1. REALIZATION OF DEGREE SEQUENCES

1.- Does there exist a multigraph with degrees
a) $9,7,6,6,5,4,3,3,3,1$
b) $8,7,6,6,5,4,3,3,3,1$?
2. (Havel-Hakimi algorithm.) Does there exist a simple graph with degrees
a) $7,4,3,3,3,3,2,1,0$
b) $8,8,6,6,6,5,3,2,2$
c) $7,6,5,5,5,4,4,2$
d) $5,4,4,2,2,1$?
3. How many simple graphs have degree sequence $7,7,7,7,5,5,4,4$ (up to isomorphism)?
4. Does there exist a connected graph with degree sequence $4,4,3,2,2,1,1,1,1,1,1,1,1,1$?
5. After a party, every participant tells us how many people (of opposite sex) he or she danced with. We get the following numbers: $9,9,9,9,6,6,6,5,3,3,3,3,3,3,3$. Prove that at least one of them is wrong.
6. Prove that there exists a k-regular graph with n vertices exists if and only if $k n$ is even and $k \leq n-1$.
7. In a chess competition involving 10 girls and 20 boys, every girl played exactly 6 games. We know that there were exactly 34 games in which a boy and a girl played against each other. What is the number of "girl vs. girl" games?
8. The Erdős-Gallai theorem says that the sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ of nonnegative integers can be realized by a simple graph if and only if

$$
\begin{equation*}
d_{1}+\cdots+d_{n} \text { is even, and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left(d_{i}, k\right), \quad \text { for all } k \in\{1, \ldots, n\} \tag{2}
\end{equation*}
$$

Prove that the conditions are necessary.
9. Let $n \geq 2$. Prove that the sequence $d_{1}, d_{2}, \ldots, d_{n}$ of nonnegative integers can be realized by a tree if and only if $\sum_{i=1}^{n} d_{i}=2(n-1)$ and $d_{i}>0$ for all i.

