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3 −2 4

→ ?
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→ ?

(1) Pick a non-zero number in the table. This will be the pivot element. (To avoid fractions,
±1 is preferred again. But in this example we choose an other pivot to illustrate the
calculations.)
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1
e2
v2

(2) Interchange the row label of the pivot with its column label.
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1
e2
v2 1/3

(3) Take the reciprocal of the pivot element.
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1
e2
v2 2/3 1/3 −2/3 4/3

(4) In the row of pivot, divide every other element by the pivot.
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 −2/3
e2 −2
v2 2/3 1/3 −2/3 4/3

(5) In the column of pivot, divide every other element by the opposite of the pivot.
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3
e2 −2
v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3

e2 −2
v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
,

3 · (−1)− 2 · (−2)
3

=
1

3
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −2
v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
,

3 · (−1)− 2 · (−2)
3

=
1

3
,

3 · 5− 2 · 4
3

=
7

3
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2
v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
,

3 · (−1)− 2 · (−2)
3

=
1

3
,

3 · 5− 2 · 4
3

=
7

3
,

3 · (−5)− 6 · 2
3

= −9
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2 8

v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
,

3 · (−1)− 2 · (−2)
3

=
1

3
,

3 · 5− 2 · 4
3

=
7

3
,

3 · (−5)− 6 · 2
3

= −9, 3 · 4− 6 · (−2)
3

= 8
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2 8 −1
v2 2/3 1/3 −2/3 4/3

(6) To obtain the remaining elements, apply the rectangle rule:

3 · 3− 2 · 2
3

=
5

3
,

3 · (−1)− 2 · (−2)
3

=
1

3
,

3 · 5− 2 · 4
3

=
7

3
,

3 · (−5)− 6 · 2
3

= −9, 3 · 4− 6 · (−2)
3

= 8,
3 · 7− 6 · 4

3
= −1.
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A detailed example.

v1 v2 v3 v4

e1 3 2 −1 5

e2 −5 6 4 7

e3 2 3∗ −2 4

→

v1 e3 v3 v4

e1 5/3 −2/3 1/3 7/3

e2 −9 −2 8 −1
v2 2/3 1/3 −2/3 4/3
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More examples.
(a)

v1 v2 v3

e1 1∗ 2 −1
e2 2 −1 2

e3 1 1 1

→

e1 v2 v3

v1 1 2 −1
e2 −2 −5 4

e3 −1 −1 2
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More examples.
(a)

v1 v2 v3

e1 1∗ 2 −1
e2 2 −1 2

e3 1 1 1

→

e1 v2 v3

v1 1 2 −1
e2 −2 −5 4

e3 −1 −1 2

(b)
v1 v2 v3

e1 2 1 2

e2 −2∗ 1 2

e3 3 0 1

→

e2 v2 v3

e1 1 2 4

v1 −1/2 −1/2 −1
e3 3/2 3/2 4
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Recall from Lecture 3 that the inverse of an n× n matrix A is an n× n matrix A−1 such that
A · A−1 = A−1 · A = In.
Moreover, if |A| 6= 0, then there exists a unique inverse matrix A−1. (Otherwise, if |A| = 0,
there is no inverse of A.)
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Recall from Lecture 3 that the inverse of an n× n matrix A is an n× n matrix A−1 such that
A · A−1 = A−1 · A = In.
Moreover, if |A| 6= 0, then there exists a unique inverse matrix A−1. (Otherwise, if |A| = 0,
there is no inverse of A.)

Theorem 2. The inverse of an n× n matrix A can be calculated by following prodecure:

(1) Write the matrix A into a basis table, label the rows with e1, . . . , en, and label the
columns with v1, . . . ,vn in this order.

(2) Perform elementary basis transformation n times on this table: Move all the vectors
v1, . . . ,vn into the basis, one by one, replacing the vectors e1, . . . , en. This means that
an element can be chosen as pivot only if its row label is ei and its column label is vj for
some indices i, j. (If not all vectors can be moved into the basis, then A is not invertible.)

(3) When step (2) is done, reorder the rows of the table so that the row labels are sorted in
the natural order v1, . . . ,vn, then reorder the columns so that the labels are sorted in
the natural order e1, . . . , en.

(4) After deleting the labels of rows and columns, the obtained n × n matrix is the inverse
matrix A−1.



Lecture 9 Application I: Calculating the inverse of a matrix 6/8

Example 1. Find the inverse of A =

[
3 1 2
6 2 5
5 2 7

]
.



Lecture 9 Application I: Calculating the inverse of a matrix 6/8

Example 1. Find the inverse of A =

[
3 1 2
6 2 5
5 2 7

]
.

