Vector spaces

Linear algebra

Lectures 6-7

Gábor V. Nagy
Bolyai Intitute
Szeged, 2020.

Definition. \mathbb{R}^{n} denotes the set of $n \times 1$ (real) column vectors:

$$
\mathbb{R}^{n}=\left\{\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T}: a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

For the sake of readability, we write the column vector $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ as $\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T}$ in the lecture slides.

Definition. \mathbb{R}^{n} denotes the set of $n \times 1$ (real) column vectors:

$$
\mathbb{R}^{n}=\left\{\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T}: a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

Definition. We define 'addition' and 'multiplication by scalar λ ' operations for vectors in \mathbb{R}^{n} in the same way as we did for $n \times 1$ matrices:

$$
\begin{aligned}
{\left[a_{1}, \ldots, a_{n}\right]^{T}+\left[b_{1}, \ldots, b_{n}\right]^{T} } & : \\
\lambda \cdot\left[a_{1}, \ldots, a_{n}\right]^{T} & :=\left[\lambda a_{1}, \ldots, a_{n}+b_{n}\right]^{T} \\
& \left., \lambda a_{n}\right]^{T}
\end{aligned}
$$

For example, in \mathbb{R}^{3},

$$
\begin{aligned}
{[3,-1,4]^{T}+[1,2,3]^{T} } & =[4,1,7]^{T} \\
3 \cdot[2,5,-6]^{T} & =[6,15,-18]^{T}
\end{aligned}
$$

Definition. \mathbb{R}^{n} denotes the set of $n \times 1$ (real) column vectors:

$$
\mathbb{R}^{n}=\left\{\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{T}: a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

Definition. We define 'addition' and 'multiplication by scalar λ ' operations for vectors in \mathbb{R}^{n} in the same way as we did for $n \times 1$ matrices:

$$
\begin{aligned}
{\left[a_{1}, \ldots, a_{n}\right]^{T}+\left[b_{1}, \ldots, b_{n}\right]^{T} } & :=\left[a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right]^{T} \\
\lambda \cdot\left[a_{1}, \ldots, a_{n}\right]^{T}: & =\left[\lambda a_{1}, \ldots, \lambda a_{n}\right]^{T}
\end{aligned}
$$

For example, in \mathbb{R}^{3},

$$
\begin{aligned}
{[3,-1,4]^{T}+[1,2,3]^{T} } & =[4,1,7]^{T} \\
3 \cdot[2,5,-6]^{T} & =[6,15,-18]^{T}
\end{aligned}
$$

Notations. $\mathbf{0}$ denotes the zero vector $[0,0, \ldots, 0]^{T}$ in \mathbb{R}^{n}. $-\mathbf{v}$ denotes the vector $(-1) \cdot \mathbf{v}$ for any vector $\mathbf{v} \in \mathbb{R}^{n}$.

Theorem. For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and for all scalars $\lambda, \mu \in \mathbb{R}$,
(1) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$,
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$,
(3) $\mathbf{v}+\mathbf{0}=\mathbf{v}$,
(4) $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$,
(5) $\lambda \cdot(\mathbf{u}+\mathbf{v})=\lambda \cdot \mathbf{u}+\lambda \cdot \mathbf{v}$,
(6) $(\lambda+\mu) \cdot \mathbf{v}=\lambda \cdot \mathbf{v}+\mu \cdot \mathbf{v}$,
(7) $(\lambda \mu) \cdot \mathbf{v}=\lambda \cdot(\mu \cdot \mathbf{v})$,
(8) $1 \cdot \mathbf{v}=\mathbf{v}$.

Theorem. For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and for all scalars $\lambda, \mu \in \mathbb{R}$,
(1) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$,
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$,
(3) $\mathbf{v}+\mathbf{0}=\mathbf{v}$,
(4) $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$,
(5) $\lambda \cdot(\mathbf{u}+\mathbf{v})=\lambda \cdot \mathbf{u}+\lambda \cdot \mathbf{v}$,
(6) $(\lambda+\mu) \cdot \mathbf{v}=\lambda \cdot \mathbf{v}+\mu \cdot \mathbf{v}$,
(7) $(\lambda \mu) \cdot \mathbf{v}=\lambda \cdot(\mu \cdot \mathbf{v})$,
(8) $1 \cdot \mathbf{v}=\mathbf{v}$.

Mathematical structures (equipped with 'addition' and 'scalar multiplication' operations) that satisfy properties (1)-(8) are called vector spaces. (We make this more precise on the next side.)
\mathbb{R}^{n} is the most important example of vector spaces.

