
Basic concepts.
Degree sequences.

Graph theory
for MSc students in Computer Science

University of Szeged
Szeged, 2024.



Lec. 1 About the course 1/12

Course homepage. https://www.math.u-szeged.hu/~ngaba/graph/

https://www.math.u-szeged.hu/~ngaba/graph/


Lec. 1 About the course 1/12

Course homepage. https://www.math.u-szeged.hu/~ngaba/graph/

COURSE REQUIREMENTS
Practice. There will be 2 practice tests (25+25 points): on 22 October and
on 10 December. (One of them can be retaken in the first week of the exam
period.) + bonus points.
Lecture. During the exam period, written exams will be announced to test
the students’ knowledge. + Bonus points can be earned during the semester.

https://www.math.u-szeged.hu/~ngaba/graph/


Lec. 1 About the course 1/12

Course homepage. https://www.math.u-szeged.hu/~ngaba/graph/

COURSE REQUIREMENTS
Practice. There will be 2 practice tests (25+25 points): on 22 October and
on 10 December. (One of them can be retaken in the first week of the exam
period.) + bonus points.
Lecture. During the exam period, written exams will be announced to test
the students’ knowledge. + Bonus points can be earned during the semester.
Grades for both courses:
0 – 50%: fail (1)
51 – 62%: pass (2)
63 – 75%: satisfactory (3)
76 – 87%: good (4)
88 – 100%: excellent (5).

https://www.math.u-szeged.hu/~ngaba/graph/


Lec. 1 About the course 1/12

Course homepage. https://www.math.u-szeged.hu/~ngaba/graph/

COURSE REQUIREMENTS
Practice. There will be 2 practice tests (25+25 points): on 22 October and
on 10 December. (One of them can be retaken in the first week of the exam
period.) + bonus points.
Lecture. During the exam period, written exams will be announced to test
the students’ knowledge. + Bonus points can be earned during the semester.

TEXTBOOK for this course
Csaba, Hajnal, Nagy: Graph theory for MSc students in computer science
http://eta.bibl.u-szeged.hu/2479/
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and edges such that each edge is incident to exactly one or two vertices.
The set of vertices of G is denoted by V (G) or just V , and it is called the
vertex set of G. The set of edges of G is denoted by E(G) or just E, and it is
called the edge set of G. (Formally, V and E can be arbitrary finite sets.)
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Informal definition. A multigraph G consists of a finite number of vertices
and edges such that each edge is incident to exactly one or two vertices.
The set of vertices of G is denoted by V (G) or just V , and it is called the
vertex set of G. The set of edges of G is denoted by E(G) or just E, and it is
called the edge set of G. (Formally, V and E can be arbitrary finite sets.)

Def. An edge e is a loop, if it is incident to only one vertex (i.e. “the endpoints
of e coincide”). The edges e and f are parallel edges (or multiple edges), if
they are incident to the same two vertices.
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← parallel edges

Informal definition. A multigraph G consists of a finite number of vertices
and edges such that each edge is incident to exactly one or two vertices.

Terminology. If an edge e is incident to the vertices u and v in G, then we
will say that “the edge e connects the vertices u and v”, “e is an edge between
u and v” or “u and v are the endpoints of e”, etc. Two vertices are called
adjacent, if they are connected by an edge. We say that v is a neighbor of u,
if u and v are adjacent vertices in the multigraph. The neighborhood of u,
denoted by N(u), is the set of neighbors of u.
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Definition A graph (or simple graph) is a multigraph that contains no loops
or parallel edges.
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Degree.
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In a multigraph G, the degree of a vertex v is the number of edges incident
to v, where loops are counted twice. The degree of v is denoted by deg(v) or
degG(v).
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Degree.

