
Fast determinant evaluation.
Matrix inverse, linear systems.

Linear algebra
Lecture 3

Gábor V. Nagy
Bolyai Intitute
Szeged, 2020.



Lecture 3 Efficient determinant evaluation 1/5

Evaluating a determinant by expansion can be very slow.



Lecture 3 Efficient determinant evaluation 1/5

Evaluating a determinant by expansion can be very slow.

For example, in order to evaluate a 5× 5 determinant, five 4× 4
determinants have to be evaluated. And for each 4× 4 determi-
nant, four 3× 3 determinants have to be evaluated. So we have
to compute altogether 5 · 4 = 20 determinants of size 3× 3.



Lecture 3 Efficient determinant evaluation 1/5

Evaluating a determinant by expansion can be very slow.

For example, in order to evaluate a 5× 5 determinant, five 4× 4
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be hopeless (in general), even if we are allowed to use computer.



Lecture 3 Efficient determinant evaluation 1/5

Evaluating a determinant by expansion can be very slow.

For example, in order to evaluate a 5× 5 determinant, five 4× 4
determinants have to be evaluated. And for each 4× 4 determi-
nant, four 3× 3 determinants have to be evaluated. So we have
to compute altogether 5 · 4 = 20 determinants of size 3× 3.
An analogous calculation shows, that in order to evaluate a 8×8
determinant by expansion, we should evaluate 6720 determinants
of size 3× 3.
By this approach, evaluation of a 100 × 100 determinant would
be hopeless (in general), even if we are allowed to use computer.

Fortunately, evaluation of an n×n determinant can be efficiently
reduced to the evaluation of one (n− 1)× (n− 1) determinant,
which makes determinant calculation possible for large matrices
in practice (using computers).
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Recall from Lecture 2:

Theorem. Let A be a square matrix.
(1) If we multiply a row (or column) of A by a number, then

its determinant is multiplied by the same number.
(2) If two rows (or columns) of a determinant are interchanged,

then the value of the determinant is multiplied by −1.
(3) If two rows (or columns) of A are identical, then |A| = 0.
(4) The value of |A| is unchanged if a multiple of a row is

added to another row, or if a multiple of a column is added
to another column.∣∣∣∣∣∣∣
−1 3 7 9
2 4 7 0
5 8 −3 1
3 2 1 1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−1 3 7 9
2 4 7 0
3 14 11 19
3 2 1 1

∣∣∣∣∣∣∣ .
+2·
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Theorem. Let A be a square matrix.
(1) If we multiply a row (or column) of A by a number, then

its determinant is multiplied by the same number.
(2) If two rows (or columns) of a determinant are interchanged,

then the value of the determinant is multiplied by −1.
(3) If two rows (or columns) of A are identical, then |A| = 0.
(4) The value of |A| is unchanged if a multiple of a row is

added to another row, or if a multiple of a column is added
to another column.

Using rule (4), the evaluation of an n × n determinant can be
reduced to the evaluation of one (n− 1)× (n− 1) determinant.
And then the evaluation of the (n−1)×(n−1) determinant can
be reduced to the evaluation of one (n−2)×(n−2) determinant
in the same way, and so on.
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−1 2 2 2
−1 1 2 3
3 0 4 5
2 −4 −3 2

∣∣∣∣∣∣∣ = ?
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−5 2 5 2
−1 1∗ 2 3
3 0 4 5
2 −4 −3 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−3 0 1 −4
−1 1 2 3
3 0 4 5
−2 0 5 14

∣∣∣∣∣∣∣
−2·

+4·

1. Pick a non-zero element in the matrix (which will be referred
as pivot element), and use this element to zero all other elements
in its column, by applying rule (4) on the previous slide.

• The pivot element is always indicated by a star in our figures.
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1. Pick a non-zero element in the matrix (which will be referred
as pivot element), and use this element to zero all other elements
in its column, by applying rule (4) on the previous slide.

• The pivot element is always indicated by a star in our figures.
• If the pivot element is a, and we want to zero an element c in
its column, then we add −c/a times of the row of a to the row
of c, because c+ (−c/a)a = 0.∣∣∣∣∣ ... a∗............ c .........

∣∣∣∣∣ =

∣∣∣∣∣ ... a∗............ 0 .........

