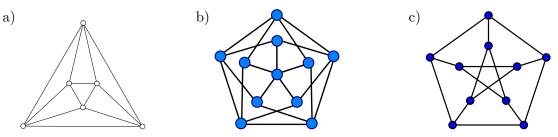
6. Edge coloring

Vizing's theorem: If G is a *simple* graph, then $\chi_e(G) \leq \Delta(G) + 1$. (So for simple graphs, $\chi_e(G) = \Delta(G)$ or $\chi_e(G) = \Delta(G) + 1$.)

1. Find the edge chromatic number of the following graphs.



- d) the graph obtained from the cycle C_9 by connecting every vertex to its two second neighbors on the cycle.
- e) the complete graph K_n .

2. a) Show that every if a 3-regular graph have a Hamiltonian cycle, then the edge chromatic number of this graph is 3.

b) Does the Petersen graph have a Hamiltonian cycle?

3. G is a 3-regular connected simple graph, which has an edge e such that the graph G - e is not connected. Prove that $\chi_e(G) = 4$.

4. a) Prove that the edge chromatic number of a *d*-regular *bipartite* graph is *d*.

b) Prove that if G is a **bipartite graph**, then $\chi_e(G) = \Delta(G)$.

5.⁺ Prove that the edge set of K_{2n+1} can be partitioned into n (edge sets of) Hamiltonian cycles of K_{2n+1} .