6

In a multigraph G, the degree of a vertex v is the number of edges incident
to v, where loops are counted twice. The degree of v is denoted by deg(v) or
degG(v).
Note. In a (simple) graph G, the degree of vertex v is just the number of
neighbors of v. (This is not necessarily true in multigraphs.)
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In a multigraph G, the degree of a vertex v is the number of edges incident
to v, where loops are counted twice. The degree of v is denoted by deg(v) or
degG(v).
Def. A vertex is called isolated if its degree is 0, i.e. if there are no edges
incident to it. •
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Degree.

6

In a multigraph G, the degree of a vertex v is the number of edges incident
to v, where loops are counted twice. The degree of v is denoted by deg(v) or
degG(v).
Def. A vertex is called isolated if its degree is 0, i.e. if there are no edges
incident to it. •
Def. A multigraph is called regular if all of its vertices have the same degree.
If the common degree is d in a regular multigraph G, then we also say that G
is d-regular.
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Handshake lemma. In any multigraph G, the sum of the degrees of all
vertices of G is equal to twice the number of edges of G.

With formulas:
∑

v∈V (G)

deg(v) = 2 · |E(G)| , for any multigraph G.
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Handshake lemma. In any multigraph G, the sum of the degrees of all
vertices of G is equal to twice the number of edges of G.

With formulas:
∑

v∈V (G)

deg(v) = 2 · |E(G)| , for any multigraph G.
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1 + 2 + 3 + 3 + 4 + 5 + 6 = 2 · 12
Proof. Both sides of the equation count the total number of ‘end segments’
of edges in G. �
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Handshake lemma. In any multigraph G, the sum of the degrees of all
vertices of G is equal to twice the number of edges of G.

With formulas:
∑

v∈V (G)

deg(v) = 2 · |E(G)| , for any multigraph G.
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Corollary. The sum of the degrees of all vertices is even in any multigraph.

In other words. The number of vertices with odd degree is always even.
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Def. The degree sequence of a multigraph is the sequence of degrees of all its
vertices, sorted in decreasing (nonincreasing) order.
For example, the degree sequence of the graph in the figure is 5, 4, 3, 3, 2, 2, 1.
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Def. The degree sequence of a multigraph is the sequence of degrees of all its
vertices, sorted in decreasing (nonincreasing) order.
For example, the degree sequence of the graph in the figure is 5, 4, 3, 3, 2, 2, 1.
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Graph realization problem. For a given input sequence d of nonnegative
integers, decide whether there exists a graph whose degree sequence is d. (If
such a graph G exists, we say that that G realizes d.)
For example, the sequence 5, 4, 3, 3, 2, 2, 1 can be realized by a graph (e.g., the
graph in the figure above is a realization).
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Def. The degree sequence of a multigraph is the sequence of degrees of all its
vertices, sorted in decreasing (nonincreasing) order.
For example, the degree sequence of the graph in the figure is 5, 4, 3, 3, 2, 2, 1.
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Graph realization problem. For a given input sequence d of nonnegative
integers, decide whether there exists a graph whose degree sequence is d. (If
such a graph G exists, we say that that G realizes d.)
Remark. The multigraph (etc.) realization problem is defined analogously.
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Realization by multigraphs.
The decreasing sequence d1, d2, . . . , dn of nonnegative integers can be real-
ized by multigraph if and only if the sum d1 + d2 + · · ·+ dn is even.

Proof. Easy. See Proposition 2.1 in the textbook. �
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Realization by multigraphs.
The decreasing sequence d1, d2, . . . , dn of nonnegative integers can be real-
ized by multigraph if and only if the sum d1 + d2 + · · ·+ dn is even.

Proof. Easy. See Proposition 2.1 in the textbook. �

Realization by loopless multigraphs.
The decreasing sequence d1, d2, . . . , dn of nonnegative integers can be real-
ized by loopless multigraph if and only if
• d1 + d2 + · · ·+ dn is even, AND
• d1 ≤ d2 + d3 + · · ·+ dn.
(Note that d1 is a largest element in the sequence, by the decreasing order.)

