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Definition. A linear system is homogeneous if all the constant
terms on the right-hand side are zeros, i.e. if the linear system
has the form 

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = 0
...

am,1x1 + am,2x2 + · · ·+ am,nxn = 0.
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terms on the right-hand side are zeros, i.e. if the linear system
has the form 

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = 0
...
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Observation. The zero vector (0, 0, 0, . . . , 0) with n compo-
nents is always a solution to a homogeneous linear system with
n variables.
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Definition. A linear system is homogeneous if all the constant
terms on the right-hand side are zeros, i.e. if the linear system
has the form 

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = 0
...

am,1x1 + am,2x2 + · · ·+ am,nxn = 0.

Observation. The zero vector (0, 0, 0, . . . , 0) with n compo-
nents is always a solution to a homogeneous linear system with
n variables.
We can say more:

Thm. The set of solutions of a homogeneous linear system with
n variables is a subspace of Rn. (The solutions of the system
are written in vector form and considered as vectors in Rn.)
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Definition. The set of solutions of a homogeneous linear system
is called the solution space of the system.

(By the previous theorem, the solution space is a subspace of Rn,
where n is the number of variables.)
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Definition. The set of solutions of a homogeneous linear system
is called the solution space of the system.

Theorem. Assume that a homogeneous linear system has in-
finitely many solutions. Then a basis of the solution space can
be constructed by the following procedure:
• Solve the linear system (there will be free variables).
• For each free variable, set the free variable in question

to 1, and set all other free variables to 0 (then the values
of the basic variables are determined), and the obtained
solution vector will be an element of the basis.
• Do this for all free variables, and the obtained vectors

form a basis of the solution space. (So if there are k free
variables, then the constructed basis has k vectors.)
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Theorem. Assume that a homogeneous linear system has in-
finitely many solutions. Then a basis of the solution space can
be constructed by the following procedure:
• Solve the linear system (there will be free variables).
• For each free variable, set the free variable in question

to 1, and set all other free variables to 0 (then the values
of the basic variables are determined), and the obtained
solution vector will be an element of the basis.
• Do this for all free variables, and the obtained vectors

form a basis of the solution space. (So if there are k free
variables, then the constructed basis has k vectors.)

Corollary. The dimension of the solution space of a homogeneous
linear system is equal to the number of free variables.
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Example. Find a basis of the solution space of the homogeneous
linear system 

x1 + 4x2 + 2x3 − x4 = 0

x1 + 2x2 + x4 = 0

x1 + 3x2 + x3 = 0.
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Example. Find a basis of the solution space of the homogeneous
linear system 

x1 + 4x2 + 2x3 − x4 = 0

x1 + 2x2 + x4 = 0

x1 + 3x2 + x3 = 0.

Solution. 1 4 2 −1
1 2 0 1
1 3 1 0

∣∣∣∣∣∣
0
0
0

 ∼ · · · ∼
 1 4 2 −1
0 −2 −2 2
0 0 0 0

∣∣∣∣∣∣
0
0
0


1. Solving the linear system using Gaussian elimination yields that the free
variables are x3 and x4, and the solutions (written as vectors in R4) are
[2a− 3b,−a+ b, a, b]T , where a and b are arbitrary.
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Example. Find a basis of the solution space of the homogeneous
linear system 

x1 + 4x2 + 2x3 − x4 = 0

x1 + 2x2 + x4 = 0

x1 + 3x2 + x3 = 0.

Solution. 1 4 2 −1
1 2 0 1
1 3 1 0

∣∣∣∣∣∣
0
0
0

 ∼ · · · ∼
 1 4 2 −1
0 −2 −2 2
0 0 0 0

∣∣∣∣∣∣
0
0
0


1. Solving the linear system using Gaussian elimination yields that the free
variables are x3 and x4, and the solutions (written as vectors in R4) are
[2a− 3b,−a+ b, a, b]T , where a and b are arbitrary.
2. We can obtain a basis in the solution space by the previous theorem:

a = 1, b = 0  [2,−1, 1, 0]T

a = 0, b = 1  [−3, 1, 0, 1]T .

So a basis of the solution space is [2,−1, 1, 0]T , [−3, 1, 0, 1]T . �



Lecture 8 The solution space 2/5

Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_1.pdf
http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_2.pdf
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Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

Remark 1. If the number of free variables is 1, then the basis
contains only one vector, and such a vector can be obtained by
setting the free variable to 1. (For example, if the solutions are
[3a,−5a, a]T where a is arbitrary, then a basis is [3,−5, 1]T .)

http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_1.pdf
http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_2.pdf
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Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

Remark 1. If the number of free variables is 1, then the basis
contains only one vector, and such a vector can be obtained by
setting the free variable to 1. (For example, if the solutions are
[3a,−5a, a]T where a is arbitrary, then a basis is [3,−5, 1]T .)