Definition. A (real) vector space is a nonempty set V (whose elements will be called vectors), equipped with a binary operation \oplus (addition of vectors) and for each real number λ, a unary operation $\lambda \odot$ (multiplication by scalar λ) that satisfy the following properties for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and for all scalars $\lambda, \mu \in \mathbb{R}$:
(1) $(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}=\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})$,
(2) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u}$,
(3) There exists a vector $\mathbf{0} \in V$ such that $\mathbf{v} \oplus \mathbf{0}=\mathbf{v}$ for all $\mathbf{v} \in V$,
(4) For any vector $\mathbf{v} \in V$, there exists a vector $-\mathbf{v}$ for which $\mathbf{v} \oplus(-\mathbf{v})=\mathbf{0}$,
(5) $\lambda \odot(\mathbf{u} \oplus \mathbf{v})=\lambda \odot \mathbf{u} \oplus \lambda \odot \mathbf{v}$,
(6) $(\lambda+\mu) \odot \mathbf{v}=\lambda \odot \mathbf{v} \oplus \mu \odot \mathbf{v}$,
(7) $(\lambda \mu) \odot \mathbf{v}=\lambda \odot(\mu \odot \mathbf{v})$,
(8) $1 \odot \mathbf{v}=\mathbf{v}$.

Example. \mathbb{R}^{n} is a vector space (when \oplus is the addition of vectors in \mathbb{R}^{n}, and $\lambda \odot$ is the multiplication of vectors in \mathbb{R}^{n} by scalar λ). However, there exist other vector spaces, too.

Example. \mathbb{R}^{n} is a vector space (when \oplus is the addition of vectors in \mathbb{R}^{n}, and $\lambda \odot$ is the multiplication of vectors in \mathbb{R}^{n} by scalar λ). However, there exist other vector spaces, too.
Convention. Instead of \oplus and $\lambda \odot$, the addition and scalar multiplication operations will be denoted by + and λ. in all vector spaces (like in \mathbb{R}^{n}).

Example. \mathbb{R}^{n} is a vector space (when \oplus is the addition of vectors in \mathbb{R}^{n}, and $\lambda \odot$ is the multiplication of vectors in \mathbb{R}^{n} by scalar λ). However, there exist other vector spaces, too.
Convention. Instead of \oplus and $\lambda \odot$, the addition and scalar multiplication operations will be denoted by + and λ. in all vector spaces (like in \mathbb{R}^{n}).
Remark. In the context of a vector space, scalar just means 'real number'. It is used when it is important to emphasize "not a vector".

Example. \mathbb{R}^{n} is a vector space (when \oplus is the addition of vectors in \mathbb{R}^{n}, and $\lambda \odot$ is the multiplication of vectors in \mathbb{R}^{n} by scalar λ). However, there exist other vector spaces, too.
Convention. Instead of \oplus and $\lambda \odot$, the addition and scalar multiplication operations will be denoted by + and λ. in all vector spaces (like in \mathbb{R}^{n}).
Remark. In the context of a vector space, scalar just means 'real number'. It is used when it is important to emphasize "not a vector".
Claim. The followings are true in any vector space V :
(i) $0 \cdot \mathbf{v}=\mathbf{0}$, for any vector $\mathbf{v} \in V$.
(ii) $\lambda \cdot \mathbf{0}=\mathbf{0}$, for any scalar $\lambda \in \mathbb{R}$.
(iii) $(-1) \mathbf{v}=-\mathbf{v}$ for any vector $\mathbf{v} \in V$.

Definition. Let V be a vector space. The subset W of V is a subspace of V, if

- $\mathbf{0} \in W$ (i.e. the zero vector belongs to W),
- whenever $\mathbf{u}, \mathbf{v} \in W$, it follows that $\mathbf{u}+\mathbf{v} \in W$, and
- whenever $\mathbf{u} \in W$, it follows that $\lambda \cdot \mathbf{u} \in W$ for all scalars $\lambda \in \mathbb{R}$.

Remark. A subspace W is also a vector space, contained within the (larger) vector space V.

Definition. Let V be a vector space. The subset W of V is a subspace of V, if

- $\mathbf{0} \in W$ (i.e. the zero vector belongs to W),
- whenever $\mathbf{u}, \mathbf{v} \in W$, it follows that $\mathbf{u}+\mathbf{v} \in W$, and
- whenever $\mathbf{u} \in W$, it follows that $\lambda \cdot \mathbf{u} \in W$ for all scalars $\lambda \in \mathbb{R}$.