We omit the proof.
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The (simple) graph realization problem is more difficult. Instead of giving an
explicit description of the degree sequences, we present an algorithm instead.
First we need to define the required operation on sequences:
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The (simple) graph realization problem is more difficult. Instead of giving an
explicit description of the degree sequences, we present an algorithm instead.
First we need to define the required operation on sequences:

Havel–Hakimi operation. A decreasing(!) sequence d1, . . . , dn of nonneg-
ative integers is given (where n ≥ 2); this sequence is denoted by d. The
sequence HH(d) is obtained from d by
• removing the first element (d1) from d, and then
• decreasing the first d1 elements of the obtained sequence d2, . . . , dn by 1.
(If d1 > n− 1, then HH(d) is not defined.)
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The (simple) graph realization problem is more difficult. Instead of giving an
explicit description of the degree sequences, we present an algorithm instead.
First we need to define the required operation on sequences:

Havel–Hakimi operation. A decreasing(!) sequence d1, . . . , dn of nonneg-
ative integers is given (where n ≥ 2); this sequence is denoted by d. The
sequence HH(d) is obtained from d by
• removing the first element (d1) from d, and then
• decreasing the first d1 elements of the obtained sequence d2, . . . , dn by 1.
(If d1 > n− 1, then HH(d) is not defined.)

Examples.
5, 4, 3, 3, 3, 3, 2, 1  3, 2, 2, 2, 2, 2, 1
3, 2, 2, 2, 2, 2, 1  1, 1, 1, 2, 2, 1
6, 4, 4, 3, 3, 1  not defined.
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Havel–Hakimi lemma. The decreasing(!) sequence d of n nonnegative in-
tegers (where n ≥ 2) can be realized by (simple) graph, if and only if
• d1 ≤ n− 1 AND
• the sequence HH(d), after reordering it in decreasing order, can be realized

by (simple) graph.
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tegers (where n ≥ 2) can be realized by (simple) graph, if and only if
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Proof. See Lemma 2.3 in the textbook. �



Lec. 1 The main lemma for graph realization (no loops or parallel edges allowed) 9/12

Havel–Hakimi lemma. The decreasing(!) sequence d of n nonnegative in-
tegers (where n ≥ 2) can be realized by (simple) graph, if and only if
• d1 ≤ n− 1 AND
• the sequence HH(d), after reordering it in decreasing order, can be realized

by (simple) graph.

Proof. See Lemma 2.3 in the textbook. �

Examples. The sequence 5, 4, 3, 3, 3, 3, 2, 1 can be realized by simple graph
⇐⇒ The sequence 3, 2, 2, 2, 2, 2, 1 can be realized by simple graph.
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Havel–Hakimi lemma. The decreasing(!) sequence d of n nonnegative in-
tegers (where n ≥ 2) can be realized by (simple) graph, if and only if
• d1 ≤ n− 1 AND
• the sequence HH(d), after reordering it in decreasing order, can be realized

by (simple) graph.

Proof. See Lemma 2.3 in the textbook. �

Examples. The sequence 5, 4, 3, 3, 3, 3, 2, 1 can be realized by simple graph
⇐⇒ The sequence 3, 2, 2, 2, 2, 2, 1 can be realized by simple graph.

The sequence 3, 2, 2, 2, 2, 2, 1 can be realized by simple graph. ⇐⇒ The
(reordered) sequence 2, 2, 1, 1, 1, 1 can be realized by simple graph.
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Havel–Hakimi lemma. The decreasing(!) sequence d of n nonnegative in-
tegers (where n ≥ 2) can be realized by (simple) graph, if and only if
• d1 ≤ n− 1 AND
• the sequence HH(d), after reordering it in decreasing order, can be realized

by (simple) graph.

Proof. See Lemma 2.3 in the textbook. �

Examples. The sequence 5, 4, 3, 3, 3, 3, 2, 1 can be realized by simple graph
⇐⇒ The sequence 3, 2, 2, 2, 2, 2, 1 can be realized by simple graph.