Solution.
1. Perform EBTs: Move the vectors v1,v2,v3 into the basis, one by one. Keep in mind that
the pivot element always must have row label ei and column label vj for some indices i, j.

v1 v2 v3

e1 3 1∗ 2

e2 6 2 5

e3 5 2 7

→

v1 e1 v3

v2 3 1 2

e2 0 −2 1∗

e3 −1 −2 3

→

v1 e1 e2
v2 3 5 −2
v3 0 −2 1

e3 −1∗ 4 −3
→

e3 e1 e2
v2 3 17 −11
v3 0 −2 1

v1 −1 −4 3
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Example 1. Find the inverse of A =

[
3 1 2
6 2 5
5 2 7

]
.

Solution.
1. Perform EBTs: Move the vectors v1,v2,v3 into the basis, one by one. Keep in mind that
the pivot element always must have row label ei and column label vj for some indices i, j.

v1 v2 v3

e1 3 1∗ 2

e2 6 2 5

e3 5 2 7

→

v1 e1 v3

v2 3 1 2

e2 0 −2 1∗

e3 −1 −2 3

→

v1 e1 e2
v2 3 5 −2
v3 0 −2 1

e3 −1∗ 4 −3
→

e3 e1 e2
v2 3 17 −11
v3 0 −2 1

v1 −1 −4 3

2. Rearrange rows and columns, and read off the inverse matrix.

 

e3 e1 e2
v1 −1 −4 3

v2 3 17 −11
v3 0 −2 1

 

e1 e2 e3
v1 −4 3 −1
v2 17 −11 3

v3 −2 1 0

=⇒ A−1 =

−4 3 −1
17 −11 3
−2 1 0

.
�
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Proof of correctness. The correctness of an inverse matrix calculation can be easily verified
by a matrix multiplication:

To check that the inverse of

[
3 1 2
6 2 5
5 2 7

]
is indeed

[−4 3 −1
17 −11 3
−2 1 0

]
, all we have to do is to

verify that  3 1 2
6 2 5
5 2 7

 ·
−4 3 −1
17 −11 3
−2 1 0

 =

 1 0 0
0 1 0
0 0 1


holds.



Lecture 9 Application I: Calculating the inverse of a matrix 6/8

Example 2. Find the inverse of A =

[
1 2 2
2 4 7
0 −1 5

]
.



Lecture 9 Application I: Calculating the inverse of a matrix 6/8

Example 2. Find the inverse of A =

[
1 2 2
2 4 7
0 −1 5

]
.

Solution.
1. Perform EBTs: Move the vectors v1,v2,v3 into the basis, one by one. Keep in mind that
the pivot element always must have row label ei and column label vj for some indices i, j.

v1 v2 v3

e1 1∗ 2 2

e2 2 4 7

e3 0 −1 5

→

e1 v2 v3

v1 1 2 2

e2 −2 0 3

e3 0 −1∗ 5

→

e1 e3 v3

v1 1 2 12

e2 −2 0 3∗

v2 0 −1 −5
→

e1 e3 e2
v1 9 2 −4
v3 −2/3 0 1/3

v2 −10/3 −1 5/3
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Example 2. Find the inverse of A =

[
1 2 2
2 4 7
0 −1 5

]
.

Solution.
1. Perform EBTs: Move the vectors v1,v2,v3 into the basis, one by one. Keep in mind that
the pivot element always must have row label ei and column label vj for some indices i, j.

v1 v2 v3

e1 1∗ 2 2

e2 2 4 7

e3 0 −1 5

→

e1 v2 v3

v1 1 2 2

e2 −2 0 3

e3 0 −1∗ 5

→

e1 e3 v3

v1 1 2 12

e2 −2 0 3∗

v2 0 −1 −5
→

e1 e3 e2
v1 9 2 −4
v3 −2/3 0 1/3

v2 −10/3 −1 5/3

2. Rearrange rows and columns, and read off the inverse matrix.

 

e1 e3 e2
v1 9 2 −4
v2 −10/3 −1 5/3

v3 −2/3 0 1/3

 

e1 e2 e3
v1 9 −4 2

v2 −10/3 5/3 −1
v3 −2/3 1/3 0

=⇒ A−1 =

 9 −4 2
−10/3 5/3 −1
−2/3 1/3 0

.
�
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In Rn, the rank of vectors can be also calculated using basis transformation:

Theorem 3. Let v1, . . . ,vk be vectors in Rn. The rank of these vectors can be calculated by
the following procedure:

(1) Write the vectors v1, . . . ,vk into the columns of a basis table, label the columns with
the labels v1, . . . ,vk, and label the rows with the labels e1, . . . , en. (Here e1, . . . , en
represents the standard basis of Rn.)