Remark. A subspace W is also a vector space, contained within the (larger) vector space V.

Example 1. If W_{1} denotes the set of all vectors in \mathbb{R}^{3} whose first coordinate is 1 , then W_{1} is not a subspace of \mathbb{R}_{3}. This is because, for example, the vectors $[1,2,3]^{T}$ and $[1,5,6]^{T}$ are in W_{1}, but their sum, $[2,7,9]^{T}$ is not in W_{1}, violating the second condition. (Our we could argue that the zero vector $[0,0,0]^{T}$ does not belong to W_{1}.)

Definition. Let V be a vector space. The subset W of V is a subspace of V, if

- $\mathbf{0} \in W$ (i.e. the zero vector belongs to W),
- whenever $\mathbf{u}, \mathbf{v} \in W$, it follows that $\mathbf{u}+\mathbf{v} \in W$, and
- whenever $\mathbf{u} \in W$, it follows that $\lambda \cdot \mathbf{u} \in W$ for all scalars $\lambda \in \mathbb{R}$.

Example 2. If W_{0} denotes the set of all vectors in \mathbb{R}^{3} whose first coordinate is 0 , then W_{0} is a subspace of \mathbb{R}_{3} :

- The zero vector $[0,0,0]^{T}$ belongs to W_{0}, because its first coordinate is 0 .
- If we add any two vectors with first coordinate 0 , then the we obtain a vector with first coordinate 0 .
- Every scalar multiple of a vector with first coordinate 0 has also first coordinate 0 .

Definition. In a vector space V, the linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ with (scalar) coefficients $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ is the vector

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

Definition. In a vector space V, the linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ with (scalar) coefficients $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ is the vector

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

Example. In \mathbb{R}^{2}, the linear combination of vectors $[1,5]^{T},[4,-2]^{T}$, $[0,3]^{T}$ with coefficients $2,3,-1 / 2$ is the vector

$$
2 \cdot\left[\begin{array}{l}
1 \\
5
\end{array}\right]+3 \cdot\left[\begin{array}{c}
4 \\
-2
\end{array}\right]+(-1 / 2) \cdot\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
14 \\
5 / 2
\end{array}\right]
$$

Definition. In a vector space V, the linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ with (scalar) coefficients $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ is the vector

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

Example. In \mathbb{R}^{2}, the linear combination of vectors $[1,5]^{T},[4,-2]^{T}$, $[0,3]^{T}$ with coefficients $2,3,-1 / 2$ is the vector

$$
2 \cdot\left[\begin{array}{l}
1 \\
5
\end{array}\right]+3 \cdot\left[\begin{array}{c}
4 \\
-2
\end{array}\right]+(-1 / 2) \cdot\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
14 \\
5 / 2
\end{array}\right] .
$$

Def + Claim. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in a vector space V. $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ denotes the set of all linear combinations of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, that is,

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=\left\{\lambda_{1} \cdot \mathbf{v}_{1}+\ldots \lambda_{k} \cdot \mathbf{v}_{k}: \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\right\}
$$

Then $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is a subspace of V, and it is called the subspace generated by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

In the vector space \mathbb{R}^{n}, for any given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and \mathbf{u}, we can find (the coefficients of) all linear combinations of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ that yields \mathbf{u}. This can be done by solving a linear system.

In the vector space \mathbb{R}^{n}, for any given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and \mathbf{u}, we can find (the coefficients of) all linear combinations of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ that yields \mathbf{u}. This can be done by solving a linear system.

Let's demonstrate this with an example in \mathbb{R}^{3} :
Exercise. Find all triples of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, for which

$$
\lambda_{1} \cdot\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]+\lambda_{2} \cdot\left[\begin{array}{c}
3 \\
-5 \\
6
\end{array}\right]+\lambda_{3} \cdot\left[\begin{array}{l}
7 \\
4 \\
7
\end{array}\right]=\left[\begin{array}{c}
8 \\
-1 \\
2
\end{array}\right]
$$

holds.

