\qquad

1. Determine the Prüfer code of the following labeled tree.

2. Using the Havel-Hakimi-algorithm, decide whether the following sequence can be realized by a simple graph or not: $5,5,5,4,2,1,1,1$.
3. Find a minimum cost spanning in the following weighted graph using Kruskal's algorithm:

4. Consider the network in the figure (s is the source, t is the sink; and the label of an edge e is $f(e) / c(e)$ where f is a flow, c is the capacity function).

a) Check that the flow f in the figure is feasible.
b) Determine the value of the flow f.
c) Find an augmenting path (with respect to f), and augment the flow using the path.
5. Let G be the graph seen in the figure below.
a) Determine $\kappa(G)$, i.e. find the largest number k for which G is k-connected.
b) Determine $\lambda(G)$, i.e. find the largest number l for which G is l-edge-connected.