The sequence 3, 2, 2, 2, 2, 2, 1 can be realized by simple graph. ⇐⇒ The
(reordered) sequence 2, 2, 1, 1, 1, 1 can be realized by simple graph.
...
This can be iterated: We found an ALGORITHM!
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For a given decreasing input sequence d of nonnegative integers, the following
algorithm decides whether d can be realized by simple graph or not.
Havel–Hakimi algorithm (on input sequence d).
• If d is a one-element sequence, then it can be realized by simple graph if

and only if it is the sequence 0, and the algorithm terminates.
• If the first element of d is greater than or equal to the number of elements

of d, then d cannot be realized and the algorithm terminates.
• Otherwise, calculate HH(d).
• If the sequence HH(d) contains a negative number, then d cannot be real-

ized and the algorithm terminates.
• Otherwise, reorder the sequence HH(d) in decreasing order, and invoke this

algorithm recursively on input sequence HH(d). The obtained answer is the
answer to the initial question (on input d).
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For a given decreasing input sequence d of nonnegative integers, the following
algorithm decides whether d can be realized by simple graph or not.
Havel–Hakimi algorithm (on input sequence d).
• If d is a one-element sequence, then it can be realized by simple graph if

and only if it is the sequence 0, and the algorithm terminates.
• If the first element of d is greater than or equal to the number of elements

of d, then d cannot be realized and the algorithm terminates.
• Otherwise, calculate HH(d).
• If the sequence HH(d) contains a negative number, then d cannot be real-

ized and the algorithm terminates.
• Otherwise, reorder the sequence HH(d) in decreasing order, and invoke this

algorithm recursively on input sequence HH(d). The obtained answer is the
answer to the initial question (on input d).

Examples. See the two examples after Theorem 2.5 in the textbook.
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Havel–Hakimi algorithm (on input sequence d).
• If d is a one-element sequence, then it can be realized by simple graph if

and only if it is the sequence 0, and the algorithm terminates.
• If the first element of d is greater than or equal to the number of elements

of d, then d cannot be realized and the algorithm terminates.
• Otherwise, calculate HH(d).
• If the sequence HH(d) contains a negative number, then d cannot be real-

ized and the algorithm terminates.
• Otherwise, reorder the sequence HH(d) in decreasing order, and invoke this

algorithm recursively on input sequence HH(d). The obtained answer is the
answer to the initial question (on input d).

Remark. This recursive algorithm can be terminated with return value “YES”
at any point when the actual sequence can be trivially realized by simple graph.
(In practice, the algorithm returns “YES” if it reaches the constant sequence
0, 0, . . . , 0.)
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is connected by an edge. The complete graph on n vertices is denoted by Kn.

Definition. The complement of a graph G, denoted by G, is a simple graph
on the same vertex set as G, such that any two vertices are adjacent in G if
and only if they are not adjacent in G.
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Definition. A complete graph is a graph in which every pair of distinct vertices
is connected by an edge. The complete graph on n vertices is denoted by Kn.
Definition. The complement of a graph G, denoted by G, is a simple graph
on the same vertex set as G, such that any two vertices are adjacent in G if
and only if they are not adjacent in G.

Remark. G can be obtained from the complete graph on vertex set V (G) by
removing the edges of G.
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Definition. The (simple) graphs G and H are said to be isomorphic, if there
exist a bijection φ:V (G) → V (H) such that any two vertices u and v are
adjacent in G if and only if the vertices φ(u) and φ(v) are adjacent in H.
(Such a bijection φ is called graph isomorphism between G and H.)
Notation. G ' H.

G H

u

u' y'

v
v'

w

x x'y w'

Informally, isomorphic graphs are “essentially the same” (thus they are con-
sidered the same in graph theory almost always), the only difference is in the
“names” of vertices. We leave the students to the adopt the definition of graph
isomorphism to multigraphs.