Exercise. Find all triples of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, for which

$$
\lambda_{1} \cdot\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]+\lambda_{2} \cdot\left[\begin{array}{c}
3 \\
-5 \\
6
\end{array}\right]+\lambda_{3} \cdot\left[\begin{array}{l}
7 \\
4 \\
7
\end{array}\right]=\left[\begin{array}{c}
8 \\
-1 \\
2
\end{array}\right]
$$

holds.
Solution. By inspecting the first, second and third coordinates, the condition can be rewritten as

$$
\left\{\begin{aligned}
5 \lambda_{1}+3 \lambda_{2}+7 \lambda_{3} & =8 \\
\lambda_{1}-5 \lambda_{2}+4 \lambda_{3} & =-1 \\
3 \lambda_{1}+6 \lambda_{2}+7 \lambda_{3} & =2 .
\end{aligned}\right.
$$

This means that we need to find the solutions of the linear system

$$
\left\{\begin{aligned}
5 x_{1}+3 x_{2}+7 x_{3} & =8 \\
x_{1}-5 x_{2}+4 x_{3} & =-1 \\
3 x_{1}+6 x_{2}+7 x_{3} & =2
\end{aligned} \longleftrightarrow\left[\begin{array}{ccc|c}
5 & 3 & 7 & 8 \\
1 & -5 & 4 & -1 \\
3 & 6 & 7 & 2
\end{array}\right]\right.
$$

The solution to this system is $(3,0,-1)$, so the coefficients are $\lambda_{1}=3, \lambda_{2}=0, \lambda_{3}=-1$.

Exercise. Find all triples of coefficients $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, for which

$$
\lambda_{1} \cdot\left[\begin{array}{l}
5 \\
1 \\
3
\end{array}\right]+\lambda_{2} \cdot\left[\begin{array}{c}
3 \\
-5 \\
6
\end{array}\right]+\lambda_{3} \cdot\left[\begin{array}{l}
7 \\
4 \\
7
\end{array}\right]=\left[\begin{array}{c}
8 \\
-1 \\
2
\end{array}\right]
$$

holds.
Solution. By inspecting the first, second and third coordinates, the condition can be rewritten as

$$
\left\{\begin{aligned}
5 \lambda_{1}+3 \lambda_{2}+7 \lambda_{3} & =8 \\
\lambda_{1}-5 \lambda_{2}+4 \lambda_{3} & =-1 \\
3 \lambda_{1}+6 \lambda_{2}+7 \lambda_{3} & =2
\end{aligned}\right.
$$

This means that we need to find the solutions of the linear system

$$
\left\{\begin{aligned}
5 x_{1}+3 x_{2}+7 x_{3} & =8 \\
x_{1}-5 x_{2}+4 x_{3} & =-1 \\
3 x_{1}+6 x_{2}+7 x_{3} & =2
\end{aligned} \longleftrightarrow\left[\left.\begin{array}{l}
5 \\
\hline \\
3 \\
\hline
\end{array} \begin{array}{|c|c|c|c|c|c}
3 \\
-5 \\
6 \\
\hline
\end{array} \right\rvert\, \begin{array}{|c}
8 \\
-1 \\
2 \\
\hline
\end{array}\right]\right.
$$

The COLUMN vectors of the augmented matrix are exactly the vectors in the exercise, keeping their order! ...

In general, we have the following:
Theorem. For any given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ and \mathbf{u} in \mathbb{R}^{n}, the coefficients $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ for which

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}=\mathbf{u}
$$

holds (where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$), are precisely the solutions of the linear system with augmented matrix

This theorem says that finding the coefficients of those linear combinations of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ which yield the vector \mathbf{u} is equivalent to solving the above linear system. (Which has 0,1 or infinitely many solutions, see the last slide of Lecture 5.)

In view of the previous theorem, in the vector space \mathbb{R}^{n}, we can easily decide whether a vector \mathbf{u} is contained in the spanned subspace $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$, i.e. whether \mathbf{u} can be obtained as a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$:
We only have to decide whether the linear system

has a solution or not. And a linear system has solution if and only if its row-echelon form has no contradicting rows (see the last slide of Lecture 5).
Example. See the solution of Exercise 4.5.9.

Definition. The linear combination

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

is trivial if all coefficients are zero:

$$
\lambda_{1}=\cdots=\lambda_{k}=0 .
$$

Definition. The linear combination

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

is trivial if all coefficients are zero:

$$
\lambda_{1}=\cdots=\lambda_{k}=0
$$

Definition. In a vector space V, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are said to be linearly dependent if there is a nontrivial linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ that yields the zero vector, i.e. if there exists coefficients $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that not all of them are zero and

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}=\mathbf{0}
$$

Definition. The linear combination

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}
$$

is trivial if all coefficients are zero:

$$
\lambda_{1}=\cdots=\lambda_{k}=0
$$

Definition. In a vector space V, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are said to be linearly dependent if there is a nontrivial linear combination of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ that yields the zero vector, i.e. if there exists coefficients $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that not all of them are zero and

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\cdots+\lambda_{k} \cdot \mathbf{v}_{k}=\mathbf{0}
$$

Example. The vectors $\mathbf{v}_{1}=[1,2,1]^{T}, \mathbf{v}_{2}=[-1,-1,2]^{T}$ and $v_{3}=[5,7,-4]^{T}$ are linearly dependent in \mathbb{R}^{3}, because

$$
2 \cdot \mathbf{v}_{1}+(-3) \cdot \mathbf{v}_{2}+(-1) \cdot \mathbf{v}_{3}=\mathbf{0}
$$

Definition. If the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are not linearly dependent, then we say that they are linearly independent.

