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edges of M have a common endpoint, and there are no loops in M .
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A set of edges M ⊆ E(G) in a multigraph G is called a matching, if no two
edges of M have a common endpoint, and there are no loops in M .

For a matching M , the end vertices of the edges in M are called the matched
or covered vertices. (Their number is 2|M |.)

A matching in G is perfect, if it covers all vertices of G. (The matching in the
left figure is not perfect, the matching in the right figure is perfect.)

If G contains a perfect matching then G must have an even number of vertices.
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,

because any matching M covers 2|M | distinct vertices for any matching M ,
which means that 2|M | ≤ |V (G)|.
Moreover, ν(G) = |V (G)|

2 holds if and only if G contains a perfect matching.
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Def. ν(G) := max{|M | :M is a matching in G},

where |M | is the number of edges in M . So ν(G) is the size of a largest
matching in G.

Remark.
ν(G) ≤ |V (G)|

2
,

because any matching M covers 2|M | distinct vertices for any matching M ,
which means that 2|M | ≤ |V (G)|.
Moreover, ν(G) = |V (G)|

2 holds if and only if G contains a perfect matching.

Remark. We will see that the parameter ν(G) can be computed efficiently
(in polynomial time) by computer. In honor of the Hungarian mathematicians
Dénes Kőnig and Jenő Egerváry, the algorithm for finding a maximum size
matching in bipartite graphs is called “Hungarian method”.
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In bipartite graphs, each edge of a matching M covers one vertex from the
lower class and one vertex from the upper class:
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This implies that every matching contains at most as many edges as the number
of vertices in A. So in case of bipartite graphs, we have ν(G) ≤ |A|.

As the role of partite classes A and B are interchangeable, here and henceforth
A can be replaced to B.
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This implies that every matching contains at most as many edges as the number
of vertices in A. So in case of bipartite graphs, we have ν(G) ≤ |A|.

The equality ν(G) = |A| is equivalent to the fact that G has a matching that
covers all vertices of A.
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In bipartite graphs, each edge of a matching M covers one vertex from the
lower class and one vertex from the upper class:
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This implies that every matching contains at most as many edges as the number
of vertices in A. So in case of bipartite graphs, we have ν(G) ≤ |A|.
The equality ν(G) = |A| is equivalent to the fact that G has a matching that
covers all vertices of A.

Finally consider a perfect matching in a bipartite graph (see the new figure). As
every matching covers the same number of points in A as in B, a necessary (but
not sufficient) condition for the existence of a perfect matching is |A| = |B|.
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Definition. Let G be a bipartite graph with classes A,B.
• The neighborhood N(X) of a set X ⊆ A is the collection (union) of the
neighbors of vertices in X, that is,

N(X) := {v ∈ B : v is adjacent to some vertex in X}.
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Recall. The set X ⊆ A is a Kőnig set, if |N(X)| < |X|.
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Claim. If a Kőnig set exists in G, then G does not have a matching that
covers A (and so G has no perfect matching either). This is because for any
matching M , there are at least |X| − |N(X)| > 0 unmatched vertices in A.
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Recall. The set X ⊆ A is a Kőnig set, if |N(X)| < |X|.
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Claim. If a Kőnig set exists in G, then G does not have a matching that
covers A (and so G has no perfect matching either). This is because for any
matching M , there are at least |X| − |N(X)| > 0 unmatched vertices in A.
Proof. It is enough to prove the second statement. By the definition of neigh-
borhood, all edges starting from a Kőnig set X go to N(X), so every vertex
of X can be matched to a vertex of N(X) only. As distinct vertices of X are
matched to distinct vertices of N(X) in any matching M , this means that at
most |N(X)| vertices of X can be matched, and so the number of unmatched
vertices in X is at least |X| − |N(X)|. �
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The next deep theorem shows that the fact “there exists no matching that
covers A” can be always justified by finding a Kőnig set.

Marriage theorem. Let G be a bipartite graph with classes A,B.
a) The bipartite graph G contains a matching covering A if and only if there
is no Kőnig set in G, i.e. if |N(X)| ≥ |X| for all X ⊆ A.
b) The bipartite graph G contains a perfect matching if and only if |A| = |B|
and there is no Kőnig set in G (i.e. |N(X)| ≥ |X| for all X ⊆ A).

Remark. The second statement is the corollary of the first one. We have
already seen that |A| = |B| is a sufficient condition for the existance of perfect
matching, and in case of |A| = |B|, the perfect matchings are precisely those
matchings that cover A.
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Claim. Every d-regular bipartite graph contains a perfect matching, if d ≥ 1.

Proof. Let G be a d-regular bipartite graph with classes A,B, where d ≥ 1. In
order to prove that G contains a perfect matching, it is enough to check that
the conditions of the marriage theorem hold:
1. The classes A and B contain the same number of vertices.
2. |N(X)| ≥ |X|, for all sets X ⊆ A.
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Claim. Every d-regular bipartite graph contains a perfect matching, if d ≥ 1.

