8. Extremal Graph theory

In the following exercises, all graphs are simple!
1.- G is a simple graph on n vertices (where $n \geq 4$) such that any two edges of G share a common endpoint. Show that G has at most $n-1$ edges.
2. At most how many edges G can have, if G is simple graph on n vertices that does not contain
a) a cycle;
b) odd cycle;
c) triangle;
d) ${ }^{+}$even cycle?
3. At most how many edges an n-vertex simple graph G can have, if its chromatic number is k ?
4. Let V denote a finite set of n points on a unit circle S^{1} in the plane. By a unit circle we understand the set $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$.
a) What is the maximum number of unordered pairs $u, v \in V$ such that $|u v| \geq 1.8$?
b) What is the maximum number of unordered pairs $u, v \in V$ such that $|u v| \geq 1.5$?
5. The vectors $\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}} \in \mathbb{R}^{3}$ all have length at least 1 . Prove that at most $\left\lfloor n^{2} / 4\right\rfloor$ pairs $\left\{\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right\}$ have the property $\left\|\boldsymbol{v}_{\boldsymbol{i}}+\boldsymbol{v}_{\boldsymbol{j}}\right\|<1$.
6. Prove that if the simple graph G has n vertices and no cycles of length shorter than $2 k+1$, then the number of edges in G is less than $n\left(n^{1 / k}+1\right)$.
7. (Kővári-Sós-Turán theorem.) The simple graph G has no subgraph $K_{r, s}$, where $2 \leq r \leq s$. Prove that G has at most $\frac{\sqrt[r]{s-1}}{2} n^{2-1 / r}+\frac{r-1}{2} n=O\left(n^{2-1 / r}\right)$ edges.
8. There are given n points on the plane. Prove that the number of (unordered) pairs of points that are unit distance apart is at most $O\left(n^{3 / 2}\right)$.
9. Let S be a set of n points in the plane, where $n \geq 3$ and the distance between any two points of S is at least one. Show that no more than $3 n-6$ pairs of points of S can be at distance exactly one.
10. Show that if the chromatic number of G is k, then G contains all trees on k vertices (as subgraphs).
11. ${ }^{+} m$ identical pizzas are to be shared equally amongst n students. he pizzas are not necessarily divided into equal parts, and the slices of a given pizza may vary in size. Show that this goal can be achieved by dividing the pizzas into a total of $m+n-\operatorname{gcd}(m, n)$ pieces, and no division into a smaller number of pieces will achieve the goal.
12. ${ }^{+}$Let T be an arbitrary tree with k edges. The Erdős-T. Sós conjecture states that every simple graph on n vertices not containing T can have at most $\frac{k-1}{2} n$ edges. Prove this conjecture in the special cases when T is a star or path.
13. ${ }^{+}$Each of the schools A, B, C has n students. And every student of these schools knows exactly $n+1$ students from the two other schools altogether. Prove that there exist 3 students, one student from each school, such that they mutually know each other.