(2) Perform elementary basis transformation (EBT) on this table as many times as possible:
Move as many vectors from v1, . . . ,vk into the basis as possible, one by one. An element
can be chosen as pivot only if its row label is ei and its column label is vj for some indices
i, j. In order to reduce the amount of computation, the column of pivot can be removed
after performing an EBT, because we do not need the coordinate vector of the ei’s. Stop
when all vectors v1, . . . ,vk were moved into the basis, or when no pivot element can be
chosen (a non-zero number with row label ei and column label vj for some i, j).

(3) When step (2) is done, we can obtain the rank of v1, . . . ,vk: The rank is equal to the
number of vectors that could be moved into the basis, i.e. the number of performed EBTs
gives the rank. (We have a freedom in choosing the pivot elements, but the process in
step (2) will always stop after the same number of steps.)



Lecture 9 Application II: Calculating the rank 7/8

Example. Calculate the rank of the following vectors (in R3):
[2,−1, 3]T , [1, 1, 2]T , [0,−3,−1]T , [3, 0, 5]T .



Lecture 9 Application II: Calculating the rank 7/8

Example. Calculate the rank of the following vectors (in R3):
[2,−1, 3]T , [1, 1, 2]T , [0,−3,−1]T , [3, 0, 5]T .

Solution.
Write the given vectors into the columns of a basis table, and by performing EBTs, move as many
of these vectors into the basis as possible. The pivot element must always have row label ei and
column label vj for some indices i, j. The column of the pivot can be removed after perfoming
an EBT step.

v1 v2 v3 v4

e1 2 1∗ 0 3

e2 −1 1 −3 0

e3 3 2 −1 5

→

v1 v3 v4

v2 2 0 3

e2 −3 −3 −3
e3 −1∗ −1 −1

→

v3 v4

v2 −2 1

e2 0 0

v1 1 1

The process terminates here, because all elements in the row of e2 are 0.

We could move 2 vectors into the basis (v1 and v2), so the rank of the given vectors is 2. �
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As the rank of a matrix can be obtained as the rank of its column vectors, the previous method
can be also used to find the rank of a matrix (after adjusting step (1) accordingly):

Theorem 4. The rank of an n× k matrix A can be calculated by the following procedure:

(1) Write the matrix A into a basis table, and label the columns with the labels v1, . . . ,vk,
and label the rows with the labels e1, . . . , en. (Here e1, . . . , en represents the standard
basis of Rn, and v1, . . . ,vk are the columns of A.)

(2) Perform elementary basis transformation (EBT) on this table as many times as possible:
Move as many vectors from v1, . . . ,vk into the basis as possible, one by one. An element
can be chosen as pivot only if its row label is ei and its column label is vj for some indices
i, j. In order to reduce the amount of computation, the column of pivot can be removed
after performing an EBT, because we do not need the coordinate vector of the ei’s. Stop
when all vectors v1, . . . ,vk were moved into the basis, or when no pivot element can be
chosen (a non-zero number with row label ei and column label vj for some i, j).

(3) When step (2) is done, we can obtain the rank of A: The rank is equal to the number
of vectors that could be moved into the basis, i.e. the number of performed EBTs gives
the rank. (We have a freedom in choosing the pivot elements, but the process in step (2)
will always stop after the same number of steps.)



Lecture 9 Application II: Calculating the rank 7/8

Example. Calculate the rank of the matrix

A =

 2 1 0 3
−1 1 −3 0
3 2 −1 5





Lecture 9 Application II: Calculating the rank 7/8

Example. Calculate the rank of the matrix

A =

 2 1 0 3
−1 1 −3 0
3 2 −1 5


Solution.
Write the matrix A into a basis table, and then proceed in the same way as in calculating rank
of vectors:

v1 v2 v3 v4

e1 2 1∗ 0 3

e2 −1 1 −3 0

e3 3 2 −1 5

→

v1 v3 v4

v2 2 0 3

e2 −3 −3 −3
e3 −1∗ −1 −1

→

v3 v4

v2 −2 1

e2 0 0

v1 1 1

The process terminates here, because all elements in the row of e2 are 0.

We could move 2 vectors into the basis (v1 and v2), so the rank of the matrix A is 2. �
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As the previous applications suggest, basis transformation can be always used when Gaussian
elimination is applicable (we will see later that linear systems can be also solved using basis
transformation). Both methods have its own advantages and drawbacks.
• It is easier to understand what is happening when working with Gaussian elimination.
• However, basis transformation is more mechanical for most students. (For example, there

is no need for interchanging rows.)
• Basis transformation gives more freedom in choosing pivot element, so it is easier to find a
±1 element. (With Gaussian elimation, we can only choose pivot from the “next” column.)
• On the other side, we cannot use the “multiply a row by a suitable number” trick to avoid

fractions in basis transformation.
• etc.


