
Euler’s theorem.
a) A multigraph G has a closed Eulerian trail if and only if G

is connected and all degrees in G are even.
b) A multigraph G has a non-closed Eulerian trail if and only

if G is connected and precisely two vertices of G have odd
degree.

Putting these together:
c) A multigraph G has a Eulerian trail if and only if G is

connected and G has 0 or 2 vertices of odd degree.

Complement. The proof of part b) will reveal that if a connected
multigraph G has two vertices of odd degree, then one of them
must be the first vertex and the other one must be the last vertex
of any non-closed Eulerian trail.
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is connected and all degrees in G are even.
b) A multigraph G has a non-closed Eulerian trail if and only

if G is connected and precisely two vertices of G have odd
degree.

Putting these together:
c) A multigraph G has a Eulerian trail if and only if G is

connected and G has 0 or 2 vertices of odd degree.

Remark. A multigraph cannot have precisely 1 vertex of odd
degree (since the sum of vertex degrees is always even), hence in
statement c), the condition “G has 0 or 2 vertices of odd degree”
can be rephrased as “G has at most 2 vertices of odd degree”.
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). =⇒ direction, i.e. necessity of the conditions:
Assume that the multigraph G has a closed Eulerian trail T .
1. T visits every vertex of G (by definition), so there exists a
walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
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Assume that the multigraph G has a closed Eulerian trail T .
1. T visits every vertex of G (by definition), so there exists a
walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
2. When T visits a vertex, then such a visitation contributes 2
to degree of the vertex (enters/leaves) =⇒ Every vertex degree
is even (this is also true for the start/end vertex u). X
In detail:

• If v is vertex different from start/end vertex of T :

v
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Walk through T , and the watch the neighborhood of v . . .
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Proof of a). =⇒ direction, i.e. necessity of the conditions:
Assume that the multigraph G has a closed Eulerian trail T .
1. T visits every vertex of G (by definition), so there exists a
walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
2. When T visits a vertex, then such a visitation contributes 2
to degree of the vertex (enters/leaves) =⇒ Every vertex degree
is even (this is also true for the start/end vertex u). X
In detail:

• If v is vertex different from start/end vertex of T :
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(T traversed every edges,
these are all end segments of
edges incident to v.)

d(v) = 2× (visitations) ← even
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Proof of a). =⇒ direction, i.e. necessity of the conditions:
Assume that the multigraph G has a closed Eulerian trail T .
1. T visits every vertex of G (by definition), so there exists a
walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
2. When T visits a vertex, then such a visitation contributes 2
to degree of the vertex (enters/leaves) =⇒ Every vertex degree
is even (this is also true for the start/end vertex u). X
In detail:

• If u is the start/end vertex of T :
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walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
2. When T visits a vertex, then such a visitation contributes 2
to degree of the vertex (enters/leaves) =⇒ Every vertex degree
is even (this is also true for the start/end vertex u). X
In detail:

• If u is the start/end vertex of T :

u– the first edge of T

d(u) = 1 + 2× (number of passes) + 1
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). =⇒ direction, i.e. necessity of the conditions:
Assume that the multigraph G has a closed Eulerian trail T .
1. T visits every vertex of G (by definition), so there exists a
walk between any two vertices of G (consider the T -segment
between the two vertices, for example) =⇒ G is connected. X
2. When T visits a vertex, then such a visitation contributes 2
to degree of the vertex (enters/leaves) =⇒ Every vertex degree
is even (this is also true for the start/end vertex u). X
In detail:

• If u is the start/end vertex of T :

u– the first edge of T
– passing through u
– the last edge of T

d(u) = 1 + 2× (number of passes) + 1 ← even
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Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.

Keep adding new edges without edge repetition until we stuck . . .

G

u

If there are more than one free edges
to traverse next, pick one arbitrar-
ily.
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
Since a trail in G can have at most |E(G)| edges, we will defi-
nitely stuck at some point (= all edges starting from the actual
vertex have been already traversed).
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to traverse next, pick one arbitrar-
ily.



G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
∀ degree is even =⇒ We will stuck at the start vertex u.
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
∀ degree is even =⇒ We will stuck at the start vertex u.

