6. Edge coloring

Vizing's theorem: If G is a simple graph, then $\chi_{e}(G) \leq \Delta(G)+1$. (So for simple graphs, $\chi_{e}(G)=\Delta(G)$ or $\chi_{e}(G)=\Delta(G)+1$.)

1. Find the edge chromatic number of the following graphs.
a)

b)

c)

d) the graph obtained from the cycle C_{9} by connecting every vertex to its two second neighbors on the cycle.
e) the complete graph K_{n}.
2. a) Show that every if a 3 -regular graph have a Hamiltonian cycle, then the edge chromatic number of this graph is 3 .
b) Does the Petersen graph have a Hamiltonian cycle?
3. G is a 3 -regular connected simple graph, which has an edge e such that the graph $G-e$ is not connected. Prove that $\chi_{e}(G)=4$.
4. a) Prove that the edge chromatic number of a d-regular bipartite graph is d.
b) Prove that if G is a bipartite graph, then $\chi_{e}(G)=\Delta(G)$.
5. ${ }^{+}$Prove that the edge set of $K_{2 n+1}$ can be partitioned into n (edge sets of) Hamiltonian cycles of $K_{2 n+1}$.
