1. Find a minimum cost spanning tree in the following edge-weighted graph using Kruskal's algorithm:

2. Does there exist a simple graph with degree sequence 5, 5, 5, 4, 2, 1, 1, 1? Use the Havel–Hakimi algorithm here.

3. Consider the network in the figure using the usual notations (s is the source, t is the sink; and the label of an edge e is f(e)/c(e) where f is a flow, c is the capacity function).

- a) Check that the flow f in the figure is feasible.
- b) Determine the value of the flow f.
- c) Determine the capacity of the [S, T]-cut for $S = \{s, a, b, c\}$ and $T = \{d, t\}$.

4. Prove that if a simple graph G has 2n vertices and every vertex of G has degree at least n, then G is connected.