Remark 2. If there are no free variables, i.e. if the homogeneous
linear system has only one solution (the zero vector), then the
basis of the solution space is empty (i.e. it contains no vectors).

http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_1.pdf
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Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

Remark 1. If the number of free variables is 1, then the basis
contains only one vector, and such a vector can be obtained by
setting the free variable to 1. (For example, if the solutions are
[3a,−5a, a]T where a is arbitrary, then a basis is [3,−5, 1]T .)

Remark 2. If there are no free variables, i.e. if the homogeneous
linear system has only one solution (the zero vector), then the
basis of the solution space is empty (i.e. it contains no vectors).

Remark 3. If a homogeneous linear system has infinitely many
solutions, then its solution space has infinitely many bases, so
typically there are many different (correct) answers to these ex-
ercises.

http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_1.pdf
http://www.math.u-szeged.hu/~ngaba/linear/ex_solution_space_basis_2.pdf
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Imagine that we solve a homogeneous linear system with n vari-
ables and with matrix A, using Gaussian elimination. Then the
number of basic variables is equal to the number of non-zero
rows of the row-echelon form of A. But the latter number is the
rank of A (see Lecture 7). This means that the number of ba-
sic variables is rank(A), and so the number of free variables is
n− rank(A). Combining this with the previous corollary, we get:

Theorem. Assume that the matrix of a homogeneous linear
system with n variables is A. Then the dimension of the solution
space of the system is n− rank(A).
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Imagine that we solve a homogeneous linear system with n vari-
ables and with matrix A, using Gaussian elimination. Then the
number of basic variables is equal to the number of non-zero
rows of the row-echelon form of A. But the latter number is the
rank of A (see Lecture 7). This means that the number of ba-
sic variables is rank(A), and so the number of free variables is
n− rank(A). Combining this with the previous corollary, we get:

Theorem. Assume that the matrix of a homogeneous linear
system with n variables is A. Then the dimension of the solution
space of the system is n− rank(A).

The following theorem justifies the importance of solution spaces:

Theorem. Every subspace of Rn is the solution space of a
suitable homogeneous linear system with n variables.
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Definition. Let A be a square matrix of size n×n. A real number
λ is an eigenvalue of A if there exists a non-zero (column) vector
v ∈ Rn such that A · v = λ · v.
A non-zero vector v ∈ Rn is an eigenvector of A if there is a real
number λ such that A · v = λ · v. (In this case we say that v is
an eigenvector that corresponds to the eigenvalue λ.)



Lecture 8 Eigenvalues and eigenvectors 3/5

Definition. Let A be a square matrix of size n×n. A real number
λ is an eigenvalue of A if there exists a non-zero (column) vector
v ∈ Rn such that A · v = λ · v.
A non-zero vector v ∈ Rn is an eigenvector of A if there is a real
number λ such that A · v = λ · v. (In this case we say that v is
an eigenvector that corresponds to the eigenvalue λ.)

Example. 3 is an eigenvalue of the matrix A =

[
3 4 4
2 5 2
−4 −4 −1

]
because, for v = [0,−1, 1]T ,

A·v =

 3 4 4
2 5 2
−4 −4 −1

·
 0
−1
1

 =

 0
−3
3

 = 3·

 0
−1
1

 = 3·v.

This also means that [0,−1, 1]T is an eigenvector of A (corre-
sponding to the eigenvalue 3).
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Definition. For an n× n square matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
an,1 an,2 · · · an,n

 ,
the characteristic polynomial of A is the determinant

|A− xIn| =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 · · · a1,n
a2,1 a2,2 − x · · · a2,n
...

... . . . ...
an,1 am,2 · · · an,n − x

∣∣∣∣∣∣∣∣
where x is a variable.
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Definition. For an n× n square matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
an,1 an,2 · · · an,n

 ,
the characteristic polynomial of A is the determinant

|A− xIn| =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 · · · a1,n
a2,1 a2,2 − x · · · a2,n
...

... . . . ...
an,1 am,2 · · · an,n − x

∣∣∣∣∣∣∣∣
where x is a variable.

Note that A − xIn is obtained from A by subtracting x from
each element in the main diagonal.
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Definition. For an n× n square matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
an,1 an,2 · · · an,n

 ,
the characteristic polynomial of A is the determinant

|A− xIn| =

∣∣∣∣∣∣∣∣
a1,1 − x a1,2 · · · a1,n
a2,1 a2,2 − x · · · a2,n
...

... . . . ...
an,1 am,2 · · · an,n − x

∣∣∣∣∣∣∣∣
where x is a variable.

Theorem. The eigenvalues of a square matrix A are precisely
the (real) roots of the characteristic polynomial of A.
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Example. Find the eigenvalues of the 2× 2 matrix

A =

[
1 2
−1 4

]
.
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Example. Find the eigenvalues of the 2× 2 matrix

A =

[
1 2
−1 4

]
.