∣∣∣∣∣− c
a ·
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2 −4 −3 2

∣∣∣∣∣∣∣ =
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−3 0 1 −4
−1 1 2 3
3 0 4 5
−2 0 5 14

∣∣∣∣∣∣∣
−2·

+4·

1. Pick a non-zero element in the matrix (which will be referred
as pivot element), and use this element to zero all other elements
in its column, by applying rule (4) on the previous slide.

• The pivot element is always indicated by a star in our figures.
• If the pivot element is a, and we want to zero an element c in
its column, then we add −c/a times of the row of a to the row
of c, because c+ (−c/a)a = 0.
• So in a determinant with integer entries, the best choice for
pivot is a 1 or −1 entry, because then fractions are avoided.
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−5 2 5 2
−1 1∗ 2 3
3 0 4 5
2 −4 −3 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−3 0 1 −4
−1 1 2 3
3 0 4 5
−2 0 5 14

∣∣∣∣∣∣∣
−2·

+4·

= 1 ·

∣∣∣∣∣∣
−3 1 −4
3 4 5
−2 5 14

∣∣∣∣∣∣
2. Expand the obtained determinant along the column of pivot.
(Only the term corresponding to the pivot will contribute.)
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−5 2 5 2
−1 1∗ 2 3
3 0 4 5
2 −4 −3 2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−3 0 1 −4
−1 1 2 3
3 0 4 5
−2 0 5 14

∣∣∣∣∣∣∣
−2·

+4·

= 1 ·

∣∣∣∣∣∣
−3 1∗ −4
3 4 5
−2 5 14

∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣
−3 1 −4
15 0 21
13 0 34

∣∣∣∣∣∣
= 1 · (−1) · 1 ·

∣∣∣∣ 15 21
13 34

∣∣∣∣ = (−1) · (15 · 34− 21 · 13) = −237 .

−4·
−5·

2. Expand the obtained determinant along the column of pivot.
(Only the term corresponding to the pivot will contribute.)

3. Repeat the procedure for the determinant of smaller size.
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Remark. Instead of zeroing the elements in the column of pivot,
one can also zero the elements in the row of pivot, and then
expand the obtained the determinant along this row.
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Recall that usually AB 6= BA for matrices A,B. But we have:

Claim. If AB = In holds for n × n matrices A,B (where In
is the identity matrix of size n× n), then BA = In also holds.
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(b) If |A| = 0, then A has no inverse.
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Recall that usually AB 6= BA for matrices A,B. But we have:

Claim. If AB = In holds for n × n matrices A,B (where In
is the identity matrix of size n× n), then BA = In also holds.

Definition. Given an n × n matrix A. The n × n matrix B is
called the inverse of A, if AB = BA = In.

Theorem + Notation. Let A be an n× n matrix.
(a) If |A| 6= 0, thenA has exactly one inverse, and it is denoted

by A−1.
(b) If |A| = 0, then A has no inverse.

Proof of (b). Assume that |A| = 0. Then AB = In cannot
occur for any n× n matrix B, because

|AB| = |A| · |B| = 0 · |B| = 0,

but |In| = 1. �
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Recall that usually AB 6= BA for matrices A,B. But we have:

Claim. If AB = In holds for n × n matrices A,B (where In
is the identity matrix of size n× n), then BA = In also holds.

Definition. Given an n × n matrix A. The n × n matrix B is
called the inverse of A, if AB = BA = In.

Theorem + Notation. Let A be an n× n matrix.
(a) If |A| 6= 0, thenA has exactly one inverse, and it is denoted

by A−1.
(b) If |A| = 0, then A has no inverse.

Definition. A square matrix A is called invertible (or nonsingu-
lar), if it has an inverse, i.e. if |A| 6= 0.
A square matrix A is called singular, if it has no inverse, i.e. if
|A| = 0.
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Recall that usually AB 6= BA for matrices A,B. But we have:

Claim. If AB = In holds for n × n matrices A,B (where In
is the identity matrix of size n× n), then BA = In also holds.

Definition. Given an n × n matrix A. The n × n matrix B is
called the inverse of A, if AB = BA = In.

Theorem + Notation. Let A be an n× n matrix.
(a) If |A| 6= 0, thenA has exactly one inverse, and it is denoted

by A−1.
(b) If |A| = 0, then A has no inverse.

