Test \#1

1. Determine the edge chromatic number of the following graph:

2. a) Remove the vertices u and v from the graph G on the figure, and draw the obtained graph $G-\{u, v\}$.
b) Determine the parameter $\nu(G)$.

3. A simple k-regular graph has $2 n$ vertices. n arbitrary vertices of the graph are colored red, and the rest n vertices are colored blue. Is it possible that the number of edges connecting two red vertices is 2015 , and the number of edges connecting two blue vertices is 2016 ?
4. How many spanning trees does the complete bipartite graph $K_{m, n}$ have?
5. There are 36 coins on a table: $5,10,20,50,100$ and 200 forint coins, 6 coins of each kind. The coins are arranged ramdomly in a 6×6,,square". Prove that it is possible to pick one coin from each row such that the 6 picked coins are pairwise different.
Hint: You can apply the marriage theorem here.