Solution. 1. The characteristic polynomial of A is

|A− xI2| =
∣∣∣ 1− x 2
−1 4− x

∣∣∣ = (1− x)(4− x)− (−2)

= (4− x− 4x+ x2) + 2 = x2 − 5x+ 6.

2. Find the roots of the characteristic polynomial (using the
quadratic formula):

x2 − 5x+ 6 = 0 ⇐⇒ x1 = 2, x2 = 3.

So the eigenvalues of A are 2 and 3. �
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Example. Find the eigenvalues of the 2× 2 matrix

A =

[
1 2
−1 4

]
.

Solution. 1. The characteristic polynomial of A is

|A− xI2| =
∣∣∣ 1− x 2
−1 4− x

∣∣∣ = (1− x)(4− x)− (−2)

= (4− x− 4x+ x2) + 2 = x2 − 5x+ 6.

2. Find the roots of the characteristic polynomial (using the
quadratic formula):

x2 − 5x+ 6 = 0 ⇐⇒ x1 = 2, x2 = 3.

So the eigenvalues of A are 2 and 3. �

More worked-out examples. CLICK HERE

http://www.math.u-szeged.hu/~ngaba/linear/ex_eigenvalue.pdf
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Let A be an n× n matrix, and λ is an eigenvalue of A. The set
Uλ := {v ∈ Rn : A · v = λ · v}

is called the eigenspace of A, corresponding to the eigenvalue λ.
(Observe that Uλ consists of all eigenvectors corresponding to λ,
plus the zero vector.)
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Let A be an n× n matrix, and λ is an eigenvalue of A. The set
Uλ := {v ∈ Rn : A · v = λ · v}

is called the eigenspace of A, corresponding to the eigenvalue λ.
(Observe that Uλ consists of all eigenvectors corresponding to λ,
plus the zero vector.)

Theorem. Let A be an n × n matrix, and λ is an eigenvalue
of A. Then the eigenspace Uλ is a subpace of Rn. More pre-
cisely, Uλ is the solution space of the homogeneous linear sys-
tem with matrix A− λIn.
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(Observe that Uλ consists of all eigenvectors corresponding to λ,
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Theorem. Let A be an n × n matrix, and λ is an eigenvalue
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The matrix A − λIn is obtained from A by subtracting λ from
each element in the main diagonal.
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Let A be an n× n matrix, and λ is an eigenvalue of A. The set
Uλ := {v ∈ Rn : A · v = λ · v}

is called the eigenspace of A, corresponding to the eigenvalue λ.
(Observe that Uλ consists of all eigenvectors corresponding to λ,
plus the zero vector.)

Theorem. Let A be an n × n matrix, and λ is an eigenvalue
of A. Then the eigenspace Uλ is a subpace of Rn. More pre-
cisely, Uλ is the solution space of the homogeneous linear sys-
tem with matrix A− λIn.

This means that the eigenspace Uλ can be determined by solving
the above homogeneous linear system. And even a basis of Uλ
can be obtained easily, using the method discussed in the theory
of homogeneous linear systems.
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Example. Determine the eigenspace U2 corresponding to the
eigenvalue λ = 2 of

A =

[
2 1 −1
0 3 −1
0 1 1

]
,

and give a basis of U2.
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Example. Determine the eigenspace U2 corresponding to the
eigenvalue λ = 2 of

A =

[
2 1 −1
0 3 −1
0 1 1

]
,

and give a basis of U2.
Solution. 1. The eigenspace U2 is the solution space of the
homogeneus linear system with matrix A− 2I3:[

0 1 −1
0 1 −1
0 1 −1

∣∣∣∣∣ 000
]
.

The solutions of this system are [a, b, b]T where a and b are
arbitrary (free variables: x1, x3), so U2 = {[a, b, b]T : a, b ∈ R}.
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Example. Determine the eigenspace U2 corresponding to the
eigenvalue λ = 2 of

A =

[
2 1 −1
0 3 −1
0 1 1

]
,

and give a basis of U2.
Solution. 1. The eigenspace U2 is the solution space of the
homogeneus linear system with matrix A− 2I3:[

0 1 −1
0 1 −1
0 1 −1

∣∣∣∣∣ 000
]
.

The solutions of this system are [a, b, b]T where a and b are
arbitrary (free variables: x1, x3), so U2 = {[a, b, b]T : a, b ∈ R}.
2. A basis of U2: a = 1, b = 0  [1, 0, 0]T

a = 0, b = 1  [0, 1, 1]T

So a basis of U2 is [1, 0, 0]T , [0, 1, 1]T . �
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Theorem. Let A be an n×n matrix, and let λ1, . . . , λr be dis-
tinct eigenvalues of A with associated eigenvectors v1, . . . ,vr.
Then the vectors v1, . . . ,vr are linearly independent in Rn.

Corollary. Assume that an n×n matrix A has n distinct eigen-
values, λ1, . . . , λn, with associated eigenvectors v1, . . . ,vn.
Then the vectors v1, . . . ,vn form a basis of Rn.