REASON: When we stand in a vertex s different from u, then we have
passed through this vertex a few times already, and finally entered to that,
and so the number of traversed (end segments of) edges around s is odd,
so there must be a “free” edge around s which we can use to walk further.
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
2. When we stuck, we obtain a closed trail V in G.
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Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
2. When we stuck, we obtain a closed trail V in G.
3. If this trail V is Eulerian, then we are done. (Assume it is not.)
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
Assume that G is connected and every vertex degree is even.
1. Build a trail from an arbitrary start vertex u, in a greedy way.
2. When we stuck, we obtain a closed trail V in G.
3. If this trail V is Eulerian, then we are done. (Assume it is not.)
4. Let w be a vertex on V , which is incident to at least one
“black” edge (an edge not in V), too. Since G is connected, such
a vertex exists.

G

u

V

w From an arbitrary vertex of V walk
to an arbitrary black edge (we can
do this, as G is connected). Con-
sider the first moment when the
walk steps onto a black edge.



G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
5. Using the above greedy trail building process, build a trail
starting from w in the multigraph formed by the BLACK (not
yet traversed) edges.
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Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
5. Using the above greedy trail building process, build a trail
starting from w in the multigraph formed by the BLACK (not
yet traversed) edges.

This trail will again terminate at its start vertex w!
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
5. Using the above greedy trail building process, build a trail
starting from w in the multigraph formed by the BLACK (not
yet traversed) edges.

This trail will again terminate at its start vertex w!
The point is that the black multigraph has only even degrees,
too.
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We have already seen that the greedy
trail building process always leads to
closed trail in a graph with even ver-
tex degrees. (We did not use the con-
nectivity of the graph. This is good
news, as the black graph can be dis-
connected.)
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Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
5. Using the above greedy trail building process, build a trail
starting from w in the multigraph formed by the BLACK (not
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
5. Using the above greedy trail building process, build a trail
starting from w in the multigraph formed by the BLACK (not
yet traversed) edges.

This trail will again terminate at its start vertex w!
6. The obtained closed trail W can be inserted to V at w (see
the figure), resulting a longer closed trail V ′ in G. (By the choice
of w, the trail W has at least one edge, so V ′ is indeed larger.)
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G has a closed Eulerian trail⇐⇒ G is connected and every degree is even.

Proof of a). ⇐= direction, i.e. sufficiency of the conditions:
7. Now we reached to the same situation as before: there is a red
closed trail in G (now we call it V ′, not V). If the closed trail V ′
is not yet Eulerian, then we can extend it in the way seen before;
the reasoning is the same. And so on, we keep repeating these
extension steps until we reach to a closed Eulerian trail (when
every edge is traversed by the trail∗). �
∗: and of course the connectivity of G implies that it also visits every vertex.
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Remarks. 1. We underline that our proof provides an algorithm
to find a closed Eulerian trail (if our multigraph has the required
properties).
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2. The start/end vertex of a closed Eulerian trail is in fact arbi-
trary: we can “translate” it to an other vertex without modifying
the (circular) order of edges.
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Remarks. 1. We underline that our proof provides an algorithm
to find a closed Eulerian trail (if our multigraph has the required
properties).
2. The start/end vertex of a closed Eulerian trail is in fact arbi-
trary: we can “translate” it to an other vertex without modifying
the (circular) order of edges.
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3. A multigraph can have many closed Eulerian trails (in fact, this
is the common situation, when the graph satisfies the required
properties).



b) G has a non-closed Eulerian trail ⇐⇒ G is connected and
it has precisely two vertices of odd degree.

Proof. The direction „=⇒” is easy, it can be proved analogously
to the case a): Here the investigation of degrees gives that the
two different end vertices of the Eulerian trail must have odd
degree in G, and all other vertices must have even degree.



b) G has a non-closed Eulerian trail ⇐⇒ G is connected and
it has precisely two vertices of odd degree.

Proof. The direction „=⇒” is easy, it can be proved analogously
to the case a): Here the investigation of degrees gives that the
two different end vertices of the Eulerian trail must have odd
degree in G, and all other vertices must have even degree.
The direction „⇐=” can be reduced to the statement a): Let
u and v be the two vertices of odd degree in G. Add a new
edge e between u and v. (If there is already an edge between u
and v in G, then the new edge e will be a parallel edge, which
is permitted in multigraphs.) The obtained multigraph G′ will
be obviously connected, and all of its vertices have even degree,
so it contains a closed Eulerian trail V , by statement a). After
removing the new edge e from V , the obtained trail will be a
non-closed Eulerian trail of the original graph G. �


