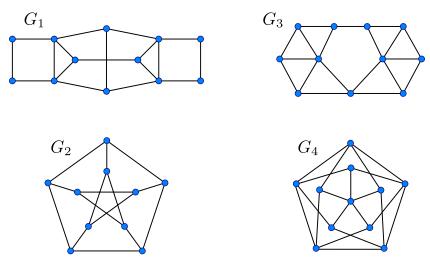
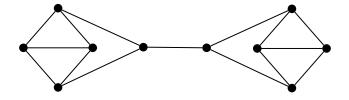

6. GRAPH COLORINGS


1. Which of the following graphs are bipartite?

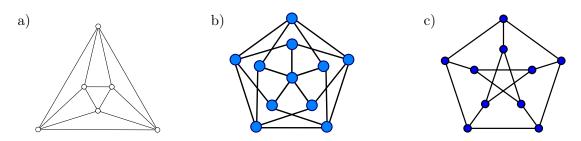
- a) K_n , the complete graph on n vertices;
- b) C_n , the cycle graph on n vertices;
- c) S_n , the star graph with n edges;
- d) P_n , the path graph with n edges;
- e) The graphs in exercise 3.

2. Determine the chromatic number of the following graph.

3. Determine the chromatic number of the following graphs.



4. Let G be the following graph: The vertices of G are the squares of a chessboard, and two vertices (squares) are connected iff a king can move from one to the other with a valid move. What is the chromatic number of G?


5.⁺ Let G be the graph on vertex set $\{1, \ldots, 100\}$ in which two different vertices (numbers) u and v are adjacent iff they are relative primes. Prove that $\chi(G) = \pi(100) + 1$, where $\pi(100)$ denotes the number of primes between 1 and 100.

6.⁺ Let G be the graph on vertex set $\{1, \ldots, 100\}$ in which two different vertices (numbers) are adjacent iff one is a divisor of the other. Determine $\chi(G)$

7. Determine the edge chromatic number of the following graph.

8. Determine the edge chromatic number of the following graphs.

- d) the graph obtained the cycle C_9 by joining every pair of vertices of distance two in the cycle;
- e) the complete graph K_n .