Proof. Let G be a d-regular bipartite graph with classes A,B, where d ≥ 1. In
order to prove that G contains a perfect matching, it is enough to check that
the conditions of the marriage theorem hold:
1. The classes A and B contain the same number of vertices.
This follows from the fact that the sum of degrees of vertices of A is equal to
the sum of degrees of vertices of B in any bipartite graph, so in the d-regular
case we have that

|A| · d = |B| · d,
and a division by d (d 6= 0) yields that |A| = |B|. X
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Claim. Every d-regular bipartite graph contains a perfect matching, if d ≥ 1.
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2. |N(X)| ≥ |X|, for all sets X ⊆ A.
Let X ⊆ A be arbitrary. Let e(X,N(X)) denote the number of edges between
X and N(X) in G. Then

|X| · d = e(X,N(X)) ≤ |N(X)| · d.
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2. |N(X)| ≥ |X|, for all sets X ⊆ A.
Let X ⊆ A be arbitrary. Let e(X,N(X)) denote the number of edges between
X and N(X) in G. Then

|X| · d = e(X,N(X)) ≤ |N(X)| · d.
The reason for the first equality: For every vertex v of X, there are exactly d
edges going from v to N(X), because there are exactly d edges incident to v
by the d-regularity, and all of these edges go to N(X) by the definition of the
neighborhood. This gives altogether |X|·d edges between X and N(X).
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Claim. Every d-regular bipartite graph contains a perfect matching, if d ≥ 1.

A
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2. |N(X)| ≥ |X|, for all sets X ⊆ A.
Let X ⊆ A be arbitrary. Let e(X,N(X)) denote the number of edges between
X and N(X) in G. Then

|X| · d = e(X,N(X)) ≤ |N(X)| · d.
The reason for the left inequality: For every vertex w of N(X), there are at
most d edges going from w to X, because there are exactly d edges incident to
w by the d-regularity, and some of these edges go to X (cf. the green edge in
the fig.). This gives altogether at most |N(X)|·d edges between X and N(X).



Lec. 11 An application 5/7

Claim. Every d-regular bipartite graph contains a perfect matching, if d ≥ 1.

A

B

2. |N(X)| ≥ |X|, for all sets X ⊆ A.
Let X ⊆ A be arbitrary. Let e(X,N(X)) denote the number of edges between
X and N(X) in G. Then

|X| · d = e(X,N(X)) ≤ |N(X)| · d.

Combining the two sides, after a division by d (d > 0) we obtain that
|N(X)| ≥ |X|. X

As this reasoning works for any set X ⊆ A, the proof is complete. �
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M is a matching in the (not necessarily bipartite) graph G. We say that a path
P : (v0, e1, v1, e2, v2, e3, v3, . . . , v2k, e2k+1, v2k+1)

in G is an augmenting path w.r.t. M , if P satisfies the following conditions:

(i) the start vertex v0 is unmatched,
(ii) e1, e3, e5, . . . , e2k+1 /∈M ,
(iii) e2, e4, e6, . . . , e2k ∈M ,
(iv) the end vertex v2k+1 is unmatched.
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M is a matching in the (not necessarily bipartite) graph G. We say that a path
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(i) the start vertex v0 is unmatched,
(ii) e1, e3, e5, . . . , e2k+1 /∈M ,
(iii) e2, e4, e6, . . . , e2k ∈M ,
(iv) the end vertex v2k+1 is unmatched.

Remark. The conditions (i) and (iv) imply that the first and last edges of
P are not in M , so the length of an augmenting path is always odd, and it
contains one more “black” edges than “red” edges.
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(i)-(iii). (The length of a partial augmenting path is allowed to be even.) The
attribute ‘partial’ in the name reflects that a partial augmenting path might be
extendable to an augmenting path.
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Let M be a matching in the graph G.
Observation. If G contains an augmening path with w.r.t M , then M can be
“augmented along P ” to obtain a matching M ′ that has one more edges than
M has: Just interchange the “black” and “red” edges inside P .
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Let M be a matching in the graph G.
Observation. If G contains an augmening path with w.r.t M , then M can be
“augmented along P ” to obtain a matching M ′ that has one more edges than
M has: Just interchange the “black” and “red” edges inside P .

Theorem. The matching M is not of maximum size in G if and only there
exists an augmenting path w.r.t. M .

Proof. The direction⇐ is just the observation above. The direction⇒ follows
from the analysis of the augmenting path finding algorithms discussed later.�
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Theorem. The matching M is not of maximum size in G if and only there
exists an augmenting path w.r.t. M .

Using this, it is easy to find a maximum size matching in an input graph G in
theory:
(1) Start from an arbitrary matchingM of G. For example,M can be a trivial

matching that contains only one (non-loop) edge of G.
(2) Find an augmenting path w.r.t. M . If an augmenting path is found, then

augmentM using it, and repeat step (2) for the obtained matching Other-
wise, i.e. if there is no augmenting path, then the actualM has maximum
size, terminate.

We will discuss polynomial time algorithms for finding an augmenting path (if
it exists) in the ‘Matching algorithms’ presentation. This means that the above
simple method can be implemented in polynomial time to find a maximum size
matching in G, and so determine the parameter ν(G).


