2. Enumeration of spanning trees

1. How many spanning trees does the following graph have?

2. Among the spanning trees of K_{n}, how many stars and paths are (if $n \geq 3$)?
3. Replace every edge of the complete graph K_{n} by two parallel edges. How many spanning trees does the obtained graph have?
4. Count the number of spanning of K_{n} in which a fixed vertex v is a leaf. (Here $n \geq 3$.)
5. What is the number of all trees on n vertices with exactly $n-l$ leaves?
6. Let $t(G)$ denote the number of spanning trees of G, and let e be an arbitrary edge in the graph G. Prove that

$$
t(G)=t(G-e)+t(G / e),
$$

where the $G-e$ is the graph obtained by removing e from G, and G / e is the graph obtained from G by contracting e.
7. What is the number of trees on vertex set $\left\{v_{1}, \ldots v_{n}, w_{1}, \ldots, w_{m}\right\}$ in which each edge joins a v_{i} to a w_{j} ?
8. We remove an edge from the complete graph on n vertices $(n \geq 3)$. How many spanning trees does the obtained graph have?
9. ${ }^{+}$Let $n \geq 2$ be an integer. We connect every vertex of an n-vertex path to a new external vertex. Show that the obtained $(n+1)$-vertex graph has $F_{2 n-1}$ spanning trees, where $F_{2 n-1}$ is a Fibonacci number (with indexing $F_{0}=F_{1}=1, F_{2}=2, \ldots$).
10. ${ }^{+} n$ different colors are given: c_{1}, \ldots, c_{n}. In how many ways a circle of color c_{1}, a circle of color c_{2}, \ldots, and a circle of color c_{n} can be placed in the plane, so that these circles are pairwise non-intersecting? (Two placements are considered the same if and only if one placement can be continuously transformed into the other one by moving and scaling the circles such that the non-intersecting property of circles is retained during the transformation.)
11. ${ }^{+}$In a simple bipartite graph G, every vertex has even degree. Prove that G has an even number of spanning trees.
Note. No elementary solution to this problem is known.
12. ${ }^{+}$Prove Abel's identity combinatorially:

$$
\sum_{k=1}^{n-1}\binom{n}{k} k^{k-1}(n-k)^{n-k-1}=2(n-1) n^{n-2}
$$

13. Count the number of full binary trees with $n+1$ leaves.
14. Count the number of plane trees with n edges.
