Qualifying Competition for VJIMC 2016 Category I.

Problem 1. Give all odd, periodic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with period 2π which are convex or concave on every closed interval with length π.

Problem 2. Let $f:[0,1] \rightarrow[0,1]$ be a differentiable function such that $\left|f^{\prime}(x)\right| \neq 1$ for all $x \in[0,1]$. Prove that there exist unique points $\alpha, \beta \in[0,1]$ such that $f(\alpha)=\alpha$ and $f(\beta)=1-\beta$.

Problem 3. Prove that the number

$$
2^{2^{k}-1}-2^{k}-1
$$

is composite (not prime) for all positive integers $k>2$.
Problem 4. Suppose that $\left(a_{n}\right)$ is a sequence of real numbers such that the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}
$$

is convergent. Show that, the sequence

$$
b_{n}=\frac{\sum_{j=1}^{n} a_{j}}{n}
$$

is convergent and find its limit.
Problem 5. Determine all 2×2 integer matrices A having the following properties:

1. the entries of A are (positive) prime numbers,
2. there exists a 2×2 integer matrix B such that $A=B^{2}$ and the determinant of B is the square of a prime number.

Problem 6. Let $A B C$ be a non-degenerate triangle in the euclidean plane. Define a sequence $\left(C_{n}\right)_{n=0}^{\infty}$ of points as follows: $C_{0}:=C$, and C_{n+1} is the center of the incircle of the triangle $A B C_{n}$. Find $\lim _{n \rightarrow \infty} C_{n}$.

Problem 7. An unbiased coin is tossed n times. A run is a sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH contains five runs. Find the expected number of runs.

Qualifying Competition for VJIMC 2016

 Category II.Problem 1. Let n closed half-spaces be given in \mathbb{R}^{n} such that each half-space contains the origin. Prove that their intersection contains a nonzero vector.

Problem 2. Let A and B two complex 2×2 matrices such that $A B-B A=B^{2}$. Prove that $A B=B A$.

Problem 3. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two real 10×10 matrices such that $a_{i j}=b_{i j}+1$ for all i, j and $A^{3}=0$. Prove that $\operatorname{det}(B)=0$.

Problem 4. Let $[n]$ be the set of first n positive integers. Let $c:[n] \rightarrow\{r, b\}$ be a red-blue colouring and let $\pi:[n] \rightarrow[n]$ be a permutation. We say that c is a well-colouring of π if $c(i)=c(\pi(i))$ for every $i \in[n]$. In this case, (c, π) is called a well-coloured permutation on [n].
(a) Show that the number of well-coloured permutations on $[n]$ is $(n+1)$!
(b) Give a bijection between the set of well-coloured permutations of $[n]$ and the set of permutations of $[n+1]$.

Problem 5. Suppose that $\left(a_{n}\right)$ is a sequence of real numbers such that the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}
$$

is convergent. Show that, the sequence

$$
b_{n}=\frac{\sum_{j=1}^{n} a_{j}}{n}
$$

is convergent and find its limit.
Problem 6. Let (G, \cdot) be a finite group of order n. Show that every element of G is a square if and only if n is odd.

Problem 7. A biased coin is tossed n times, and heads shows with probability p on each toss. A run is a sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH contains five runs. Find the expected number of runs.

