7. MATCHINGS IN GENERAL GRAPHS

Tutte set: In a graph G, we call a set $X \subset V(G)$ Tutte set if o(G - X) > |X|, where o(G - X) denotes the number of odd components of G - X (that is, components with an odd number of vertices).

Tutte theorem: A graph G has a perfect matching if and only if there is no Tutte set in G, i.e. if $o(G - X) \leq |X|$ for all $X \subset V(G)$.

1.⁻ Determine the ν and τ parameters of the following graphs:

- c) Petersen graph,
- d) full binary tree of depth k.

2. Count the number of perfect matchings in

- a) K_n ;
- b) $K_{n,n};$
- c) the graph obtained from $K_{n,n}$ by removing a perfect matching;
- d) a tree;
- e) the following graph on 2n vertices:

3. Let G be a simple graph, and let M be a maximal matching in G. (A matching M is maximal, if for each edge e of the graph, $M \cup \{e\}$ is not a matching. Such a matching can be easily found by a greedy algorithm.) Prove that

$$\frac{\nu(G)}{2} \le |M| \le \nu(G).$$

4. In a 2n-vertex simple graph G, every vertex degree is at least n. Prove that there exists a perfect matching in G. [7.22]

5. Prove that if a matching M is not of maximum size in a graph G, then M can be augmented along a suitable augmenting path.

6. Let M_0 be a matching in a graph G. Prove that there exists a matching in G that covers all vertices covered by M_0 . [7.23]

7. Consider a two-player path-building game between Alice and Bob, played on a graph G. Alice picks a starting vertex v. They then alternate (starting with Bob) in picking a neighbor of the last vertex. Every vertex may only be chosen once. In this way, they build a path in G starting at v. The first player who cannot make a legal move (because there are no more vertices, or because there are no unvisited neighbors) loses. Prove that Bob wins if and only if G has a perfect matching.

8. Let G be a simple connected graph with an even number of edges. Using Tutte theorem, prove that the edge set of G can be partitioned into (edge sets of) paths of length 2.

9. Prove Petersen's theorem: Every 2-edge-connected 3-regular graph has a perfect matching. (A graph G is 2-edge-connected if it is connected and it remains connected after removing one edge arbitrarily.) [7.29] Hint: Use Tutte theorem.

10.⁺ A graph G and a function $f: V(G) \to \mathbb{N}_0$ are given. Our task is to decide whether there exists a spanning subgraph of G, in which each vertex v has degree f(v). Reduce this problem to a suitable matching problem (which can be solved by Edmonds' algorithm efficiently).