In other words, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are linearly independent, iff the only linear combination of these vectors that gives the zero vector is the trivial linear combination.

Definition. If the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ are not linearly dependent, then we say that they are linearly independent.
Example. The vectors $\mathbf{v}_{1}=[1,2,2]^{T}, \mathbf{v}_{2}=[-1,-1,2]^{T}$ and $v_{3}=[5,7,-4]^{T}$ are linearly independent in \mathbb{R}^{3}. To see this, find all triples $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ such that

$$
\lambda_{1} \cdot \mathbf{v}_{1}+\lambda_{2} \cdot \mathbf{v}_{2}+\lambda_{3} \cdot \mathbf{v}_{3}=\mathbf{0}
$$

by solving the linear system

$$
\left[\begin{array}{ccc|c}
1 & -1 & 5 & 0 \\
2 & -1 & 7 & 0 \\
2 & 2 & 4 & 0
\end{array}\right]
$$

This linear system has the only solution $(0,0,0)$, which means that the trivial linear combination

$$
0 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}+0 \cdot \mathbf{v}_{3}
$$

is the only linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ that yields $\mathbf{0}$.

In general, we have the following:
Theorem. The vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} are linearly independent if and only if the linear system with augmented matrix

has no other solution than $(0,0,0,0, \ldots, 0)$.

Definition. The vector system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is said to be a generator system of V if every vector in V can be obtained as a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. In other words, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ is a generator system of V if

$$
\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=V
$$

Definition. The vector system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is said to be a generator system of V if every vector in V can be obtained as a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

Definition. A linearly independent generator system of V is called a basis of V.

Definition. The vector system $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is said to be a generator system of V if every vector in V can be obtained as a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

Definition. A linearly independent generator system of V is called a basis of V.

Example. Let $V=\mathbb{R}^{n}$. The vector system

$$
\begin{aligned}
& \mathbf{e}_{1}=[1,0,0,0, \ldots, 0]^{T} \\
& \mathbf{e}_{2}=[0,1,0,0, \ldots, 0]^{T} \\
& \mathbf{e}_{3}=[0,0,1,0, \ldots, 0]^{T}
\end{aligned}
$$

$$
\mathbf{e}_{n}=[0,0,0,0, \ldots, 1]^{T}
$$

is a basis of the vector space \mathbb{R}^{n}. It is called the standard basis of \mathbb{R}^{n}.

Example. Let $V=\mathbb{R}^{n}$. The vector system

$$
\begin{aligned}
& \mathbf{e}_{1}=[1,0,0,0, \ldots, 0]^{T} \\
& \mathbf{e}_{2}=[0,1,0,0, \ldots, 0]^{T} \\
& \mathbf{e}_{3}=[0,0,1,0, \ldots, 0]^{T}
\end{aligned}
$$

$$
\mathbf{e}_{n}=[0,0,0,0, \ldots, 1]^{T}
$$

is a basis of the vector space \mathbb{R}^{n}. It is called the standard basis of \mathbb{R}^{n}.

Observe that in the vector \mathbf{e}_{i} the i 'th element is 1 , and all other elements are 0 .

Example. Let $V=\mathbb{R}^{n}$. The vector system

$$
\begin{aligned}
\mathbf{e}_{1} & =[1,0,0,0, \ldots, 0]^{T} \\
\mathbf{e}_{2} & =[0,1,0,0, \ldots, 0]^{T} \\
\mathbf{e}_{3} & =[0,0,1,0, \ldots, 0]^{T} \\
& \vdots \\
\mathbf{e}_{n} & =[0,0,0,0, \ldots, 1]^{T}
\end{aligned}
$$

is a basis of the vector space \mathbb{R}^{n}. It is called the standard basis of \mathbb{R}^{n}.

Observe that in the vector \mathbf{e}_{i} the i 'th element is 1 , and all other elements are 0 .

Now we will prove why the vector system $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of \mathbb{R}^{n}. For concreteness, we will discuss the case $n=3$, but the same argument works for any number n.