Exercise. Show that 3 −4 5
2 −3 1
3 −5 −1

−1

=

−8 29 −11
−5 18 −7
1 −3 1

 .
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Definition. A linear system (with m equations and n variables)
is a system of equations of the following form:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm,

where the ai,j ’s are given real numbers (called coefficients), the
bi’s are given real numbers (called constants), and x1, . . . , xn are
the variables of the linear system.
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Definition. A linear system (with m equations and n variables)
is a system of equations of the following form:

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm,

where the ai,j ’s are given real numbers (called coefficients), the
bi’s are given real numbers (called constants), and x1, . . . , xn are
the variables of the linear system.

Definition. An n-tuple (s1, . . . , sn) of real numbers is a solution
of the above linear system, if we substitute s1 for x1, s2 for x2,
. . . , and sn for xn, then for every equation of the system, the
left side will equal the right side.
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Example. The system of equations
x1 + 2x2 − 3x3 = 2

2x1 + 2x2 − 5x3 = −1
−x1 + 2x2 + 4x3 = 11

is a linear system (with 3 equations and 3 variables).
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Example. The system of equations
x1 + 2x2 − 3x3 = 2

2x1 + 2x2 − 5x3 = −1
−x1 + 2x2 + 4x3 = 11

is a linear system (with 3 equations and 3 variables).

And (−1, 3, 1) is a solution of it, because

(−1) + 2 · 3− 3 · 1 = 2

2 · (−1) + 2 · 3− 5 · 1 = −1
−(−1) + 2 · 3 + 4 · 1 = 11

.

We also say that x1 = −1, x2 = 3, x3 = 1 is a solution of the
linear system.
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Example. The system of equations
x1 + 2x2 − 3x3 = 2

2x1 + 2x2 − 5x3 = −1
−x1 + 2x2 + 4x3 = 11

is a linear system (with 3 equations and 3 variables).

And (−1, 3, 1) is a solution of it, because

(−1) + 2 · 3− 3 · 1 = 2

2 · (−1) + 2 · 3− 5 · 1 = −1
−(−1) + 2 · 3 + 4 · 1 = 11

.

We also say that x1 = −1, x2 = 3, x3 = 1 is a solution of the
linear system.

Remark. Solving a linear system means finding all solutions of it.
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Definition. The matrix of the linear system
a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

is the m× n matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
am,1 am,2 · · · am,n

 ,

i.e. the (i, j)-entry of A is the coefficient of xj in the i’th equa-
tion.
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Example. The matrix of the linear system
2x1 + x2 + 3x3 = −1

2x2 − x3 = 1

6x1 − 5x2 + 4x3 = 2

is  2 1 3
0 2 −1
6 −5 4

 .
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Example. The matrix of the linear system
2x1 + x2 + 3x3 = −1

2x2 − x3 = 1

6x1 − 5x2 + 4x3 = 2

is  2 1 3
0 2 −1
6 −5 4

 .

Definition. We say that a linear system with m equations and
n variables is regular, if m = n (in other words, the matrix of
the linear system is a square matrix) and the matrix of the linear
system has non-zero determinant.

Ex. The above linear system is regular, as
∣∣∣∣ 2 1 3
0 2 −1
6 −5 4

∣∣∣∣ = −36.



Lecture 3 Cramer’s rule 5/5

Cramer’s rule. If the linear system
a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

is regular, then it has exactly one solution:

xj =
|A(j)|
|A|

(for j = 1, . . . , n),

where A = [ai,j ]m×n is the matrix of the linear system, and
A(j) is the matrix obtained from A by replacing its j’th column
to  b1

b2
...
bm

 .
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Example. The linear system
x1 + 2x2 − 3x3 = 2

2x1 + 2x2 − 5x3 = −1
−x1 + 2x2 + 4x3 = 11

is regular, because m = n = 3 and

|A| =
∣∣∣∣ 1 2 −3

2 2 −5
−1 2 4

∣∣∣∣ = −6. (non-zero)

Thus Cramer’s rule can be applied to find the unique solution:

|A(1)| =
∣∣∣ 2 2 −3
−1 2 −5
11 2 4

∣∣∣ = 6  x1 =
|A(1)|
|A|

= −1

|A(2)| =
∣∣∣ 1 2 −3

2 −1 −5
−1 11 4

∣∣∣ = −18  x2 =
|A(2)|
|A|

= 3

|A(3)| =
∣∣∣ 1 2 2

2 2 −1
−1 2 11

∣∣∣ = −6  x3 =
|A(3)|
|A|

= 1.

The solution is (−1, 3, 1).
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The solution of non-regular linear systems will be discussed in
the next lecture.


