6. Edge coloring

Vizing's theorem: If G is a simple graph, then $\chi_{e}(G) \leq \Delta(G)+1$. (So for simple graphs, $\chi_{e}(G)=\Delta(G)$ or $\chi_{e}(G)=\Delta(G)+1$.)

1. Find the edge chromatic number of the following graphs.
a)

b)

c)

d) the graph obtained from the cycle C_{9} by connecting every vertex to its two second neighbors on the cycle,
e) the complete graph K_{n}.
2. a) Show that if a 3 -regular graph have a Hamiltonian cycle, then the edge chromatic number of this graph is 3 .
b) Does the Petersen graph have a Hamiltonian cycle?
c) G is a loopless 3 -regular graph whose edge-chromatic number is 3 , and there is exactly one proper edge coloring of G, apart from permuting the colors. Show that G contains a Hamiltonian cycle.
3. G is a 3 -regular connected simple graph, which has an edge e such that the graph $G-e$ is disconnected. Prove that $\chi_{e}(G)=4$.
4. Let G be a simple graph. The graph $G^{(2)}$ is obtained from two vertex-disjoint copies of G by connecting the vertices that are "clones" of each other (so $|V(G)|$ new edges are added this way). Prove that the edge chromatic number of $G^{(2)}$ is $\Delta(G)+1$.
5. a) Prove that the edge chromatic number of a d-regular bipartite graph is d.
b) Prove that if G is a bipartite graph, then $\chi_{e}(G)=\Delta(G)$.
6. The graph G has a proper edge coloring using k colors. Prove that G also has a proper edge coloring using k colors in which every color appears $\left\lfloor\frac{\lfloor E(G) \mid}{k}\right\rfloor$ or $\left\lceil\frac{|E(G)|}{k}\right\rceil$ times.
7. ${ }^{+}$In the Bolyai Sudoku the 9×9 square is divided into regions in a such a way that every region consists of at most 9 cells. The regions can have any shape, one exaple is shown in the figure. Prove that the cells of the Bolyai Sudoku can be filled with the numbers 1-9 such that each row and each column contains pairwise distinct elements (and there is no such requirement for columns).

8. ${ }^{+}$Prove that $\chi_{e}(G) \leq 3\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for any loopless graph G.

Hint. You can apply exercise III/13. (Prove the problem for $2 k$-regular graphs first.)
Remark. This problem is close to Shannon's theorem, which states that $\chi_{e}(G) \leq\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor$.
9. ${ }^{+}$Prove that the edge set of $K_{2 n+1}$ can be partitioned into n (edge sets of) Hamiltonian cycles of $K_{2 n+1}$.