Theorem. $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of \mathbb{R}^{n}.

Theorem. $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of \mathbb{R}^{n}.
Proof (for $\boldsymbol{n}=3$). The point is that the linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ with coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is the vector $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]^{T}$, as

$$
\alpha_{1} \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\alpha_{2} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\alpha_{3} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

Theorem. $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of \mathbb{R}^{n}.
Proof (for $n=3$). The point is that the linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ with coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is the vector $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]^{T}$, as

$$
\alpha_{1} \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\alpha_{2} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\alpha_{3} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

1. The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent, because the linear combination in $(*)$ is equal to the $[0,0,0]^{T}$ zero vector if and only if the coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are all 0 , because

$$
\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow \alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0
$$

Theorem. $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is a basis of \mathbb{R}^{n}.
Proof (for $n=3$). The point is that the linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ with coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is the vector $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]^{T}$, as

$$
\alpha_{1} \cdot\left[\begin{array}{l}
1 \tag{*}\\
0 \\
0
\end{array}\right]+\alpha_{2} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\alpha_{3} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]
$$

1. The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are linearly independent, because the linear combination in $(*)$ is equal to the $[0,0,0]^{T}$ zero vector if and only if the coefficients $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are all 0 , because

$$
\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Longleftrightarrow \alpha_{1}=0, \alpha_{2}=0, \alpha_{3}=0
$$

2. The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ form a generator system, since by $(*)$, ANY vector $\left[a_{1}, a_{2}, a_{3}\right]^{T}$ in \mathbb{R}^{3} is a linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$:

$$
\left[a_{1}, a_{2}, a_{3}\right]^{T}=a_{1} \cdot \mathbf{e}_{1}+a_{2} \cdot \mathbf{e}_{2}+a_{3} \cdot \mathbf{e}_{3} .
$$

2. The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ form a generator system, since by $(*)$, ANY vector $\left[a_{1}, a_{2}, a_{3}\right]^{T}$ in \mathbb{R}^{3} is a linear combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$:

$$
\left[a_{1}, a_{2}, a_{3}\right]^{T}=a_{1} \cdot \mathbf{e}_{1}+a_{2} \cdot \mathbf{e}_{2}+a_{3} \cdot \mathbf{e}_{3}
$$

An illustration of 2.:

$$
\left[\begin{array}{c}
3 \\
8 \\
-2
\end{array}\right]=3 \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+8 \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(-2) \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and every vector in \mathbb{R}^{3} can be obtained analogously as a linear combination of the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.

Definition. A vector space is finitely generated if it has a finite

 set of generators.Definition. A vector space is finitely generated if it has a finite set of generators.

Theorem + Definition. In a finitely generated vector space V any two bases have the same number of elements. This common number of elements is called the dimension of V, and it is denoted by $\operatorname{dim}(V)$.

Definition. A vector space is finitely generated if it has a finite set of generators.

Theorem + Definition. In a finitely generated vector space V any two bases have the same number of elements. This common number of elements is called the dimension of V, and it is denoted by $\operatorname{dim}(V)$.

Example. The dimension of the vector space \mathbb{R}^{n} is n, because the standard basis has n elements.

Definition. A vector space is finitely generated if it has a finite set of generators.
Theorem + Definition. In a finitely generated vector space V any two bases have the same number of elements. This common number of elements is called the dimension of V, and it is denoted by $\operatorname{dim}(V)$.

Example. The dimension of the vector space \mathbb{R}^{n} is n, because the standard basis has n elements.

Theorem + Definition. If $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ is a basis in V, then for each vector $\mathbf{v} \in V$ there are uniquely determined coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $\mathbf{v}=\lambda_{1} \cdot \mathbf{f}_{1}+\cdots+\lambda_{n} \cdot \mathbf{f}_{n}$.
The vector $\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{T} \in \mathbb{R}^{n}$ is called the coordinate vector of \mathbf{v} with respect to the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$.

In the vector space \mathbb{R}^{n}, the coordinate vector of \mathbf{v} with respect to the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ can be determined by solving the linear system with augmented matrix

using the Theoreom on slide 6/14.

In the vector space \mathbb{R}^{n}, the coordinate vector of \mathbf{v} with respect to the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ can be determined by solving the linear system with augmented matrix

using the Theoreom on slide 6/14.
Example. The coordinate vector of $[1,2,1]^{T}$ with respect to the basis $[-1,2,1]^{T},[1,2,3]^{T},[-1,1,1]^{T}$ is $[3 / 2,1 / 2,-2]^{T}$, because the solution of the linear system

$$
\left[\begin{array}{ccc|c}
-1 & 1 & -1 & 1 \\
2 & 2 & 1 & 2 \\
1 & 3 & 1 & 1
\end{array}\right]
$$

is $(3 / 2,1 / 2,-2)$.

