1. Degrees

1. Does there exist a graph with degree sequence
a) $9,7,6,6,5,4,3,3,3,1$
b) $8,7,6,6,5,4,3,3,3,1$?
2. (Havel-Hakimi algorithm.) Using the Havel-Hakimi algorithm, decide whether there exists a simple graph with degree sequence
a) $7,4,3,3,3,3,2,1,0$
b) $8,8,6,6,6,5,3,2,2$.
3. How many simple graphs have degree sequence $7,7,7,7,5,5,4,4$ (up to isomorphism)?
4. Does there exist an acyclic graph with degree sequence $3,3,3,3,2,2,2,2,1,1,1,1$?
5. Does there exist a connected graph with degree sequence $4,4,3,2,2,1,1,1,1,1,1,1,1,1$?
6. Does there exist a bipartite graph with degree sequence $9,9,9,9,6,6,6,5,3,3,3,3,3,3,3$?
7. Prove that a k-regular simple graph on n vertices exists if and only if $k n$ is even and $k \leq n-1$.
8. G is a 7-regular simple graph on 100 vertices, and $U \subset V(G)$ is a 25 -element set of vertices. Determine the parity of the number of edges between the sets U and $V(G) \backslash U$.
9. Show that a graph G on $2 n$ vertices is regular if and only if for all $A \dot{\cup} B=V(G)$ vertex partition with $|A|=|B|=n$, the induced subgraphs $\left.G\right|_{A}$ and $\left.G\right|_{B}$ have the same number of edges.
10. The Erdős-Gallai theorem states that the sequence $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ of nonnegative integers can be realized by a simple graph if and only if

$$
\begin{gather*}
d_{1}+\cdots+d_{n} \text { is even, } \quad \text { and } \tag{1}\\
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{i=k+1}^{n} \min \left(d_{i}, k\right), \quad \text { for all } k \in\{1, \ldots, n\} \tag{2}
\end{gather*}
$$

Prove that the conditions are necessary.
11. Show that if every vertex has degree at least 2 in a simple graph G, then G contains a cycle of length at least $\delta(G)+1$, where $\delta(G)$ denotes the minimum degree in G.
12. Show that if every vertex has degree at least 3 in a simple graph G, then G contains a cycle of even length.
[10.2]
13. ${ }^{+}$Show that if every vertex has degree at least 3 in a simple graph G, then G contains a subdivision of K_{4}.
[10.3]
14. Let $n \geq 2$ be an integer, and assume that the sequence d_{1}, \ldots, d_{n} can be realized by a simple graph. Prove that this sequence can be realized by a connected simple graph, if and only if $\sum_{i=1}^{n} d_{i} \geq 2(n-1)$ and the elements d_{1}, \ldots, d_{n} are all positive.
15. Twelve dwarves live in the woods in red or blue houses. In the i 'th month of the year the i 'th dwarf visits all his friends to decide about repainting his house $(i=1, \ldots, 12)$. He will repaint his house (from blue to red, or vice versa) if and only if the (strict) majority of his friends live in a house of different color. This happens every year. Prove that after a while, noone will repaint his house anymore. (The friendships are mutual and don't change as time passes. Supposedly, not everyone is everyone's friend.)
16. ${ }^{+}$An arbitrary loopless graph G is given. Prove that it is possible to remove some edges of G so that the obtained graph G^{\prime} is bipartite, and in G^{\prime} each vertex has degree at least half of its original degree (in G).
Corollary (BSc): Every loopless graph can be made bipartite by the deletion of at most half of its edges.
17. In a graph G the average degree is $\bar{d}(G)$. Prove that there is an induced subgraph S in G for which $\delta(S) \geq \frac{\bar{d}(G)}{2}$, where $\delta(S)$ is the minimum degree in the graph S.
18. ${ }^{+}$Let $n \geq 1$ be an integer and let $t_{1}<t_{2}<\cdots<t_{n}$ be positive integers. In a group of $t_{n}+1$ people, some games of chess are played. Two people can play each other at most once. Prove that it is possible for the following conditions to hold at the same time:
(i) The number of games played by each person is one of $t_{1}, t_{2}, \ldots, t_{n}$;
(ii) For every i with $1 \leq i \leq n$, there is someone who has played exactly t_{i} games of chess.
19. ${ }^{+}$An arbitrary simple graph G and a positive integer k are given. Prove that the vertices of G can be colored red and blue so that every red vertex has less than k red neighbours, and every blue vertex has at least k red neighbours.

