2. Enumeration of spanning trees

1. How many spanning trees does the following graph have?

2. Among the spanning trees of K_n , how many stars and paths are (if $n \ge 3$)?

3. Replace every edge of the complete graph K_n by two parallel edges. How many spanning trees does the obtained graph have?

4. Count the number of spanning of K_n in which a fixed vertex v is a leaf. (Here $n \ge 3$.)

5. What is the number of all trees on n vertices with exactly n - l leaves? [4.8]

6. Let t(G) denote the number of spanning trees of G, and let e be an arbitrary edge in the graph G. Prove that

$$t(G) = t(G - e) + t(G/e),$$

where the G - e is the graph obtained by removing e from G, and G/e is the graph obtained from G by contracting e.

7. What is the number of trees on vertex set $\{v_1, \ldots, v_n, w_1, \ldots, w_m\}$ in which each edge joins a v_i to a w_j ? [4.11]

8. We remove an edge from the complete graph on n vertices $(n \ge 3)$. How many spanning trees does the obtained graph have?

9.⁺ Let $n \ge 2$ be an integer. We connect every vertex of an *n*-vertex path to a new external vertex. Show that the obtained (n + 1)-vertex graph has F_{2n-1} spanning trees, where F_{2n-1} is a Fibonacci number (with indexing $F_0 = F_1 = 1, F_2 = 2, ...$).

10.⁺ n different colors are given: c_1, \ldots, c_n . In how many ways a circle of color c_1 , a circle of color c_2, \ldots , and a circle of color c_n can be placed in the plane, so that these circles are pairwise non-intersecting? (Two placements are considered the same if and only if one placement can be continuously transformed into the other one by moving and scaling the circles such that the non-intersecting property of circles is retained during the transformation.)

11.⁺ In a simple *bipartite* graph G, every vertex has even degree. Prove that G has an even number of spanning trees.

Note. No elementary solution to this problem is known.

12.⁺ Prove Abel's identity combinatorially:

$$\sum_{k=1}^{n-1} \binom{n}{k} k^{k-1} (n-k)^{n-k-1} = 2(n-1)n^{n-2}.$$

13. Count the number of full binary trees with n + 1 leaves.

14. Count the number of plane trees with n edges.