In the vector space \mathbb{R}^{n}, the coordinate vector of \mathbf{v} with respect to the basis $f_{1}, \ldots, \mathbf{f}_{n}$ can be determined by solving the linear system with augmented matrix

using the Theoreom on slide 6/14 .
Example. The coordinate vector of $[1,2,1]^{T}$ with respect to the basis $[-1,2,1]^{T},[1,2,3]^{T},[-1,1,1]^{T}$ is $[3 / 2,1 / 2,-2]^{T}$, because ...
Check of solution.

$$
(3 / 2) \cdot\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+(1 / 2) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+(-2) \cdot\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

In the vector space \mathbb{R}^{n}, the coordinate vector of \mathbf{v} with respect to the basis $f_{1}, \ldots, \mathbf{f}_{n}$ can be determined by solving the linear system with augmented matrix

using the Theoreom on slide 6/14.
Example 2. The coordinate vector of a vector $\mathbf{v} \in \mathbb{R}^{n}$ with respect to the standard basis is the vector \mathbf{v} itself. We have already seen this, when we proved that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ is indeed a basis in \mathbb{R}^{n} (check step 2 in that proof again):

$$
\left[\begin{array}{c}
3 \\
8 \\
-2
\end{array}\right]=3 \cdot\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+8 \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(-2) \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

In the vector space \mathbb{R}^{n}, the coordinate vector of \mathbf{v} with respect to the basis $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ can be determined by solving the linear system with augmented matrix

using the Theoreom on slide 6/14.
Worked-out example 1. CLICK HERE
Worked-out example 2. CLICK HERE

Theorem. Let V be a finitely generated vector space. Then
(a) Every linearly independent vector system in V has at most $\operatorname{dim}(V)$ elements.
(b) Every generator system of V has at least $\operatorname{dim}(V)$ elements.
(c) If a linearly independent vector system in V has $\operatorname{dim}(V)$ elements, then it is a basis.
(d) If a generator system of V has $\operatorname{dim}(V)$ elements, then it is a basis.

Definition. The rank of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is the dimension of the spanned subspace $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
It is denoted by $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Definition. The rank of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is the dimension of the spanned subspace $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
It is denoted by $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.
Proposition. If $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=r$, then there exists r vectors among $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ that are linearly independent, but any $r+1$ of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent.

Definition. The rank of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in a vector space V is the dimension of the spanned subspace $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$. It is denoted by $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Proposition. If $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=r$, then there exists r vectors among $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ that are linearly independent, but any $r+1$ of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent.

Theorem. In \mathbb{R}^{n}, the rank of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ can be calculated as follows:

1. Create the $k \times n$ matrix whose rows are the given vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.
2. Transform this matrix into row-echelon form by Gaussian elimination.
3. Then the number of non-zero rows in the row-echelon form gives $\operatorname{rank}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$.

Exercise. Determine the rank of the following vectors in \mathbb{R}^{4} :

$$
[1,3,-1,2]^{T}, \quad[2,8,1,3]^{T}, \quad[1,1,-4,7]^{T}, \quad[-3,-5,9,2]^{T} .
$$

Exercise. Determine the rank of the following vectors in \mathbb{R}^{4} :

$$
[1,3,-1,2]^{T}, \quad[2,8,1,3]^{T}, \quad[1,1,-4,7]^{T}, \quad[-3,-5,9,2]^{T}
$$

Solution. Write the given vectors into the rows of a matrix, and transform the matrix into row-echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1^{*} & 3 & -1 & 2 \\
2 & 8 & 1 & 3 \\
1 & 1 & -4 & 7 \\
-3 & -5 & 9 & 2
\end{array}\right]-2 \cdot} \\
& \\
& \left.\sim\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 2 & 3 & -1 \\
0 & 0 & 0 & 4^{*} \\
0 & 0 & 0 & 10
\end{array}\right]+3 \cdot \sim\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 2^{*} & 3 & -1 \\
0 & -2 & -3 & 5 \\
0 & 4 & 6 & 8
\end{array}\right]+\right]-2
\end{aligned}
$$

Since the row-echelon form has 3 non-zero rows, the rank of the given vectors is 3 .

Note. The previous theorem has an interesting consequence: All row-echelon forms of a matrix have the same number of non-zero rows.

Note. The previous theorem has an interesting consequence: All row-echelon forms of a matrix have the same number of non-zero rows.

We saw that the rank of vectors in \mathbb{R}^{n} can be easily determined by Gaussian elimination. The good news is that the rank can be used to test whether the vectors are linearly independent, form a generator system, or form a basis. This is discussed in the next theorem ...

Theorem. Let $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. (So k is the number of vectors; and n is the dimension of \mathbb{R}^{n}, that is, the number of components of a given vector.) Let r denote the rank of vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$. Then the followings hold.
(a) The vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$ are linearly independent if and only if $r=k$.
(b) The vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$ form a generator system of \mathbb{R}^{n} if and only if $r=n$.
(c) The vectors $\mathbf{v}_{1}, \ldots \mathbf{v}_{k}$ form a basis of \mathbb{R}^{n} if and only if $r=k=n$.

Worked-out example 1. CLICK HERE

Worked-out example 2. CLICK HERE

Definition. Let A be a matrix. A submatrix of A is a matrix formed by selecting some rows and some columns of A, and forming a new matrix by using those entries, in the same relative positions, that appear in both the rows and columns of those selected.

Example.

$$
\left[\begin{array}{cccccc}
2 & 3 & -1 & 6 & 1 & 8 \\
4 & -4 & 2 & 6 & 3 & 0 \\
0 & 7 & 5 & 2 & -1 & 6 \\
6 & 2 & 1 & 0 & 7 & 3 \\
9 & -5 & 0 & 8 & -8 & 5 \\
4 & 2 & -7 & 3 & 0 & 1
\end{array}\right] \supseteq\left[\begin{array}{cccc}
-4 & 2 & 6 & 0 \\
2 & 1 & 0 & 3 \\
-5 & 0 & 8 & 5
\end{array}\right]
$$

Definition + Theorem. Let A be an $m \times n$ matrix.

- The row rank $\operatorname{rank}_{r}(A)$ of A is the rank of the m row vectors of A (as vectors in \mathbb{R}^{n}).
- The column rank $\operatorname{rank}_{c}(A)$ of A is the rank of the n column vectors of A (as vectors in \mathbb{R}^{m}).
- The determinant rank $\operatorname{rank}_{d}(A)$ of A is the largest number r for which A contains a submatrix of size $r \times r$ with non-zero determinant.
Then $\operatorname{rank}_{r}(A)=\operatorname{rank}_{c}(A)=\operatorname{rank}_{d}(A)$. This common number is called the rank of A, and it is denoted by $\operatorname{rank}(A)$.

Definition + Theorem. Let A be an $m \times n$ matrix.

- The row rank $\operatorname{rank}_{r}(A)$ of A is the rank of the m row vectors of A (as vectors in \mathbb{R}^{n}).
- The column rank $\operatorname{rank}_{c}(A)$ of A is the rank of the n column vectors of A (as vectors in \mathbb{R}^{m}).
- The determinant rank $\operatorname{rank}_{d}(A)$ of A is the largest number r for which A contains a submatrix of size $r \times r$ with non-zero determinant.
Then $\operatorname{rank}_{r}(A)=\operatorname{rank}_{c}(A)=\operatorname{rank}_{d}(A)$. This common number is called the rank of A, and it is denoted by $\operatorname{rank}(A)$.

The theorem on determining rank of vectors implies the following:
Theorem. The rank of a matrix is equal to the number of non-zero rows in its row-echelon form.

Theorem. The rank of a matrix is equal to the number of non-zero rows in its row-echelon form.

Example. Find the rank of $A=\left[\begin{array}{cccc}1 & 2 & -4 & 1 \\ 2 & 3 & 1 & 5 \\ 0 & -1 & 9 & 3\end{array}\right]$.

Theorem. The rank of a matrix is equal to the number of non-zero rows in its row-echelon form.

Example. Find the rank of $A=\left[\begin{array}{cccc}1 & 2 & -4 & 1 \\ 2 & 3 & 1 & 5 \\ 0 & -1 & 9 & 3\end{array}\right]$.
Solution. The Gaussian elimination gives

$$
\left[\begin{array}{cccc}
1^{*} & 2 & -4 & 1 \\
2 & 3 & 1 & 5 \\
0 & -1 & 9 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -4 & 1 \\
0 & -1^{*} & 9 & 3 \\
0 & -1 & 9 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -4 & 1 \\
0 & -1 & 9 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The number of non-zero rows in the row-echelon form is 2 , hence the rank of A is 2 .

